Methods in the ModTangToennies class
KineticGas - Latest (beta)
The ModTangToennies class, found in pykingas/multiparam.py, inherrits from the py_KineticGas class, and is the interface to the
Modified Tang-Toennies Model. This class implements utility methods to access mixing parameters etc.
Table of contents
Constructor
Methods to initialise Modified Tang-Toennies model.
Table of contents
__init__(self, comps, quantum_active=True, parameter_ref='default')
Initialize modified Tang-Toennies potential
Args:
comps (str) :
Single component identifier
parameter_ref (str, optional) :
Identifier for parameter set to use
Utility methods
Set- and get methods for interaction parameters, mixing parameters …
Table of contents
JKWB_phase_shift(self, i, j, l, E)
Compute the phase shift for a collision with angular momentum quantum number l and energy E, using the JKWB approximation
Args:
i, j (int): Species indices
l (int): Angular momentum quantum number
E (float): Total energy (J)
Returns:
float: The relative phase shift $(- \pi / 2, \pi / 2)$
JKWB_upper_E_limit(self, i=0, j=None)
Get the upper energy limit for when the JKWB approximation is automatically applied.
cross_section(self, i, j, l, E, reduced=False)
Calculate the collision cross section. If reduced=True, return the cross section divided by the hard-sphere cross section.
de_broglie_wavelength(self, i, T)
Get the de Broglie wavelength of species i at temperature T.
get_de_boer(self, i=None, j=None)
Get the de Boer parameter
get_quantum_active(self)
Get the current quantum_active state.
get_r_min(self, i, j)
Compute the position of the potential minimum.
Args:
i, j (int):
Species indices
Returns:
float :
r_min (m)
get_reducing_units(self, i=0, j=None)
See py_KineticGas.
omega(self, i, j, n, s, T)
Calculate the collision integral $\Omega^{(n, s)}$ as defined in The Limits of the Feynman-Hibbs corrections … paper (see cite page).
This method uses quantum mechanical or classical calculation based on whether self.get_quantum_active() is True
phase_shift(self, i, j, l, E)
Compute the phase shift for a collision with angular momentum quantum number l and energy E
Args:
i, j (int): Species indices
l (int): Angular momentum quantum number
E (float): Total energy (J)
Returns:
float: The relative phase shift $(- \pi / 2, \pi / 2)$
potential(self, r)
Evaluate potential
Args:
r (float) :
Distance (m)
Returns:
float :
Potential (J)
potential_dn(self, r, n)
Calculate the n‘th derivative of the potential wrt. distance.
Args:
r (float) : Distance (m)
Returns: float : Potential n’th derivative wrt. distance (J / m^n)
potential_r(self, r)
Evaluate potential derivative wrt. distance
Args:
r (float) :
Distance (m)
Returns:
float :
Potential derivative wrt. distance (N)
potential_rr(self, r)
Evaluate potential second derivative wrt. distance
Args:
r (float) :
Distance (m)
Returns:
float :
Potential second derivative wrt. distance (N / m)
quantum_omega(self, i, j, n, s, T)
Calculate the quantal collision integral $\Omega^{(n, s)}$ as defined in The Limits of the Feynman-Hibbs corrections … paper (see cite page).
set_de_boer_mass(self, i, de_boer)
Set the particle mass to get the specified de Boer parameter
set_quantum_active(self, active)
Activate/deactivate quantum mechanical calculation of things.
vdw_alpha(self)
Get the dimensionless Van der Waals alpha-parameter
Returns:
float :
alpha (-)
wave_function(self, i, j, l, E, r_end, dr=0.1)
Solve the Schrödinger equation for the two-particle wave function at energy E, out to the distance r_end
Args:
i, j (int):
Species indices
l (int):
Angular momentum quantum number
E (float):
Total energy (J)
r_end (float):
Maximum particle separation (m)
dr (float):
Step size
Returns:
list[float] :
The two-particle non-normalized wave function out to r_end.