thermopack v0.1

Generated by Doxygen 1.9.8

1 Todo List	1
2 Modules Index	3
2.1 Modules List	3
3 Data Tune Index	7
3.1 Class Higrarchy	7
	,
4 Data Type Index	11
4.1 Data Types List	11
5 Module Documentation	15
5.1 apparent_compostion Module Reference	15
5.1.1 Detailed Description	15
5.1.2 Function/Subroutine Documentation	16
5.1.2.1 getmodfugacity()	16
5.1.2.2 tp_Infug_apparent()	16
5.2 association_var Module Reference	17
5.2.1 Detailed Description	17
5.3 assocschemeutils Module Reference	17
5.3.1 Detailed Description	18
5.3.2 Function/Subroutine Documentation	18
5.3.2.1 compidx_to_sites()	18
5.3.2.2 cross_site_interaction()	19
5.3.2.3 site_interaction_internal()	19
5.3.2.4 site_to_compidx()	19
5.3.3 Variable Documentation	20
5.3.3.1 aricomb	20
5.3.3.2 assoc_scheme_1	20
5.4 cbalpha Module Reference	20
5.4.1 Detailed Description	20
5.4.2 Function/Subroutine Documentation	21
5.4.2.1 getsinglealphacorr()	21
5.4.2.2 setsinglealphacorr()	21
5.4.2.3 tpinitalphacorr()	21
5.5 cbbeta Module Reference	22
5.5.1 Detailed Description	22
5.5.2 Function/Subroutine Documentation	22
5.5.2.1 tpinitbetacorr()	22
5.6 cbhelm Module Reference	22
5.6.1 Detailed Description	23
5.6.2 Function/Subroutine Documentation	23
5.6.2.1 cbf()	23
5.6.2.2 cbfi()	24

i

5.6.2.3 cbfij()	24
5.6.2.4 cbfit()	24
5.6.2.5 cbfiv()	24
5.6.2.6 cbft()	25
5.6.2.7 cbftt()	25
5.6.2.8 cbfv()	25
5.6.2.9 cbfvt()	25
5.6.2.10 cbfvv()	26
5.6.2.11 cbfvvv()	26
5.6.2.12 cbpi()	26
5.6.2.13 cbpress()	26
5.6.2.14 cbprst()	27
5.6.2.15 cbpv()	27
5.6.2.16 cbpvv()	27
5.7 cbselect Module Reference	27
5.7.1 Detailed Description	28
5.7.2 Function/Subroutine Documentation	28
5.7.2.1 cbcalcparameters()	28
5.7.2.2 get_mixing_rule_index()	29
5.7.2.3 getcompindex()	29
5.7.2.4 initcubictcpcacf()	30
5.7.2.5 redefine_fallback_tcpcacf()	30
5.7.2.6 redefine_tcpcacf_comp_cubic()	30
5.7.2.7 selectcubiceos()	31
5.7.2.8 selectmixingrules()	31
5.7.2.9 tpselectinteractionparameters()	32
5.8 co2_gibbs Module Reference	32
5.8.1 Detailed Description	33
5.8.2 Function/Subroutine Documentation	33
5.8.2.1 sco2_d2gdp2()	33
5.8.2.2 sco2_d2gdt2()	34
5.8.2.3 sco2_d2gdtdp()	34
5.8.2.4 sco2_dgdp()	34
5.8.2.5 sco2_dgdt()	35
5.8.2.6 sco2_energy()	35
5.8.2.7 sco2_enthalpy()	35
5.8.2.8 sco2_entropy()	36
5.8.2.9 sco2_gibbs()	36
5.8.2.10 sco2_heat_capacity()	36
5.8.2.11 sco2_helmholtz()	37
5.8.2.12 sco2_specvol()	37
5.8.2.13 sco2_speed_of_sound()	38

5.8.2.14 sco2init()	38
5.9 compdata Module Reference	38
5.9.1 Detailed Description	40
5.9.2 Function/Subroutine Documentation	40
5.9.2.1 cidatadb_get_vol_trs_c()	40
5.9.2.2 init_component_data_from_db()	40
5.10 compdatadb Module Reference	40
5.10.1 Detailed Description	76
5.11 complexmodelinit Module Reference	76
5.11.1 Detailed Description	77
5.11.2 Function/Subroutine Documentation	77
5.11.2.1 init_umr()	77
5.11.2.2 init_vtpr()	77
5.12 cpa_parameters Module Reference	78
5.12.1 Detailed Description	78
5.13 critical Module Reference	78
5.13.1 Detailed Description	79
5.13.2 Function/Subroutine Documentation	79
5.13.2.1 calcbmatrixtv()	79
5.13.2.2 calceritical()	80
5.13.2.3 calccriticalendpoint()	80
5.13.2.4 calccriticaltv()	81
5.13.2.5 calccriticalz()	82
5.13.2.6 calcstabmineig()	82
5.13.2.7 calcstabmineigtv()	83
5.13.2.8 critzsensitivity()	83
5.13.2.9 stabfun()	84
5.13.2.10 stabfuntv()	84
5.13.2.11 stabjactv()	84
5.14 cubic Module Reference	85
5.14.1 Detailed Description	86
5.14.2 Function/Subroutine Documentation	86
5.14.2.1 cb_cubic_second_zfac()	86
5.14.2.2 cb_solve_cubic_zfac()	87
5.14.2.3 cbcalcderivatives_svol()	87
5.14.2.4 p88-91	87
5.14.2.5 Bij cbeos%bij = 0	88
5.14.2.6 cbcalcenthalpy()	88
5.14.2.7 cbcalcentropy()	88
5.14.2.8 cbcalcfreeenergy()	89
5.14.2.9 cbcalcfres()	90
5.14.2.10 cbcalcfug()	90

5.14.2.11 cbcalcinnerenergy()	91
5.14.2.12 cbcalcpseudo()	91
5.14.2.13 cbgres()	92
5.14.2.14 cbsolvecubiczfac()	92
5.15 cubic_eos Module Reference	93
5.15.1 Detailed Description	96
5.15.2 Function/Subroutine Documentation	96
5.15.2.1 allocate_and_init_cubic_eos()	96
5.15.2.2 get_b_linear_mix()	96
5.16 eos Module Reference	97
5.16.1 Detailed Description	98
5.16.2 Function/Subroutine Documentation	98
5.16.2.1 compmoleweight()	98
5.16.2.2 enthalpy()	98
5.16.2.3 entropy()	99
5.16.2.4 getcriticalparam()	99
5.16.2.5 moleweight()	100
5.16.2.6 pseudo()	100
5.16.2.7 pseudo_safe()	100
5.16.2.8 residualgibbs()	101
5.16.2.9 specificvolume()	101
5.16.2.10 thermo()	102
5.16.2.11 twophaseenthalpy()	102
5.16.2.12 twophaseentropy()	103
5.16.2.13 twophaseinternalenergy()	104
5.16.2.14 twophasespecificvolume()	104
5.16.2.15 zfac()	105
5.17 eos_container Module Reference	105
5.17.1 Detailed Description	106
5.17.2 Function/Subroutine Documentation	106
5.17.2.1 allocate_eos()	106
5.18 eos_parameters Module Reference	106
5.18.1 Detailed Description	106
5.18.2 Function/Subroutine Documentation	106
5.18.2.1 single_eos_alloc()	106
5.18.2.2 single_eos_allocate_and_init()	108
5.19 eosdata Module Reference	108
5.19.1 Detailed Description	111
5.20 eoslibinit Module Reference	111
5.20.1 Detailed Description	112
5.20.2 Function/Subroutine Documentation	112
5.20.2.1 init_cpa()	112

5.20.2.2 init_cubic()
5.20.2.3 init_cubic_pseudo()
5.20.2.4 init_extcsp()
5.20.2.5 init_lee_kesler()
5.20.2.6 init_lj()
5.20.2.7 init_ljs()
5.20.2.8 init_multiparameter()
5.20.2.9 init_pcsaft()
5.20.2.10 init_pets()
5.20.2.11 init_quantum_cubic()
5.20.2.12 init_quantum_saftvrmie()
5.20.2.13 init_saftvrmie()
5.20.2.14 init_tcpr()
5.20.2.15 init_thermo()
5.20.2.16 init_volume_translation()
5.20.2.17 redefine_critical_parameters()
odule Reference

5.20.2.12 init_quantum_saftvrmie()
5.20.2.13 init_saftvrmie()
5.20.2.14 init_tcpr()
5.20.2.15 init_thermo()
5.20.2.16 init_volume_translation()
5.20.2.17 redefine_critical_parameters()
5.21 eostv Module Reference
5.21.1 Detailed Description
5.21.2 Function/Subroutine Documentation
5.21.2.1 binarythirdvirialcoeffmatrix()
5.21.2.2 chemical_potential_tv() 118
5.21.2.3 enthalpy_tv()
5.21.2.4 enthalpy_tvp()
5.21.2.5 entropy_tv()
5.21.2.6 entropy_tvp()
5.21.2.7 fideal()
5.21.2.8 fideal_ne()
5.21.2.9 free_energy_tv()
5.21.2.10 fres()
5.21.2.11 fres_ne()
5.21.2.12 internal_energy_tv()
5.21.2.13 pressure()
5.21.2.14 secondvirialcoeffmatrix()
5.21.2.15 thermo_tv()
5.21.2.16 thermo_tvp()
5.21.2.17 virial_coefficients()
5.22 excess_gibbs Module Reference
5.22.1 Detailed Description
5.22.2 Function/Subroutine Documentation
5.22.2.1 getfraction()
5.23 extcsp Module Reference
5.23.1 Detailed Description

5.23.2 Function/Subroutine Documentation
5.23.2.1 csp_init()
5.23.2.2 csp_refpressure()
5.23.2.3 csp_testpressure()
5.23.2.4 csp_zfac()
5.24 gergdatadb Module Reference
5.24.1 Detailed Description
5.25 gergmixdb Module Reference
5.25.1 Detailed Description
5.26 h2o_gibbs Module Reference
5.26.1 Detailed Description
5.26.2 Function/Subroutine Documentation
5.26.2.1 sh2o_d2gdp2()
5.26.2.2 sh2o_d2gdt2()
5.26.2.3 sh2o_d2gdtdp()
5.26.2.4 sh2o_dgdp()
5.26.2.5 sh2o_dgdt()
5.26.2.6 sh2o_energy()
5.26.2.7 sh2o_enthalpy()
5.26.2.8 sh2o_entropy()
5.26.2.9 sh2o_gibbs()
5.26.2.10 sh2o_heat_capacity()
5.26.2.11 sh2o_helmholtz()
5.26.2.12 sh2o_specvol()
5.26.2.13 sho2_init()
5.27 hyperdual_mod Module Reference
5.27.1 Detailed Description
5.28 isolines Module Reference
5.28.1 Detailed Description
5.28.2 Function/Subroutine Documentation
5.28.2.1 isenthalp()
5.28.2.2 isentrope()
5.28.2.3 isobar()
5.28.2.4 isotherm()
5.29 leekesler Module Reference
5.29.1 Detailed Description
5.29.2 Function/Subroutine Documentation
5.29.2.1 calcreducedvolume()
5.29.2.2 fdiff2ninj()
5.29.2.3 fdiff2tni()
5.29.2.4 fdiff2tr()
5.29.2.5 fdiff2trn()

5.29.2.6 fdiff2trvr()
5.29.2.7 fdiff2vni()
5.29.2.8 fdiff2vr()
5.29.2.9 fdiff2vrn()
5.29.2.10 fdiff3vr()
5.29.2.11 fdiffn()
5.29.2.12 fdiffni()
5.29.2.13 fdifftr()
5.29.2.14 fdiffvr()
5.29.2.15 fixedtrplot()
5.29.2.16 fsolver()
5.29.2.17 fv()
5.29.2.18 fvdiff()
5.29.2.19 fz()
5.29.2.20 fzdiff()
5.29.2.21 fzdiff2()
5.29.2.22 fzwithdiff()
5.29.2.23 hdiffni()
5.29.2.24 hdiffp()
5.29.2.25 hdifft()
5.29.2.26 lkcalcenthalpy()
5.29.2.27 lkcalcentropy()
5.29.2.28 lkcalcfug()
5.29.2.29 lkcalcgdep()
5.29.2.30 lkcalczfac()
5.29.2.31 Inphidiffnj()
5.29.2.32 Inphidiffp()
5.29.2.33 Inphidifft()
5.29.2.34 Inphim()
5.29.2.35 mainleekesler()
5.29.2.36 mixrules()
5.29.2.37 pcmdiff2ninj()
5.29.2.38 pcmdiffni()
5.29.2.39 pdiffni()
5.29.2.40 pdifft()
5.29.2.41 pdiffv()
5.29.2.42 pred()
5.29.2.43 prsolver()
5.29.2.44 sdiffni()
5.29.2.45 sdiffp()
5.29.2.46 sdifft()
5.29.2.47 setmaxminz()

5.29.2.48 tcmdiff2ninj()	81
5.29.2.49 tcmdiffni()	81
5.29.2.50 testdiffleekesler()	82
5.29.2.51 thermprops()	82
5.29.2.52 trcoeff()	83
5.29.2.53 trcoeffdiff1()	83
5.29.2.54 trcoeffdiff2()	84
5.29.2.55 trdiff2ninj()	84
5.29.2.56 trdiffni()	85
5.29.2.57 vcmdiff2ninj()	85
5.29.2.58 vcmdiffni()	86
5.29.2.59 vdiffni()	86
5.29.2.60 vdifft()	86
5.29.2.61 vrdiff2ninj()	87
5.29.2.62 vrdiffni()	87
5.29.2.63 vrinitial()	88
5.29.2.64 vrnewtraps()	88
5.29.2.65 wmdiff2ninj()	89
5.29.2.66 wmdiffni()	89
5.29.2.67 zcmdiff2ninj()	89
5.29.2.68 zcmdiffni()	90
5.29.2.69 zdiffni()	90
5.29.2.70 zdiffp()	90
5.29.2.71 zdifft()	91
5.29.2.72 zinitial()	91
5.29.2.73 znewtraps()	92
5.29.2.74 zprtshape()	92
5.30 linear_numerics Module Reference	92
5.30.1 Detailed Description	93
5.30.2 Function/Subroutine Documentation	93
5.30.2.1 cg()	93
5.30.2.2 inverse()	93
5.30.2.3 null_space()	93
5.30.2.4 outer_product()	94
5.30.2.5 solve_lu_hd()	94
5.31 mbwr Module Reference	94
5.31.1 Detailed Description	95
5.31.2 Function/Subroutine Documentation	95
5.31.2.1 find_extremum()	95
5.31.2.2 initializembwrmodel()	96
5.31.2.3 mbwr_density()	96
5.31.2.4 newton_density()	96

5.32 meosdatadb Module Reference	 197
5.32.1 Detailed Description	 232
5.33 meosmixdb Module Reference	 232
5.33.1 Detailed Description	 282
5.34 mixdatadb Module Reference	 282
5.34.1 Detailed Description	 311
5.35 multiparameter_base Module Reference	 311
5.35.1 Detailed Description	 312
5.35.2 Function/Subroutine Documentation	 312
5.35.2.1 alphaderivs_tv()	 312
5.35.2.2 alphaidderivs_tv()	 313
5.35.2.3 alpharesderivs_tv()	 313
5.35.2.4 cp()	 313
5.35.2.5 cv()	 314
5.35.2.6 densitysolver()	 314
5.35.2.7 speed_of_sound()	 314
5.36 multiparameter_idealmix Module Reference	 315
5.36.1 Detailed Description	 315
5.36.2 Function/Subroutine Documentation	 315
5.36.2.1 calc_multiparameter_idealmix_enthalpy()	 315
5.36.2.2 Author: OW, date: 2018-10-02	 316
5.36.2.3 calc_multiparameter_idealmix_entropy()	 316
5.36.2.4 Author: OW, date: 2018-10-09	 316
5.36.2.5 calc_multiparameter_idealmix_fugacity()	 316
5.36.2.6 Author: OW, date: 2018-10-09	 317
5.36.2.7 calc_multiparameter_idealmix_gres()	 317
5.36.2.8 Author: OW, date: 2018-10-09	 317
5.36.2.9 calc_multiparameter_idealmix_zfac()	 318
5.36.2.10 Author: OW, date: 2018-10-02	 318
5.37 multipol Module Reference	 318
5.37.1 Detailed Description	 319
5.37.2 Function/Subroutine Documentation	 319
5.37.2.1 add_hyperdual_fres_multipol()	 319
5.37.2.2 fres_multipol()	 319
5.37.2.3 hyperdual_calc_d_hs_pc_saft()	 320
5.37.2.4 hyperdual_f_dd()	 320
5.37.2.5 hyperdual_f_dq()	 320
5.37.2.6 hyperdual_f_qq()	 320
5.37.2.7 hyperdual_fres_multipol()	 321
5.37.2.8 hyperdual_j2_ij()	 321
5.37.2.9 hyperdual_j3_ijk()	 321
5.37.2.10 hyperdual_packing_fraction_pc_saft()	 322

5.37.2.11 multipol_model_control()	322
5.38 mut_solver Module Reference	322
5.38.1 Detailed Description	322
5.38.2 Function/Subroutine Documentation	322
5.38.2.1 map_meta_isotherm()	322
5.38.2.2 solve_Inf_t()	323
5.38.2.3 solve_mu_t()	323
5.39 nonlinear_solvers Module Reference	324
5.39.1 Detailed Description	325
5.39.2 Function/Subroutine Documentation	325
5.39.2.1 approximate_jacobian()	325
5.39.2.2 approximate_jacobian_2nd()	325
5.39.2.3 approximate_jacobian_4th()	325
5.39.2.4 bracketing_solver()	326
5.39.2.5 limit_dx()	326
5.39.2.6 newton_1d()	326
5.39.2.7 nonlinear_solve()	327
5.39.2.8 pegasus()	327
5.39.2.9 premreturn()	328
5.39.2.10 premterm_at_dx_zero()	328
5.39.2.11 setxv()	329
5.39.3 Variable Documentation	329
5.39.3.1 ns_newton	329
5.40 optimizers Module Reference	329
5.40.1 Detailed Description	330
5.40.2 Function/Subroutine Documentation	330
5.40.2.1 nelmin()	330
5.40.2.2 optimize()	330
5.40.2.3 prematurereturn()	331
5.40.2.4 setx()	331
5.40.3 Variable Documentation	332
5.40.3.1 no_mod_newton	332
5.41 pc_saft_datadb Module Reference	332
5.41.1 Detailed Description	339
5.42 pc_saft_nonassoc Module Reference	339
5.42.1 Detailed Description	341
5.42.2 Function/Subroutine Documentation	341
5.42.2.1 a_i()	341
5.42.2.2 alpha_disp()	341
5.42.2.3 alpha_disp_pc_tvn()	342
5.42.2.4 alpha_hs_pc_tvn()	342
5.42.2.5 alpha_hs_spc_tvn()	343

Generated by Doxygen

5.42.2.6 alpha_pc()	343
5.42.2.7 alpha_spc_saft_hc()	343
5.42.2.8 alpha_spc_saft_hs()	344
5.42.2.9 b_i()	344
5.42.2.10 c_1()	345
5.42.2.11 calc_d()	345
5.42.2.12 calc_d_hd()	345
5.42.2.13 calc_dhs()	345
5.42.2.14 eta()	346
5.42.2.15 f_chain_pc_saft_tvn()	346
5.42.2.16 f_disp_pc_tvn()	346
5.42.2.17 f_hc_pc_saft_tvn()	347
5.42.2.18 f_hs_pc_saft_tvn()	347
5.42.2.19 f_pc_saft_tvn()	348
5.42.2.20 f_spc_saft_tvn()	348
5.42.2.21 g_ij_spc_saft()	349
5.42.2.22 g_pc_saft_tvn()	349
5.42.2.23 g_spc_saft_tvn()	350
5.42.2.24 i_1()	350
5.42.2.25 i_2()	351
5.42.2.26 lng_ii_pc_saft_tvn()	351
5.42.2.27 m2e1s3_mean()	351
5.42.2.28 m2e2s3_mean()	352
5.42.2.29 m_bar()	352
5.42.2.30 pcsaft_allocate_and_init()	352
5.42.2.31 spcsaft_allocate_and_init()	353
5.42.2.32 zeta()	353
5.43 pc_saft_parameters Module Reference	353
5.43.1 Detailed Description	354
5.44 ph_solver Module Reference	354
5.44.1 Detailed Description	354
5.44.2 Function/Subroutine Documentation	355
5.44.2.1 getphtolerance()	355
5.44.2.2 setphtolerance()	355
5.44.2.3 singlecomponenttwophasephflash()	355
5.44.2.4 singlephasepxflash()	356
5.44.2.5 twophasephflash()	356
5.45 ps_solver Module Reference	357
5.45.1 Detailed Description	357
5.45.2 Function/Subroutine Documentation	357
5.45.2.1 getpstolerance()	357
5.45.2.2 setpstolerance()	357

5.45.2.3 singlecomponenttwophasepsflash()	58
5.45.2.4 twophasepsflash()	58
5.46 saft_association Module Reference	59
5.46.1 Detailed Description	60
5.46.2 Function/Subroutine Documentation	60
5.46.2.1 assemble_m_mich_k()	60
5.46.2.2 fun()	60
5.46.2.3 jac()	60
5.46.2.4 k_mich()	61
5.46.2.5 q_derivatives_knowing_x()	61
5.46.2.6 solve_for_x_k()	62
5.47 saft_interface Module Reference	62
5.47.1 Detailed Description	64
5.47.2 Function/Subroutine Documentation	64
5.47.2.1 adjust_mass_to_specified_de_boer_parameter()	64
5.47.2.2 alpha()	65
5.47.2.3 cpa_get_kij()	65
5.47.2.4 cpa_get_pure_params()	65
5.47.2.5 cpa_set_cubic_params()	65
5.47.2.6 cpa_set_kij()	66
5.47.2.7 cpa_set_pure_params()	66
5.47.2.8 de_boer_parameter()	66
5.47.2.9 de_broglie_wavelength()	67
5.47.2.10 epsilon_eff_ij()	67
5.47.2.11 epsilon_ij()	67
5.47.2.12 pc_saft_get_kij()	68
5.47.2.13 pc_saft_set_kij()	68
5.47.2.14 pc_saft_set_kij_asym()	68
5.47.2.15 pcsaft_set_nonassoc_params()	68
5.47.2.16 potential()	69
5.47.2.17 saft_Inphi()	69
5.47.2.18 saft_residenthalpy()	69
5.47.2.19 saft_residentropy()	70
5.47.2.20 saft_residgibbs()	70
5.47.2.21 saft_total_pressure()	71
5.47.2.22 saft_total_pressure_assoc_mix()	71
5.47.2.23 saft_total_pressure_knowing_x_k()	71
5.47.2.24 saft_type_eos_init()	72
5.47.2.25 saft_zfac()	72
5.47.2.26 sigma_eff_ij()	73
5.47.2.27 sigma_ij()	73
5.47.2.28 test_fmt_compatibility()	73

5.48 saft_rdf Module Reference	373
5.48.1 Detailed Description	374
5.48.2 Function/Subroutine Documentation	374
5.48.2.1 master_saft_rdf()	374
5.49 saftvrmie_datadb Module Reference	374
5.49.1 Detailed Description	381
5.50 satdensdatadb Module Reference	381
5.50.1 Detailed Description	384
5.51 saturation_point_locators Module Reference	384
5.51.1 Detailed Description	385
5.51.2 Function/Subroutine Documentation	385
5.51.2.1 bracketsolveforpropertysingle()	385
5.51.2.2 iso_cross_saturation_line()	385
5.51.2.3 sat_points_based_on_prop()	386
5.52 solid_correlation_datadb Module Reference	387
5.52.1 Detailed Description	391
5.53 solideos Module Reference	391
5.53.1 Detailed Description	392
5.53.2 Function/Subroutine Documentation	392
5.53.2.1 initdryice()	392
5.53.2.2 initice()	392
5.53.2.3 isformingsolid()	393
5.53.2.4 solid_enthalpy()	393
5.53.2.5 solid_entropy()	393
5.53.2.6 solid_init()	394
5.53.2.7 solid_specificvolume()	394
5.53.2.8 solid_thermo()	395
5.53.2.9 solidforming()	395
5.53.2.10 solidfraction()	396
5.54 speed_of_sound Module Reference	396
5.54.1 Detailed Description	397
5.54.2 Function/Subroutine Documentation	397
5.54.2.1 singlephasespeedofsound()	397
5.54.2.2 solidspeedofsound()	397
5.54.2.3 sound_velocity_2ph()	398
5.54.2.4 speed_of_sound_tv()	398
5.54.2.5 twophasespeedofsound()	399
5.55 spinodal Module Reference	399
5.55.1 Detailed Description	400
5.55.2 Function/Subroutine Documentation	400
5.55.2.1 initial_stab_limit_point()	400
5.55.2.2 locate_spinodal_prop_min_max_pure_fluid()	400

5.55.2.3 locate_spinodal_prop_pure_fluid()
5.55.2.4 map_meta_isentrope()
5.55.2.5 map_stability_limit()
5.55.2.6 rho_of_meta_extremum()
5.55.2.7 rhomax_pr()
5.55.2.8 tv_meta_ps()
5.56 stability Module Reference
5.56.1 Detailed Description
5.56.2 Function/Subroutine Documentation
5.56.2.1 checkvlestability()
5.56.2.2 get_stability_tolerance()
5.56.2.3 set_stability_tolerance()
5.56.2.4 stabcalc()
5.56.2.5 stabcalcw()
5.56.2.6 tpd_fun()
5.57 state_functions Module Reference
5.57.1 Detailed Description
5.57.2 Function/Subroutine Documentation
5.57.2.1 dhdp_twophase()
5.57.2.2 dhdt_twophase()
5.57.2.3 dnvdx()
5.57.2.4 dpdt_twophase()
5.57.2.5 dvdp_twophase()
5.57.2.6 dvdt_twophase()
5.57.2.7 getjoulethompsoncoeff()
5.57.2.8 getstatefunc()
5.57.2.9 getstatefuncmatrix()
5.57.2.10 getsvderivativestwophase()
5.57.2.11 getuvderivativestwophase()
5.58 sv_solver Module Reference
5.58.1 Detailed Description
5.58.2 Function/Subroutine Documentation
5.58.2.1 disablecustumstabcalc()
5.58.2.2 enablecustumstabcalc()
5.58.2.3 fun_1ph_sv()
5.58.2.4 getfulleqsvtolerance()
5.58.2.5 getnestedsvtolerance()
5.58.2.6 getsinglecompsvtolerance()
5.58.2.7 jac_1ph_sv()
5.58.2.8 setfulleqsvtolerance()
5.58.2.9 setnestedsvtolerance()
5.58.2.10 setsinglecompsvtolerance()

5.58.2.11 singlecompsv_tv()	418
5.58.2.12 twophasesvflash()	419
5.58.2.13 twophasesvflashfull()	419
5.58.2.14 twophasesvflashnested()	420
5.58.2.15 twophasesvsinglecomp()	420
5.59 thermo_utils Module Reference	421
5.59.1 Detailed Description	422
5.59.2 Function/Subroutine Documentation	422
5.59.2.1 calcInphioffset()	422
5.59.2.2 get_n_solids()	422
5.59.2.3 guessphase()	422
5.59.2.4 guessphasetv()	423
5.59.2.5 issinglecomp()	423
5.59.2.6 istwocomp()	424
5.59.2.7 maxcomp()	424
5.59.2.8 phase_is_fake()	424
5.59.2.9 wilsonk()	424
5.59.2.10 wilsonkdiff()	425
5.59.2.11 wilsonki()	425
5.60 thermopack_var Module Reference	426
5.60.1 Detailed Description	427
5.60.2 Function/Subroutine Documentation	427
5.60.2.1 tp_Infug_apparent()	427
5.60.3 Variable Documentation	427
5.60.3.1 nc	427
5.61 tp_solver Module Reference	428
5.61.1 Detailed Description	428
5.61.2 Function/Subroutine Documentation	428
5.61.2.1 differentials()	428
5.61.2.2 objective()	429
5.61.2.3 rr_solve()	429
5.61.2.4 twophasetpflash()	430
5.62 trend_solver Module Reference	430
5.62.1 Detailed Description	431
5.62.2 Function/Subroutine Documentation	431
5.62.2.1 trend_density()	431
5.62.2.2 trend_phase_is_fake()	431
5.63 uv_solver Module Reference	432
5.63.1 Detailed Description	432
5.63.2 Function/Subroutine Documentation	432
5.63.2.1 disablecustumstabcalc()	432
5.63.2.2 enablecustumstabcalc()	433

Generated by Doxygen

5.63.2.3 fun_1ph()	433
5.63.2.4 getfullequvtolerance()	433
5.63.2.5 getnesteduvtolerance()	434
5.63.2.6 getsinglecompuvtolerance()	434
5.63.2.7 jac_1ph()	434
5.63.2.8 setfullequvtolerance()	435
5.63.2.9 setnesteduvtolerance()	435
5.63.2.10 setsinglecompuvtolerance()	435
5.63.2.11 twophaseuvflash()	436
5.63.2.12 twophaseuvflashfull()	436
5.63.2.13 twophaseuvflashnested()	437
5.63.2.14 twophaseuvsinglecomp()	437
5.64 vls Module Reference	438
5.64.1 Detailed Description	439
5.64.2 Function/Subroutine Documentation	439
5.64.2.1 inversephasemappingvlws()	439
5.64.2.2 mpenthalpy()	440
5.64.2.3 mpentropy()	440
5.64.2.4 mpspecificvolume()	441
5.64.2.5 printcurrentphases()	441
5.64.2.6 specificenthalpyvlws()	441
5.64.2.7 specificentropyvlws()	442
5.64.2.8 specificvolumevlws()	443
5.64.2.9 vlsenthalpy()	444
5.64.2.10 vlsentropy()	445
5.64.2.11 vlsspecificvolume()	445
5.64.2.12 vlsthermo()	446
5.65 volume_shift Module Reference	446
5.65.1 Detailed Description	447
5.65.2 Function/Subroutine Documentation	447
5.65.2.1 eosvolumefromshiftedvolume()	447
5.65.2.2 initvolumeshift()	447
5.65.2.3 redefine_volume_shift()	448
5.65.2.4 volumeshiftzfac()	448
5.65.2.5 vshift_f_differential_dependencies()	449
5.65.2.6 vshift_f_terms()	449
5.66 wong_sandler Module Reference	450
5.66.1 Detailed Description	450
6 Data Type Documentation	451
6.1 hyperdual_mod::abs Interface Reference	451
6.2 hyperdual_mod::acos Interface Reference	451

6.3 saturation_curve::aep Type Reference 451
6.4 thermopack_var::allocate_and_init_intf Interface Reference
6.4.1 Constructor & Destructor Documentation
6.4.1.1 allocate_and_init_intf()
6.5 multiparameter_base::alpha0_hd_intf Interface Reference
6.5.1 Constructor & Destructor Documentation
6.5.1.1 alpha0_hd_intf()
6.6 multiparameter_base::alpha0derivs_intf Interface Reference
6.6.1 Constructor & Destructor Documentation
6.6.1.1 alpha0derivs_intf()
6.7 cubic_eos::alpha_label_mapping Type Reference
6.8 compdata::alphadatadb Type Reference
6.8.1 Detailed Description
6.9 multiparameter_base::alphares_hd_intf Interface Reference
6.9.1 Constructor & Destructor Documentation
6.9.1.1 alphares_hd_intf()
6.10 multiparameter_base::alpharesderivs_intf Interface Reference
6.10.1 Constructor & Destructor Documentation
6.10.1.1 alpharesderivs_intf()
6.11 apparent_compostion::apparent_container Type Reference
6.11.1 Member Function/Subroutine Documentation
6.11.1.1 getmodfugacity()
6.11.1.2 tp_Infug_apparent()
6.12 hyperdual_mod::asin Interface Reference
6.13 thermopack_var::assign_intf Interface Reference
6.14 multiparameter_base::assign_meos_intf Interface Reference
6.15 hyperdual_mod::assignment(=) Interface Reference
6.16 association_var::association Type Reference
6.16.1 Member Data Documentation
6.16.1.1 beta_kl
6.17 association_var::association_state Type Reference
6.17.1 Detailed Description
6.18 hyperdual_mod::atan Interface Reference
6.19 hyperdual_mod::atan2 Interface Reference
6.20 thermopack_var::base_eos_param Type Reference
6.20.1 Member Function/Subroutine Documentation
6.20.1.1 allocate_and_init()
6.21 c_interface_module::c_strlen Interface Reference
6.21.1 Detailed Description
6.22 cubic_eos::cb_eos Type Reference
6.22.1 Member Function/Subroutine Documentation 465

6.23 cubic::cbbig Type Reference
6.24 compdata::cidatadb Type Reference
6.24.1 Detailed Description
6.24.2 Member Function/Subroutine Documentation
6.24.2.1 get_vol_trs_c()
6.25 hyperdual_mod::cos Interface Reference
6.26 hyperdual_mod::cosh Interface Reference
6.27 cubic_eos::cpa_eos Type Reference
6.28 compdata::cpadata Type Reference
6.28.1 Detailed Description
6.29 cubic_eos::cpakijdata Type Reference
6.29.1 Detailed Description
6.30 compdata::cpdata Type Reference
6.30.1 Detailed Description
6.31 eosdata::eos_label_mapping Type Reference
6.32 thermopack_var::eos_param_pointer Type Reference
6.33 mbwr::eosmbwr Type Reference
6.33.1 Detailed Description
6.34 optimizers::error_function Interface Reference
6.34.1 Constructor & Destructor Documentation
6.34.1.1 error_function()
6.35 hyperdual_mod::exp Interface Reference 475
6.36 extcsp::extcsp_eos Type Reference
6.36.1 Member Function/Subroutine Documentation
6.36.1.1 allocate_and_init()
6.37 cubic_eos::fraction Type Reference
6.37.1 Member Data Documentation
6.37.1.1 pden
6.38 nonlinear_solvers::function_template Interface Reference
6.39 compdata::gendata Type Reference
6.40 compdata::gendata_pointer Type Reference
6.41 compdata::gendatadb Type Reference
6.42 gergmixdb::gerg_mix_data Type Reference
6.43 gergmixdb::gerg_mix_reducing Type Reference
6.44 gergdatadb::gergdata Type Reference
6.45 idealh2::h2func Interface Reference
6.46 hardsphere_bmcsl::hs_diameter Type Reference
6.46.1 Detailed Description
6.47 hyperdual_mod::hyperdual Type Reference
6.47.1 Detailed Description
6.48 hyperdual_utility::hyperdual_fres Interface Reference
6.49 multiparameter_base::init_intf Interface Reference 485

6.50 hyperdual_mod::int Interface Reference
6.51 cubic_eos::intergedatadb Type Reference
6.52 nonlinear_solvers::jacobian_template Interface Reference
6.53 cubic_eos::kijdatadb Type Reference
6.54 cubic_eos::lijdatadb Type Reference
6.55 multiparameter_lj::lj_param Type Reference
6.55.1 Detailed Description
6.56 lj_splined::ljs_bh_eos Type Reference
6.57 lj_splined::ljs_wca_eos Type Reference
6.57.1 Member Function/Subroutine Documentation
6.57.1.1 allocate_and_init()
6.58 lj_splined::ljx_ux_eos Type Reference
6.59 cubic_eos::lk_eos Type Reference
6.60 hyperdual_mod::log Interface Reference
6.61 hyperdual_mod::log10 Interface Reference
6.62 hyperdual_mod::max Interface Reference
6.63 mbwrdata::mbwr19data Type Reference
6.64 mbwrdata::mbwr32data Type Reference
6.65 multiparameter_base::meos Type Reference 497
6.65.1 Detailed Description
6.65.2 Member Function/Subroutine Documentation
6.65.2.1 alpha0_hd_taudelta()
6.65.2.2 alpha0derivs_taudelta()
6.65.2.3 alphaderivs_tv()
6.65.2.4 alphaidderivs_tv()
6.65.2.5 alphares_hd_taudelta()
6.65.2.6 alpharesderivs_taudelta()
6.65.2.7 alpharesderivs_tv()
6.65.2.8 cp()
6.65.2.9 cv()
6.65.2.10 densitysolver()
6.65.2.11 satdeltaestimate()
6.65.2.12 speed_of_sound()
6.66 multiparameter_c3::meos_c3 Type Reference
6.66.1 Detailed Description
6.66.2 Member Function/Subroutine Documentation
6.66.2.1 alpha0derivs_taudelta()
6.66.2.2 alpharesderivs_taudelta()
6.67 gerg::meos_gerg Type Reference
6.67.1 Detailed Description
6.67.2 Member Function/Subroutine Documentation
6.67.2.1 alpha0derivs_taudelta()

6.80.1 Detailed Description
6.81 hyperdual_mod::min Interface Reference
6.82 cubic_eos::mix_label_mapping Type Reference
6.83 cubic_eos::mixexcessgibbs Type Reference
6.84 cubic_eos::mixwongsandler Type Reference
6.85 multipol_var::multipol_param Type Reference
6.85.1 Member Function/Subroutine Documentation
6.85.1.1 init_multipol_param()
6.86 mbwr::nijlarray Type Reference
6.87 hyperdual_mod::nint Interface Reference
6.88 multiparameter_base::nist_meos_ptr Type Reference
6.89 nonlinear_solvers::nonlinear_solver Type Reference
6.89.1 Detailed Description
6.90 hyperdual_mod::operator(*) Interface Reference
6.91 hyperdual_mod::operator(**) Interface Reference
6.92 hyperdual_mod::operator(+) Interface Reference
6.93 hyperdual_mod::operator(-) Interface Reference
6.94 hyperdual_mod::operator(.eq.) Interface Reference
6.95 hyperdual_mod::operator(.ge.) Interface Reference
6.96 hyperdual_mod::operator(.gt.) Interface Reference
6.97 hyperdual_mod::operator(.le.) Interface Reference
6.98 hyperdual_mod::operator(.lt.) Interface Reference
6.99 hyperdual_mod::operator(.ne.) Interface Reference
6.100 hyperdual_mod::operator(/) Interface Reference
6.101 optimizers::optim_param Type Reference
6.101.1 Detailed Description
6.102 hardsphere_bmcsl::packing_fraction_hs Type Reference
6.102.1 Detailed Description
6.103 pc_saft_datadb::pc_saft_data Type Reference
6.103.1 Detailed Description
6.104 pc_saft_datadb::pckijdata Type Reference
6.104.1 Detailed Description
6.105 pc_saft_nonassoc::pcsaft_eos Type Reference
6.105.1 Member Function/Subroutine Documentation
6.105.1.1 allocate_and_init()
6.106 pets::pets_eos Type Reference
6.106.1 Member Function/Subroutine Documentation
6.106.1.1 allocate_and_init()
6.106.1.2 alpha_disp()
6.106.1.3 alpha_disp_tvn()
6.106.1.4 alpha_hs_tvn()
6.106.1.5 alpha_pets()

6.106.1.6 alpha_pets_hs()	557
6.106.1.7 calc_d_pets()	558
6.106.1.8 calc_potential_pets()	558
6.106.1.9 f_pets_tvn()	558
6.107 hyperdual_mod::real Interface Reference	559
6.108 utilities::safe_exp Interface Reference 5	559
6.108.1 Detailed Description	559
6.108.2 Member Function/Subroutine Documentation	559
6.108.2.1 safe_exp_array()	559
6.108.2.2 safe_exp_real()	560
6.109 saftvrmie_containers::saftvrmie_aij Type Reference	560
6.109.1 Detailed Description	560
6.110 saftvrmie_datadb::saftvrmie_data Type Reference	560
6.110.1 Detailed Description	561
6.111 saftvrmie_containers::saftvrmie_dhs Type Reference	561
6.111.1 Detailed Description	562
6.112 saftvrmie_containers::saftvrmie_eos Type Reference	562
6.112.1 Member Function/Subroutine Documentation	563
6.112.1.1 allocate_and_init()	563
6.113 saftvrmie_options::saftvrmie_opt Type Reference	563
6.113.1 Member Function/Subroutine Documentation	565
6.113.1.1 check_model_consitency()	565
6.113.1.2 saftvrmieaij_model_options()	565
6.113.1.3 set_r_cut()	565
6.113.1.4 truncation_correction_model_control()	565
6.114 saftvrmie_containers::saftvrmie_param_container Type Reference	565
6.114.1 Detailed Description	566
6.115 saftvrmie_containers::saftvrmie_var_container Type Reference	567
6.115.1 Detailed Description	568
6.116 saftvrmie_containers::saftvrmie_zeta Type Reference	568
6.116.1 Detailed Description	569
6.117 saftvrmie_containers::saftvrmie_zeta_hs Type Reference	569
6.117.1 Detailed Description	570
6.118 saturated_densities::sat_densities Type Reference	570
6.118.1 Detailed Description	570
6.119 multiparameter_base::satdeltaestimate_intf Interface Reference	570
6.119.1 Constructor & Destructor Documentation	570
6.119.1.1 satdeltaestimate_intf()	570
6.120 satdensdatadb::satdensdata Type Reference	571
6.121 extcsp::shape_diff Type Reference	571
6.121.1 Detailed Description	572
6.121.2 Member Function/Subroutine Documentation	573

6.121.2.1 shape_diff_alloc()	73
6.121.2.2 shape_diff_dealloc()	73
6.122 hyperdual_mod::sign Interface Reference 57	73
6.123 hyperdual_mod::sin Interface Reference	73
6.124 eos_parameters::single_eos Type Reference	74
6.124.1 Member Function/Subroutine Documentation	75
6.124.1.1 allocate_and_init()	75
6.125 cubic_eos::singledata Type Reference	75
6.126 hyperdual_mod::sinh Interface Reference 57	76
6.127 solid_correlation_datadb::solid_correlation_data Type Reference	76
6.127.1 Detailed Description	77
6.128 pc_saft_nonassoc::spcsaft_eos Type Reference	77
6.128.1 Member Function/Subroutine Documentation	79
6.128.1.1 allocate_and_init()	79
6.129 hyperdual_mod::sqrt Interface Reference	79
6.130 vls::state Type Reference	79
6.130.1 Detailed Description	80
6.130.2 Member Function/Subroutine Documentation	80
6.130.2.1 get_state()	80
6.130.2.2 get_state_no_z()	80
6.130.2.3 set_state()	81
6.131 hyperdual_mod::sum Interface Reference	81
6.132 hyperdual_mod::tan Interface Reference	81
6.133 hyperdual_mod::tanh Interface Reference	81
6.134 thermopack_var::thermo_model Type Reference	82
6.134.1 Member Data Documentation	83
6.134.1.1 model_idx	83
6.135 thermopack_var::thermo_model_pointer Type Reference	83
6.136 unifacdata::unifaccomp Type Reference 58	83
6.137 unifac::unifacdb Type Reference	83
6.137.1 Detailed Description	84
6.138 unifacdata::unifacprm Type Reference	84
6.139 unifacdata::unifacuij Type Reference	84
6.140 stringmod::value Interface Reference	85
6.141 stringmod::writenum Interface Reference	85
6.142 stringmod::writeq Interface Reference	85

Index

Chapter 1

Todo List

Subprogram critical::calccritical (t, p, z, phase, ierr, tol)

Add v=sqrt(z) to paramater vector

Module extcsp

Need trace-component functionality.

Module optimizers

Add special treatment for n=2 systems. Analytical modification of eigenvalues.

Module ps_solver

Need trace-component functionallity.

Subprogram spinodal::rho_of_meta_extremum (t, x, phase, rho_init_in)

: May need more sophisticated method of choosing initial liquid rho.

- : May need more robust handling of overshoots. Now we just "hope".
- : May need to check that we have converged to the *correct* extremum.

Module stability

Add termination when approaching trivial solution.

Module state_functions

Need trace-component functionallity.

Module sv_solver

Need trace-component functionallity.

Consider merging with UV-flash

Subprogram sv_solver::twophasesvsinglecomp (t, p, z, beta, betal, x, y, sspec, vspec, phase, ierr)

Need handling of solutions close to critical point

Module tp_solver

Need trace-component functionallity.

Add DEM of order 2 for accelration of multi-phase Rachford-Rice

Module uv_solver

Need trace-component functionallity.

Subprogram uv_solver::twophaseuvsinglecomp (t, p, z, beta, betal, x, y, uspec, vspec, phase, ierr) Need handling of solutions close to critical point

Chapter 2

Modules Index

2.1 Modules List

Here is a list of all documented modules with brief descriptions:

apparent_composition	
Code for handling apparent composition approach See XMHX	15
association_var	
This module defines a type for association variables in the ThermoPack library	17
assocschemeutils	
Functionality for working with association schemes. The work mostly consists of keeping track of indices	17
cbalpha	
Routines for setting and computing (T-dependent) alpha correlations in cubic EoS	20
cbbeta	
Functionality for temperature-dependent covolume factor beta in cubic EoS, defined by b(T) = b(Tc)*beta(T)	22
cbhelm	
Get reduced Helmholtz function ($F = A^{\wedge}r/RT$) and differentials from eoscubic type. The cubiceos instance stores F and its derivatives as a function of certain explicit quantities, which includes the variable T, v and n, but also the cubic EoS parameters a and b that depend on (T,V,n). To get the total derivatives of F wrt (T,V,n), these have to be combined in the appropriate way, which is the purpose of this module	22
cbselect	
Selection of components, eos etc	27
co2_gibbs	
Module calculating thermodynamic potentials and differentials for solid CO2	32
compdata	
The module compdata stores pure component data. After initialisation of a mixture, data from the database "compdatadb.f90" are selected and copied into the working array "comp" of active components	38
compdatadb	00
Automatically generated to file compdatadb.f90 using utility python code pyUtils Time stamp: 2023-09-28T12:56:50.126803	40
complexmodelinit	
Initialization of complex models. These models are typically comprised of several specific sub- models, and when used together they define a known model	76
cpa_parameters	
Module for CPA parameters	78

78

85

93

Calculate critical point of a mixture. Good initial values assumed. Based on: M.L. Michelsen, Calculation of critical points and phase boundaries in the critical region. Fluid phase equilibria, 16, 1984, pp. 57-76
This module contains methods for various cubic equation of states The cubic eos's are formulated using the m1 and the m2. Suppoerted cubic EOS's SRK - Soave-Redlich-Kwong PR - Peng Robinson VdW - Van Der Waals RK - Redlich-Kwong SW - Schmidt and Wenzel PT - Patel-Teja
The module eosdata contains the definitions of the equation of state, mixing rule and the inter- action parameters

cubic_eos

critical

cubic

eos_	_co

603		
lı s	nterface to thermodynamic models. Currently ThermoPack and TREND equations of state are supported	97
eos_conta	iner	
T	The module eosdata contains the definitions of the equation of state, mixing rule and the inter- action parameters	105
eos_paran	neters	
T a	The module eosdata contains the definitions of the equation of state, mixing rule and the inter-	106
eosdata		
T a	The module eosdata contains the definitions of the equation of state, mixing rule and the inter- action parameters	108
eoslibinit		
lı eostv	nitialize thermodynamic models	111
h	nterface to thermodynamic models. Using Helmholtz formulation in temperature and volume .	117
excess_git	obs	
E	Excess Gibbs Energy Models	126
extcsp		
E	Calulate shape factors for corresponding state method, using either a cubic or a multiparameter EoS for the reference EoS, and a cubic EoS for the shape factor EoS	127
gergdatadl	b	
A	Automatically generated file gergdatadb.f90 Time stamp: 2021-07-25T15:05:48.938109	129
gergmixdb		
A	Automatically generated file gergmixdb.f90 Time stamp: 2022-10-03T21:42:11.071422	134
h2o_gibbs		
Ν	Nodule calculating thermodynamic potentials and differentials for solid H2O	144
hyperdual_	_mod	
isolines	Hyperdual number definition & type declaration	149
N N	Adule for manning iso-lines	152
leekesler		102
Т	This module solves the Lee-Kesler EoS. Contains all partial derivative functions needed to do	
С	onsistency check	155
linear num	nerics	
T	This module contains methods for solving systems of linear equations	192
mbwr		
Ν	/IBWR module	194
meosdatad	db	
A	Automatically generated file meosdatadb.f90 Time stamp: 2023-03-23T14:18:36.228460	197
meosmixd	b	
A	Automatically generated file meosmixdb.f90 Time stamp: 2023-03-23T14:50:21.734496	232
mixdatadb		
A 0	Automatically generated to file mixdatadb.f90 using utility python code pyUtils Time stamp: 2023- 02-27T15:11:46.339247	282

multiparameter_base	
Definitions of adimensional variables: delta = rho/rho_c tau = T_c/T alpha0 = A [{] {ideal}/(nRT)} alphaRes = A [{] {res}/(nRT)} alpha = A/(nRT)	311
multiparameter idealmix	
This module mixes multiparameter EoS through an ideal mixing rule. It relies heavily on the	
multiparameter EoS framwork and the methodology implemented by Ailo Aasen. 2018-10-01	315
	515
Residual reduced Halmholtz onergies from dinal and guadrupal interactions: Gross 2005: 10	
1002/aic.10502 Gross and Vrabec 2006: 10.1002/aic.10683 Vrabec and Gross 2008: $10.$	218
mut colvor	510
Solve mu-T problem. Look for single phase solution given initial guess	322
This module contains generic methods for solving systems of non-linear equations	324
ontimizere	024
This module contains generic methods for minimizing systems of non-linear equations	329
Automatically generated to file pc_saft_datadb.f90 using utility python code pyUtils Time stamp: 2023-09-06T15:26:02.894432	332
pc_saft_nonassoc	
The module implementing the alpha [∧] {hardchain} and alpha [∧] {dispersion} contributions in PC-↔ SAFT. Parameters are stored in the module pc_saft_parameters, while the association contribu-	
tion is alpha ^{$^{{assoc}}$ is implemented in the module saft \ldots}	339
pc_saft_parameters	
Module for PC-SAFT pure-component parameters and binary interaction parameters. Also con- tains parameters for the PeTS equation of state	353
ph solver	
Solve the two-phase PH flash	354
Solve PS-flash specification	357
saft_association	
I his module handles all data and routines related to association	359
The interface module for SAFT equations of state. Contains all routines a user may wish to call.	
Also responsible for combining the association and non-association contributions	362
	070
Module responsible for radial distribution functions	373
Automatically generated to file saftvrmie_datadb.f90 using utility python code pyUtils Time stamp: 2023-06-21T13:07:27.307865	374
satdensdatadb	
Automatically generated file satdensdatadb.f90 Time stamp: 2021-07-25T15:05:48.939509	381
saturation_point_locators	
Functionality for locating points on the saturation curve based on auxiliary properties such as specific volume or entropy. The isentropeEnvelopeCross routines should eventually be moved	
from saturation to saturation_point_locators	384
Automatically generated to file colid correlation, datadh f00 using utility python code by the Time.	
stamp: 2023-04-28T20:02:12.169534	387
Solideos	
supported	391
Speed_of_sound	206
spinodal	390
Methods for mapping spinodal	399

stability	
Minimize reduced tangent plane distance	403
state_functions	
Calculate jacobian for Michelsen state matrices	406
sv_solver	
Calculate solve SV-flash for single phase gas/liquid or a gas-liquid mixture 4	414
thermo_utils	
Module for thermodynamic helper-routines which may be useful for user-applications, but which do not belong in eos.f90	421
thermopack var	
Global variables for ThermoPack. They are initialized in the thermo_model module 4	426
tp_solver	
Solve TP flash problem. Look for single phase or a mixture of LV	428
trend_solver	
Solve for trend density given pressure and temperature	430
uv_solver	
Calculate solve UV-flash for single phase gas/liquid or a gas-liquid mixture 4	432
vls	
Interface handling both fluid and solid equation of state	438
volume_shift	
Calculate potenital corrections due to volume correction For documentation see memo	446
wong_sandler	
Wong-Sandler equation of state Cubic EOS with temperature dependent b-parameter 4	450

Chapter 3

Data Type Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

hyperdual_mod::abs
hyperdual_mod::acos
saturation_curve::aep
thermopack_var::allocate_and_init_intf
multiparameter_base::alpha0_hd_intf
multiparameter_base::alpha0derivs_intf
cubic_eos::alpha_label_mapping
compdata::alphadatadb
multiparameter_base::alphares_hd_intf
multiparameter_base::alpharesderivs_intf
apparent_compostion::apparent_container
hyperdual_mod::asin
thermopack_var::assign_intf
multiparameter_base::assign_meos_intf
hyperdual_mod::assignment(=)
association_var::association
association_var::association_state
hyperdual_mod::atan
hyperdual_mod::atan2
thermopack_var::base_eos_param
cubic_eos::cb_eos
cubic_eos::cpa_eos
cubic_eos::lk_eos
eos_parameters::single_eos
eos_parameters::meos_idealmix
gergmix::meos_gergmix
meosmix::meos_mix
extcsp::extcsp eos
lj splined::ljs wca eos
pc saft nonassoc::spcsaft eos
pc_saft_nonassoc::pcsaft_eos
nete::nets.eos
saftvrmie containers::saftvrmie eos
sattvrmie_containers::sattvrmie_eos

lj_splined::ljs_bh_eos	37
c_interface_module::c_strlen	62
cubic::cbbig	66
compdata::cidatadb	66
hyperdual_mod::cos	67
hyperdual_mod::cosh	67
compdata::cpadata	70
cubic_eos::cpakijdata	71
compdata::cpdata	72
eosdata::eos_label_mapping 47	72
thermopack_var::eos_param_pointer	72
mbwr::eosmbwr	73
optimizers::error_function	74
hyperdual_mod::exp	75
cubic_eos::fraction	77
nonlinear_solvers::function_template	77
compdata::gendata_pointer	79
compdata::gendatadb	30
compdata::gendata	77
aeramixdb::aera mix data	81
aeramixdb::aera_mix_reducina4	82
gergdatadb::gergdata	82
idealh2::h2func	83
hardsphere bmcsl::hs diameter	83
hyperdual mod::hyperdual	84
hyperdual utility::hyperdual fres	85
multiparameter base::init intf	85
hyperdual mod::int	85
cubic eos::intergedatadb	85
nonlinear solvers::jacobian template	85
cubic eos::kiidatadb	36
cubic eos::/liidatadb	86
multiparameter li::li param	36
hyperdual mod::log	95
hyperdual mod::log10	96
hyperdual mod::max	96
mbwrdata::mbwr19data	96
mbwrdata::mbwr32data	96
multiparameter base::meos	97
gera: meos gera	06
pure fluid measure	31
multiparameter c3	n2
multiparameter li::meos li	15
multiparameter normal h2···meos normal h2	23
multiparameter ortho h2: meos ortho h2	26
multiparameter para h2··meos para h2	29
multiparameter r134a··meos r134a	38
	20
	22
	12 / 1
saftvrmia datadh: miakiidata	יד 10
by nerdual modumin	57 10
	тЭ 4Л
	т4 ЛЛ
	т 4 ЛЛ
	74 15
multipor_valmultipor_palam	10
hyperdual modernint	46
	rU.

nonlinear_solvers::nonlinear_solver
hyperdual_mod::operator(*)
hyperdual_mod::operator(**)
hyperdual_mod::operator(+)
hyperdual_mod::operator(-)
hyperdual_mod::operator(.eq.)
hyperdual_mod::operator(.ge.)
hyperdual_mod::operator(.gt.)
hyperdual_mod::operator(.le.)
hyperdual_mod::operator(.lt.)
hyperdual_mod::operator(.ne.)
hyperdual_mod::operator(/)
optimizers::optim_param
hardsphere_bmcsl::packing_fraction_hs 549
pc_saft_datadb::pc_saft_data
pc_saft_datadb::pckijdata
hyperdual_mod::real
utilities::safe_exp
saftvrmie_containers::saftvrmie_aij 560
saftvrmie_datadb::saftvrmie_data
saftvrmie_containers::saftvrmie_dhs
saftvrmie_options::saftvrmie_opt 563
saftvrmie_containers::saftvrmie_param_container
saftvrmie_containers::saftvrmie_var_container
For the second
sattvrmie_containers::sattvrmie_zeta
saftvrmie_containers::saftvrmie_zeta_hs
sattvrmle_containers::sattvrmle_zeta
saftvrmie_containers::saftvrmie_zeta
sattvrmie_containers::sattvrmie_zeta 568 sattvrmie_containers::sattvrmie_zeta_hs 569 saturated_densities::sat_densities 570 multiparameter_base::satdeltaestimate_intf 570 satdensdatadb::satdensdata 571
sattvrmie_containers::sattvrmie_zeta 568 sattvrmie_containers::sattvrmie_zeta_hs 569 saturated_densities::sat_densities 570 multiparameter_base::satdeltaestimate_intf 570 satdensdatadb::satdensdata 571 extcsp::shape_diff 571
sattvrmie_containers::sattvrmie_zeta 568 sattvrmie_containers::sattvrmie_zeta_hs 569 saturated_densities::sat_densities 570 multiparameter_base::satdeltaestimate_intf 570 satdensdatadb::satdensdata 571 extcsp::shape_diff 571 hyperdual_mod::sign 573
sattvrmie_containers::sattvrmie_zeta 568 saftvrmie_containers::saftvrmie_zeta_hs 569 saturated_densities::sat_densities 570 multiparameter_base::satdeltaestimate_intf 570 satdensdatadb::satdensdata 571 hyperdual_mod::sign 573 hyperdual_mod::sin 573
sattvrmle_containers::sattvrmle_zeta 568 saftvrmie_containers::saftvrmie_zeta_hs 569 saturated_densities::sat_densities 570 multiparameter_base::satdeltaestimate_intf 570 satdensdatadb::satdensdata 571 extcsp::shape_diff 571 hyperdual_mod::sign 573 hyperdual_mod::sin 573 cubic_eos::singledata 575
sattvrmle_containers::sattvrmle_zeta 568 saftvrmie_containers::saftvrmie_zeta_hs 569 saturated_densities::sat_densities 570 multiparameter_base::satdeltaestimate_intf 570 satdensdatadb::satdensdata 571 extcsp::shape_diff 573 hyperdual_mod::sign 573 cubic_eos::singledata 575 hyperdual_mod::sinh 576
sattvrmie_containers::sattvrmie_zeta 568 sattvrmie_containers::sattvrmie_zeta_hs 569 saturated_densities::sat_densities 570 multiparameter_base::satdeltaestimate_intf 570 satdensdatadb::satdensdata 571 extcsp::shape_diff 573 hyperdual_mod::sign 573 hyperdual_mod::sin 573 hyperdual_mod::sin 575 solid_correlation_datadb::solid_correlation_data 576
sattvrmie_containers::sattvrmie_zeta 568 sattvrmie_containers::sattvrmie_zeta_hs 569 saturated_densities::sat_densities 570 multiparameter_base::satdeltaestimate_intf 570 satdensdatadb::satdensdata 571 extcsp::shape_diff 571 hyperdual_mod::sign 573 hyperdual_mod::sin 573 cubic_eos::singledata 576 solid_correlation_datadb::solid_correlation_data 576 hyperdual_mod::sinh 576 solid_correlation_datadb::solid_correlation_data 576 hyperdual_mod::sinh 576 solid_correlation_datadb::solid_correlation_data 576 hyperdual_mod::sinh 576 solid_correlation_datadb::solid_correlation_data 576
sattvrmie_containers::sattvrmie_zeta568sattvrmie_containers::sattvrmie_zeta_hs569saturated_densities::sat_densities570multiparameter_base::satdeltaestimate_intf570satdensdatadb::satdensdata571extcsp::shape_diff571hyperdual_mod::sign573hyperdual_mod::sin576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sirk576solid_correlation_data578state579
sattvrmie_containers::sattvrmie_zeta568sattvrmie_containers::sattvrmie_zeta_hs569saturated_densities::sat_densities570multiparameter_base::satdeltaestimate_intf570satdensdatadb::satdensdata571extcsp::shape_diff571hyperdual_mod::sign573hyperdual_mod::sin576cubic_eos::singledata576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sink576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sink576solid_correlation_data576hyperdual_mod::sum578solad_correlation_data578solad_correlation_data578solad_correlation_data578solad_correlation_data578solad_correlation_data578solad_correlation_data578solad_correlation_data578solad_correlation_data578solad_correlation_data578solad_correlation_sourt578solad_correlation_sourt578solad_correlation_sourt578solad_correlation_sourt578solad_correlation_sourt578solad_correlation_sourt581sourt581sourt581sourt581sourt581sourt581sourt581sourt581sourt581sourt581sou
sattvrmle_containers::sattvrmle_zeta568saftvrmie_containers::saftvrmie_zeta_hs569saturated_densities::sat_densities570multiparameter_base::satdeltaestimate_intf570satdensdatadb::satdensdata571extcsp::shape_diff571hyperdual_mod::sign573hyperdual_mod::sin573cubic_eos::singledata576hyperdual_mod::sinh576solid_correlation_data576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576solid_correlation_data576hyperdual_mod::sinh576hyperdual_mod::sinh576solid_correlation_data576hyperdual_mod::sinh576hyperdual_mod::sinh576solid_correlation_data576hyperdual_mod::sinh578hyperdual_mod::sinh578solid_correlation_data578hyperdual_mod::sinh578hyperdual_mod::sinh578hyperdual_mod::sinh578hyperdual_mod::sinh581hyperdual_mod::sum581hyperdual_mod::sum581hyperdual_mod::tan581
sattvrmle_containers::sattvrmle_zeta568sattvrmle_containers::sattvrmle_zeta_hs569saturated_densities::sat_densities570multiparameter_base::satdeltaestimate_intf570satdensdatadb::satdensdata571extcsp::shape_diff573hyperdual_mod::sign573hyperdual_mod::sin573cubic_eos::singledata576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data577hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sinh577hyperdual_mod::solid_correlation_data578hyperdual_mod::sinh578hyperdual_mod::solid_correlation_data578hyperdual_mod::solid_correlation_data578hyperdual_mod::sum581hyperdual_mod::tan581hyperdual_mod::tan581hyperdual_mod::tanh581
saftvrmie_containers::saftvrmie_zeta_hs
saftvrmie_containers::saftvrmie_zeta568saftvrmie_containers::saftvrmie_zeta_hs569saturated_densities::sat_densities570multiparameter_base::satdeltaestimate_intf570satdensdatadb::satdensdata571extcsp::shape_diff571hyperdual_mod::sign573hyperdual_mod::sin573cubic_eos::singledata576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sinh576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sinh576solid_correlation_data576hyperdual_mod::sinh578hyperdual_mod::sinh578solid_correlation_data578hyperdual_mod::sinh581hyperdual_mod::sum581hyperdual_mod::tan581hyperdual_mod::tanh582thermopack_var::thermo_model_pointer582thermopack_var::thermo_model_pointer583
sattvrmle_containers::sattvrmle_zeta568sattvrmle_containers::sattvrmle_zeta_hs569saturated_densities::sat_densities570multiparameter_base::satdeltaestimate_intf570satdensdatadb::satdensdata571extcsp::shape_diff571hyperdual_mod::sign573hyperdual_mod::sin573cubic_eos::singledata576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sqrt579hyperdual_mod::sqrt579hyperdual_mod::sum581hyperdual_mod::tan581hyperdual_mod::tan581hyperdual_mod::tanh582thermopack_var::thermo_model582unifacdata::unifaccomp583
sattvrmle_containers::sattvrmle_zeta_hs566sattvrmle_containers::sattvrmle_zeta_hs567saturated_densities::sat_densities570multiparameter_base::satdeltaestimate_intf570satdensdatadb::satdensdata571extcsp::shape_diff571hyperdual_mod::sign573hyperdual_mod::sin573cubic_eos::singledata576hyperdual_mod::sinh576solid_correlation_data576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh576hyperdual_mod::sinh577hyperdual_mod::solid_correlation_data576hyperdual_mod::sqrt579hyperdual_mod::tan581hyperdual_mod::tanh581hyperdual_mod::tanh582thermopack_var::thermo_model582unifacdata::unifaccomp583unifac::unifacdb583
sattvrmle_containers::sattvrmle_zeta566sattvrmle_containers::sattvrmle_zeta_hs567saturated_densities::sat_densities570multiparameter_base::satdeltaestimate_intf570satdensdatadb::satdensdata571extcsp::shape_diff571hyperdual_mod::sign573hyperdual_mod::sin573cubic_eos::singledata576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sqrt579hyperdual_mod::sum579hyperdual_mod::tan581hyperdual_mod::tan581hyperdual_mod::tanh581hyperdual_mod::tanh582unifacdata::unifacdb583unifacdata::unifacdb583unifacdata::unifacdb584
sattvrmle_containers::sattvrmle_zeta566saftvrmle_containers::sattvrmle_zeta_hs569saturated_densities::sat_densities570multiparameter_base::satdeltaestimate_intf570satdensdatadb::satdensdata571extcsp::shape_diff571hyperdual_mod::sign573hyperdual_mod::sin573cubic_eos::singledata576hyperdual_mod::sinh576solid_correlation_datadb::solid_correlation_data576hyperdual_mod::sqrt577hyperdual_mod::sum578hyperdual_mod::tan579hyperdual_mod::tan581hyperdual_mod::tan581hyperdual_mod::tan581hyperdual_mod::tan581hyperdual_mod::tan581hyperdual_mod::tan582thermopack_var::thermo_model583unifacdata::unifaccomp583unifacdata::unifaccomp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifacdata::unifactorp584unifa
sartvrmle_containers::saftvrmle_zeta
sartvrmle_containers::saftvrmle_zeta566 saturated_densities::sat_densities570 multiparameter_base::satdeltaestimate_intf570 satdensdatadb::satdensdata571 extcsp::shape_diff573 hyperdual_mod::sign573 cubic_eos::singledata575 hyperdual_mod::sinh575 solid_correlation_datadb::solid_correlation_data576 hyperdual_mod::sqrt577 hyperdual_mod::sqrt577 hyperdual_mod::sqrt577 hyperdual_mod::sum578 hyperdual_mod::tan578 hyperdual_mod::tan581 hyperdual_mod::tan581 hyperdual_mod::tan581 hyperdual_mod::tan581 hyperdual_mod::tan581 hyperdual_mod::tan583 unifacdata::unifaccomp583 unifacdata::unifaccomp583 unifacdata::unifaccomp584 stringmod::value584 stringmod::value584

Chapter 4

Data Type Index

4.1 Data Types List

Here are the data types with brief descriptions:

hyperdual_mod::abs	451
hyperdual_mod::acos	451
saturation_curve::aep	451
thermopack_var::allocate_and_init_intf	451
multiparameter_base::alpha0_hd_intf	452
multiparameter_base::alpha0derivs_intf	452
cubic_eos::alpha_label_mapping	454
compdata::alphadatadb	
Alpha correlation for cubic EoS	454
multiparameter_base::alphares_hd_intf	454
multiparameter_base::alpharesderivs_intf	456
apparent_compostion::apparent_container	456
hyperdual_mod::asin	458
thermopack_var::assign_intf	458
multiparameter_base::assign_meos_intf	458
hyperdual_mod::assignment(=)	458
association_var::association	459
association_var::association_state	
Current state for eos evaluation	460
hyperdual_mod::atan	460
hyperdual_mod::atan2	460
thermopack_var::base_eos_param	461
c_interface_module::c_strlen	
Interface to std C library function strlen	462
cubic_eos::cb_eos	463
cubic::cbbig	466
compdata::cidatadb	
Volume shift parameters	466
hyperdual_mod::cos	467
hyperdual_mod::cosh	467
cubic_eos::cpa_eos	468
compdata::cpadata	
Pure component parameters. This data structure stores pure component parameters for the	
CPA-SRK and CPA-PR equations of state	470
cubic eos::cpakiidata	

compdata::cpdata	
Ideal heat capacity at constant pressure	72
eosdata::eos_label_mapping 47	72
thermopack_var::eos_param_pointer	72
mbwr::eosmbwr	
MBWR model type for mbwr19 and mbwr32	73
optimizers::error_function	74
hyperdual_mod::exp	75
extcsp::extcsp_eos	75
cubic_eos::fraction	77
nonlinear_solvers::function_template	77
compdata::gendata	77
compdata::gendata_pointer	79
compdata::gendatadb	30
gergmixdb::gerg_mix_data	31
gergmixdb::gerg_mix_reducing	32
gergdatadb::gergdata	32
idealh2::h2func	33
hardsphere_bmcsl::hs_diameter	
Container for temperature dependent hard-sphere diameter and differentials	33
hyperdual_mod::hyperdual	
Derived type for hyperdual numbers	34
hyperdual_utility::hyperdual_tres 48	35
	35
hyperdual_mod::int	35
	35
	35
	36
	30
and the second	
multiparameter_lj::lj_param	20
multiparameter_lj::lj_param Noble gas parameters for LJ EOS li aplipadulja bb acc	36
multiparameter_lj::lj_param Noble gas parameters for LJ EOS lj_splined::ljs_bh_eos li_aplipad::lip_wag_acco	36 37
multiparameter_lj::lj_param Noble gas parameters for LJ EOS lj_splined::ljs_bh_eos lj_splined::ljs_wca_eos u lj_splined::ljs_wca_eos	36 37 39
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_ux_eos 48 uj_splined::ljx_ux_eos 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_wca_eos 48 lj_splined::ljx_ux_eos 49 lj_splined::ljx_ux_eos 49 ubic 49	36 37 39 31
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 uj_splined::ljs_wca_eos 48 lj_splined::ljs_ux_eos 49 cubic_eos::lk_eos 49 hyperdual_mod::log 49	36 37 39 31 33
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 ubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log 49	36 37 39 91 93 95
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 ubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49	36 37 39 31 33 35 36
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 ubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49	36 37 39 31 33 35 36 36
multiparameter_lj::lj_param Noble gas parameters for LJ EOS lj_splined::ljs_bh_eos lj_splined::ljs_wca_eos lj_splined::ljx_ux_eos cubic_eos::lk_eos hyperdual_mod::log hyperdual_mod::log10 hyperdual_mod::max mbwrdata::mbwr19data	36 37 39 31 33 35 36 36 36
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 ubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49 mbwrdata::mbwr32data 49 multiparameter_base::meos 49	36 37 39 31 33 35 36 36 36 36
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 uj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 ubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49 mbwrdata::mbwr32data 49 multiparameter_base::meos 49 Base class for multiparameter equations of state 49	36 37 39 31 33 35 36 36 36 36
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 49 lj_splined::ljs_ux_eos 49 cubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49 mbwrdata::mbwr32data 49 multiparameter_base::meos 49 Base class for multiparameter equations of state 49 multiparameter_c3::meos 49 multiparameter c3::meos c3 49	36 37 39 31 33 35 36 36 36 36
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 49 cubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49 mbwrdata::mbwr32data 49 multiparameter_base::meos 49 Base class for multiparameter equations of state 49 multiparameter_c3::meos_c3 49 C3 multiparameter equations of state (Lemmon, McLinden and Wagner 2009) 50	36 37 39 31 33 35 36 36 36 36 37 37
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 uj_splined::ljs_wca_eos 48 uj_splined::ljs_wca_eos 48 uj_splined::ljs_ux_eos 48 uj_splined::ljs_ux_eos 48 ubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49 mbwrdata::mbwr32data 49 multiparameter_base::meos 49 Base class for multiparameter equations of state 49 multiparameter_c3::meos_c3 49 C3 multiparameter equations of state (Lemmon, McLinden and Wagner 2009) 50 gerg::meos_gerg 50	36 37 39 31 33 35 36 36 36 36 37 37
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 ubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49 moltiparameter_base::meos 49 Base class for multiparameter equations of state 49 multiparameter_c3::meos_c3 50 GERG-2008 multiparameter equations of state 50	36 37 39 31 33 35 36 36 36 36 37 32 30 20 30 30 30 30 30 30 30 30 30 30 30 30 30
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 ubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49 mbwrdata::mbwr32data 49 multiparameter_base::meos 49 Gas class for multiparameter equations of state 49 multiparameter_c3::meos_c3 49 GERG-2008 multiparameter equations of state 50 gergmix::meos_gerg 50 gergmix::meos_gerg 50	36 37 39 91 93 95 96 96 96 97 92 92
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 49 cubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49 mbwrdata::mbwr32data 49 multiparameter_base::meos 49 GERG-2008 multiparameter equations of state 40 GERG-2008 multiparameter equations of state 50 gergmix::meos_gergmix 51 GERG-2008 multiparameter equations of state 51	36 37 39 91 93 95 96 96 96 97 92 96
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 ubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::max 49 mbwrdata::mbwr19data 49 mbwrdata::mbwr32data 49 multiparameter_base::meos 49 GERG-2008 multiparameter equations of state 40 gergmix::meos_gerg 50 GERG-2008 multiparameter equations of state 50 gergmix::meos_idealmix 51 eos parameters::meos idealmix 51	36 37 39 91 93 95 96 96 96 97 92 92 96
multiparameter [j::l]_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_ux_eos 48 cubic_eos::lk_eos 45 hyperdual_mod::log 45 hyperdual_mod::log10 46 hyperdual_mod::log10 46 hyperdual_mod::log10 46 hyperdual_mod::max 46 mbwrdata::mbwr19data 46 mbwrdata::mbwr32data 49 multiparameter_base::meos 49 multiparameter_c3::meos_c3 49 Gase class for multiparameter equations of state 49 multiparameter_c3::meos_c3 50 gergimeos_gerg 50 GERG-2008 multiparameter equations of state 50 gergmix::meos_gergmix 51 Ges_parameters:meos_idealmix 51 eos_parameters:meos_idealmix 51 multiparameter lj::meos lj 51	36 37 39 91 93 95 96 96 97 92 96 10
multiparameter [j::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljx_ux_eos 48 cubic_eos::lk_eos 48 hyperdual_mod::log 46 hyperdual_mod::log10 46 hyperdual_mod::log10 46 hyperdual_mod::max 46 mbwrdata::mbwr19data 46 mbwrdata::mbwr32data 46 multiparameter_base::meos 48 multiparameter_c3::meos_c3 49 gerg:meos_gerg 6ERG-2008 multiparameter equations of state 49 gergmix::meos_gergmix 50 50 gergmix::meos_gergmix 50 50 gergmix::meos_idealmix 51 51 multiparameter_lj::meos_i 51 51 uuttiparameter_lj::meos_li 51 51 LJ multiparameter equations of state (Thol, Vrabec and Span) 51	36 37 39 91 93 95 96 96 97 92 96 10 13
multiparameter_lj::lj_param 48 Noble gas parameters for LJ EOS 48 lj_splined::ljs_bh_eos 48 lj_splined::ljs_wca_eos 48 lj_splined::ljs_wca_eos 49 cubic_eos::lk_eos 49 hyperdual_mod::log 49 hyperdual_mod::log10 49 hyperdual_mod::log10 49 hyperdual_mod::log10 49 mbwrdata::mbwr32data 49 moburdata::mbwr32data 49 multiparameter_base::meos 49 gerg::meos_gerg 62 GERG-2008 multiparameter equations of state 49 gergmix::meos_gergmix 50 gergmix::meos_gergmix 51 GERG-2008 multiparameter equations of state 51 uultiparameter_lj::meos_lj 51 LJ multiparameter equations of state 51 multiparameter_lj::meos_lj 51 LJ multiparameter equations of state (Thol, Vrabec and Span) 51	36 37 39 31 33 35 36 36 36 36 36 37 32 32 30 10 13 15
multiparameter [j::l]_param 44 Noble gas parameters for LJ EOS 44 lj_splined::ljs_bh_eos 44 lj_splined::ljs_wca_eos 44 uj_splined::ljs_wca_eos 44 uj_splined::ljs_wca_eos 44 ubic_eos::lk_eos 44 hyperdual_mod::log 44 hyperdual_mod::log10 44 hyperdual_mod::max 45 mbwrdata::mbwr19data 46 mbwrdata::mbwr32data 46 multiparameter_base::meos 48 Base class for multiparameter equations of state 49 multiparameter_c3::meos_c3 50 GERG-2008 multiparameter equations of state 50 gergmix::meos_gergmix 51 GERG-2008 multiparameter equations of state 51 eos_parameters::meos_idealmix 51 multiparameter equations of state 51 multiparameter equations of state (Thol, Vrabec and Span) 51 multiparameter equations of state 51 multiparameter equations of state 51 multiparameter equations of state (Thol, Vrabec and Span) 51 multiparameter equations of state<	36 37 39 39 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30
multiparameter [j::1]_param Noble gas parameters for LJ EOS 44 [j_splined::1]s_bh_eos 44 [j_splined::1]s_wca_eos 44 cubic_eos:1k_eos 44 hyperdual_mod::log 44 hyperdual_mod::log10 44 hyperdual_mod::log10 44 mbwrdata::mbwr19data 44 mbwrdata::mbwr32data 44 multiparameter_base::meos 45 Base class for multiparameter equations of state 45 multiparameter_c3::meos_c3 50 gergmix::meos_gerg 51 GERG-2008 multiparameter equations of state 51 eos_parameters::meos_ij 51 LJ multiparameter equations of state (Thol, Vrabec and Span) 51 meosmix::meos_mix 51 meosmix::meos_mix 51 meosmix::meos_mix 51 meosmix::meos_mix_data 51	36 37 39 91 93 95 96 96 97 92 96 10 13 15 18 22
multiparameter_lj:il_param 46 Noble gas parameters for LJ EOS 46 ij_splined::ljs_wca_eos 46 ij_splined::ljs_wca_eos 46 ij_splined::ljs_wca_eos 46 vpperdual_mod::log 46 hyperdual_mod::log 46 hyperdual_mod::log 46 hyperdual_mod::log 46 hyperdual_mod::log 46 hyperdual_mod::log 46 hyperdual_mod::log 47 hyperdual_mod::log 47 hyperdual_mod::log 47 hyperdual_mod::log 47 hyperdual_mod::log 47 hyperdual_mod::max 46 multiparameter_lintmax 46 multiparameter_base::meos 45 multiparameter_c3::meos_c3 45 C3 multiparameter equations of state 46 gergmix::meos_gergmix 50 GERG-2008 multiparameter equations of state 50 eos_parameters::meos_idealmix 51 multiparameter equations of state 51 eos_parameters::meos_ij 51 LJ multiparameter equations of state<	36 37 39 39 39 39 39 39 39 39 39 39 39 39 39
multiparameter_lj::lj_param 44 Noble gas parameters for LJ EOS 44 ij_splined::ljs_wa_eos 44 ij_splined::ljs_wa_eos 44 ubic_eos::lk_eos 44 hyperdual_mod::log 44 hyperdual_mod::log 44 hyperdual_mod::log 44 hyperdual_mod::log 44 hyperdual_mod::log 44 hyperdual_mod::log 45 hyperdual_mod::log 45 hyperdual_mod::log 45 mbwrdata::mbwr19data 46 multiparameter_base::meos 46 Base class for multiparameter equations of state 46 multiparameter_c3::meos_c3 47 C3 multiparameter equations of state 46 gergmix::meos_gerg 51 GERG-2008 multiparameter equations of state 51 eos_parameters::meos_idealmix 51 multiparameter_lj::meos_lj LJ multiparameter equations of state (Thol, Vrabec and Span) 51 meosmix::meos_mix 51 52 meosmixdb::meos_mix_data 52 meosmixdb::meos_mix_educing 52	36 37 39 91 92 93
multiparameter_lj::lj_param 44 Noble gas parameters for LJ EOS 44 lj_splined::ljs_wca_eos 44 lj_splined::ljs_wca_eos 44 lj_splined::ljs_ux_eos 44 cubic_eos::lk_eos 44 hyperdual_mod::log1 44 hyperdual_mod::log10 44 hyperdual_mod::log10 44 hyperdual_mod::log10 44 mbwrdata::mbwr19data 44 mbwrdata::mbwr32data 45 multiparameter_base::meos 8ase class for multiparameter equations of state 45 gerg::meos_gerg 6ERG-2008 multiparameter equations of state 50 gergmix::meos_gergmix 51 51 multiparameter_lj::meos_li 51 51 multiparameter_lj::meos_li 51 51 multiparameter_equations of state 51 51 multiparameter_li::meos_lidealmix 51 51 multiparameter equations of state 51 51 multiparameter equations of state 51 51 multiparameter_olizameter equations of state 51 51 multiparameter_olizameter equat	36 37 39 93

pure_fluid_meos::meos_pure	
Constructor for generic multiparameter equations of state	531
multiparameter_r134a::meos_r134a	
R134A multiparameter equation of state (R. Tillner-Roth and H. Dieter Baehr)	538
meosdatadb::meosdata	541
saftvrmie_datadb::miekijdata	
INTERACTION PARAMETERS FOR THE SAFT-VR-MIE DISPERSION TERM	543
hyperdual_mod::min	543
cubic_eos::mix_label_mapping	544
cubic_eos::mixexcessgibbs	544
cubic_eos::mixwongsandler	544
multipol_var::multipol_param	545
mbwr::nijlarray	546
hyperdual_mod::nint	546
multiparameter_base::nist_meos_ptr	546
nonlinear_solvers::nonlinear_solver	
A type that contains solver information	546
hyperdual_mod::operator(*)	547
hyperdual_mod::operator(**)	547
hyperdual_mod::operator(+)	547
hyperdual_mod::operator(-)	548
hyperdual_mod::operator(.eq.)	548
hyperdual_mod::operator(.ge.)	548
hyperdual_mod::operator(.gt.)	548
hyperdual_mod::operator(.le.)	548
hyperdual_mod::operator(.lt.)	548
hyperdual_mod::operator(.ne.)	548
hyperdual_mod::operator(/)	548
optimizers::optim_param	
A type that contains solver information	548
hardsphere_bmcsl::packing_fraction_hs	
Container for zeta's (0, 1, 2, 3 and mu). These are moments of the number density	549
pc_saft_datadb::pc_saft_data	
PURE COMPONENT PARAMETERS. This data structure stores pure component parameters	
for the PC-SAFT equation of state	551
pc_saft_datadb::pckijdata	
TEMPERATURE-INDEPENDENT INTERACTION PARAMETERS FOR PC-SAFT DISPERSION	
TERM	551
pc_saft_nonassoc::pcsaft_eos	552
pets::pets_eos	554
hyperdual_mod::real	559
utilities::safe_exp	
Exponential function which will return "huge" instead of overflowing. Generic interface for both	
reals and arrays of reals	559
saftvrmie_containers::saftvrmie_aij	
Container for a_ij and differentials	560
saftvrmie_datadb::saftvrmie_data	
PURE COMPONENT PARAMETERS. This data structure stores pure component parameters	
for the SAFT-VRQ Mie EoS	560
sattvrmie_containers::sattvrmie_dhs	F O ·
Container for hard-sphere diameter and differentials Also used for the Feynman–Hibbs D variable	561
sattvrmie_containers::sattvrmie_eos	562
	563
sattvrmie_containers::sattvrmie_param_container	
	262
Saltvrmie_containers::saltvrmie_var_container	E07
Container for SAF I-VIT whe common variables to be claculated only once per state	201

saftvrmie_containers::saftvrmie_zeta
Container for zeta and differentials (also used for functions of zeta)
saftvrmie_containers::saftvrmie_zeta_hs
Container for mu and zeta's (2 and 3). These are moments of the number density (2,3) and mu (1) 569
saturated_densities::sat_densities
Class calculating saturated densities
multiparameter_base::satdeltaestimate_intf
satdensdatadb::satdensdata
extcsp::shape_diff
Derivatives. Uses the notation on pages 115-120 in Michelsen & Mollerup
hyperdual_mod::sign
hyperdual_mod::sin
eos_parameters::single_eos
cubic_eos::singledata
hyperdual_mod::sinh
solid_correlation_datadb::solid_correlation_data
This data structure stores parameters for sublimation and melting line correlations 576
pc_saft_nonassoc::spcsaft_eos
hyperdual_mod::sqrt
vls::state
Thermo state, used for debugging 579
hyperdual_mod::sum
hyperdual_mod::tan
hyperdual_mod::tanh
thermopack_var::thermo_model
thermopack_var::thermo_model_pointer
unifacdata::unifaccomp
unifac::unifacdb
Structure for active unifac parameters
unifacdata::unifacprm
unifacdata::unifacuij
stringmod::value
stringmod::writenum
stringmod::writeq

Chapter 5

Module Documentation

5.1 apparent_compostion Module Reference

Code for handling apparent composition approach See XMHX.

Data Types

• type apparent_container

Functions/Subroutines

- type(apparent_container) function, public apparent_constructor (nc, nce)
- subroutine dealloc (apparent)
- subroutine set_v_stoich_ij (apparent, i, j, v)
- subroutine **update_v_sum** (apparent)
- subroutine apparent_to_real_mole_numbers (apparent, n, ne)

Map apparent mole numbers to real mole numbers used by model.

- subroutine **real_to_apparent_differentials** (apparent, fe_n, fe_tn, fe_vn, fe_nn, f_n, f_tn, f_vn, f_nn) Map from real mole number differentials to apparent mole number differentials.
- subroutine real_to_apparent_diff (apparent, fe_n, f_n)

Map from real mole number differential to apparent mole number differentials.

• subroutine tp_lnfug_apparent (apparent, nc, ne, n, p, lnfug_real, lnfug, dlnfugdt_real, dlnfugdp_real, dlnfugdn, dlnfugdp, dlnfugdn)

Convert logarithmic fugacity coefficient from real to apparent composition.

• subroutine getmodfugacity (apparent, t, p, x, Infug, sumne)

Back calculate logaritm of fugacity coefficient, by removing dependency of log(x) and log(xe)

5.1.1 Detailed Description

Code for handling apparent composition approach See XMHX.

Author

Morten Hammer, 2020

5.1.2 Function/Subroutine Documentation

5.1.2.1 getmodfugacity()

Back calculate logaritm of fugacity coefficient, by removing dependency of log(x) and log(xe)

Author

MH, 2017-05

Parameters

in	t	Temperature (K)
in	р	Pressure (Pa)
in	x	Phase compozition

5.1.2.2 tp_Infug_apparent()

Convert logarithmic fugacity coefficient from real to apparent composition.

Author

Morten Hammer, 2017-03

Parameters

in	n	Apparent mole numbers [mols]
in	p	Pressure [Pa]
in	ne	Real mole numbers [mols]
in	Infug_real	Log of real fugacities
out	Infug	Log of apparent fugacity

5.2 association_var Module Reference

This module defines a type for association variables in the ThermoPack library.

Data Types

- type association
- type association_state

Current state for eos evaluation.

Functions/Subroutines

- subroutine dealloc (assoc)
- subroutine init_assoc_state (assoc_p, nc, t, v, n)
- subroutine init_assoc_state_fmt (assoc_p, nc, t, n_fmt, m)
- subroutine dealloc_assoc_state (assoc_p)
- subroutine print (assoc)

5.2.1 Detailed Description

This module defines a type for association variables in the ThermoPack library.

5.3 assocschemeutils Module Reference

Functionality for working with association schemes. The work mostly consists of keeping track of indices.

Functions/Subroutines

- subroutine associndices_bookkeeping (assoc, nc, saft_model, assocschemes_db)
- integer function site_to_compidx (assoc, k)
 - Gives the component number ic to which association site number k belongs.
- subroutine compidx_to_sites (assoc, ic, k_first, k_last)
 - Gives the first and last association sites, k_first and k_last, for comp i.
- real function applycombiningrule (ruleidx, val1, val2)

Implements the combining rules for eps and beta seen in CPA models. This utility is also used for PC-SAFT.

logical function site_interaction_internal (site1, site2, assoc_scheme)

Returns true if there is nonzero interaction between site1 and site2, according to association scheme assoc_scheme. • logical function cross site interaction (site1, site2, assoc scheme i, assoc scheme ii)

Given two associating components with different association schemes, one sometimes wants to model only the realistic site–site combinations on the different molecules, e.g. only the positively charged sites on ethanol should interact only with the negatively charged sites on H2O, and vice versa for negatively charged sites on ethanol and positively charged sites on H2O. This is the function which specifies this. It returns true if there is nonzero interaction between site1 on a molecule using scheme I and site2 on a molecule with scheme II.

• integer function **polarity** (site, scheme)

Retrieve polarity of site given association scheme. If an association scheme X is not coded in this function, the site will be given polarity 0, which the code interprets as having cross-interaction with all sites on any different component.

- subroutine check_site_and_scheme (site, scheme)
 - Sanity check for the input (site, scheme).
- character(len=10) function get_assoc_string (assoc)

Variables

```
    integer, parameter assoc_scheme_1 = 1

     Association schemes. ! NONZERO INTERACTIONS FOR SCHEMES:
• integer, parameter assoc scheme 2a = 2
     AA AB BB.
• integer, parameter assoc scheme 2b = 3
     AB.
• integer, parameter assoc scheme 2c = 4
     AA AB, where A is a bipolar site that associates with all other sites.
• integer, parameter assoc_scheme_3a = 5
     AA AB AC BB BC CC.
• integer, parameter assoc_scheme_3b = 6
     AC BC.
• integer, parameter assoc_scheme_4a = 7
     AA AB AC AD BB BC BD CC CD DD.

    integer, parameter assoc_scheme_4b = 8

     AD BD CD.
• integer, parameter assoc_scheme_4c = 9
     AC AD BC BD.
• integer, parameter assoc_scheme_1ea = 10
     One site with positive polarity.

    integer, parameter no assoc = -1

     No self-association.

    integer, parameter aricomb = 1

     Combining rules.
• integer, parameter geocomb = 0
     Geometric mean combining rule. defaultComb is used to select hard coded combining rule. When adding ability to
     select combining rule for PC-SAFT, defaultComb was added to avoid breaking code that relies on the hard coded
     combining rules). So any entry in PC-SAFT.json that does not specify eps_comb_rule or beta_comb_rule will be
     given defaultComb.
```

```
• integer, parameter defaultcomb = 2
```

```
• integer, parameter nositesflag = -1
```

5.3.1 Detailed Description

Functionality for working with association schemes. The work mostly consists of keeping track of indices.

5.3.2 Function/Subroutine Documentation

5.3.2.1 compidx_to_sites()

```
subroutine assocschemeutils::compidx_to_sites (
    type(association), intent(in) assoc,
    integer, intent(in) ic,
    integer, intent(out) k_first,
    integer, intent(out) k_last )
```

Gives the first and last association sites, k_first and k_last, for comp i.

Parameters

in	ic	the original component index
out	k_first	the first association site number for comp i
out	k_last	the last association site number for comp i

5.3.2.2 cross_site_interaction()

Given two associating components with different association schemes, one sometimes wants to model only the realistic site-site combinations on the different molecules, e.g. only the positively charged sites on ethanol should interact only with the negatively charged sites on H2O, and vice versa for negatively charged sites on ethanol and positively charged sites on H2O. This is the function which specifies this. It returns true if there is nonzero interaction between site1 on a molecule using scheme I and site2 on a molecule with scheme II.

Parameters

in	site2	Interaction sites.
in	assoc_scheme⇔ ii	Association schemes.

5.3.2.3 site_interaction_internal()

Returns true if there is nonzero interaction between site1 and site2, according to association scheme assoc_ \leftarrow scheme.

Parameters

in	site2	Interaction sites
in	assoc_scheme	Association scheme

5.3.2.4 site_to_compidx()

```
integer function assocschemeutils::site_to_compidx (
        type(association), intent(in) assoc,
        integer, intent(in) k )
```

Gives the component number ic to which association site number k belongs.

Parameters

in k the association site number

5.3.3 Variable Documentation

5.3.3.1 aricomb

integer, parameter assocschemeutils::aricomb = 1

Combining rules.

Arithmetic mean combining rule.

5.3.3.2 assoc_scheme_1

integer, parameter assocschemeutils::assoc_scheme_1 = 1

Association schemes. ! NONZERO INTERACTIONS FOR SCHEMES:

AA

5.4 cbalpha Module Reference

Routines for setting and computing (T-dependent) alpha correlations in cubic EoS.

Functions/Subroutines

- subroutine, public setsinglealphacorr (i, cbeos, alphaidx, alphaparams)
 - Set alpha correlation and parameters for a component. If one wants to use value of alphaParams from the database, one has to retrieve them first using the appropriate get function, e.g. getAlphaMcParamsFromDb.
- subroutine, public getsinglealphacorr (i, cbeos, corrname, numparam, alphaparams) Get active alpha correlation parameters.
- subroutine, public tpinitalphacorr (nc, comp, cbeos, alphastr, alpha_reference)
 - Initializes alpha correlations (the same correlation for all components).
- subroutine, public **cbcalcalphaterm** (nc, cbeos, t) Calculates the alpha term for all components.
- subroutine, public getacentricalphaparam (alpha_idx, acfi, params)

5.4.1 Detailed Description

Routines for setting and computing (T-dependent) alpha correlations in cubic EoS.

5.4.2 Function/Subroutine Documentation

5.4.2.1 getsinglealphacorr()

```
subroutine, public cbalpha::getsinglealphacorr (
    integer, intent(in) i,
    class(cb_eos), intent(inout) cbeos,
    character (len=*), intent(in) corrname,
    integer, intent(in) numparam,
    real, dimension(numparam), intent(out) alphaparams )
```

Get active alpha correlation parameters.

Author

Ailo 19.01.16.

5.4.2.2 setsinglealphacorr()

```
subroutine, public cbalpha::setsinglealphacorr (
    integer, intent(in) i,
    class(cb_eos), intent(inout) cbeos,
    integer, intent(in) alphaidx,
    real, dimension(:), intent(in) alphaparams)
```

Set alpha correlation and parameters for a component. If one wants to use value of alphaParams from the database, one has to retrieve them first using the appropriate get function, e.g. getAlphaMcParamsFromDb.

Author

Ailo 19.01.16.

5.4.2.3 tpinitalphacorr()

```
subroutine, public cbalpha::tpinitalphacorr (
    integer, intent(in) nc,
    type(gendata_pointer), dimension(nc), intent(in) comp,
    class(cb_eos), intent(inout) cbeos,
    character(len=*), intent(in) alphastr,
    character(len=*), intent(in), optional alpha_reference )
```

Initializes alpha correlations (the same correlation for all components).

This routine is invoked after eoslibinit as one of the subsequent initialization calls. To change correlation, one has to call setSingleAlphaCorr.

Author

Ailo Aasen

Generated by Doxygen

5.5 cbbeta Module Reference

Functionality for temperature-dependent covolume factor beta in cubic EoS, defined by b(T) = b(Tc)*beta(T)

Functions/Subroutines

- subroutine, public tpinitbetacorr (nc, comp, cbeos, betastr, setno) Initializes beta correlations (the same correlation for all components).
- subroutine, public **setsinglebetacorr** (i, cbeos, corrname, betaparams) Set beta correlation and parameters for a component.
- subroutine, public **getsinglebetacorr** (i, cbeos, corrname, numparam, betaparams) *Get active beta correlation parameters.*
- subroutine, public cbcalcbetaterm (nc, cbeos, t)
 - Calculates the beta term for all components.

5.5.1 Detailed Description

Functionality for temperature-dependent covolume factor beta in cubic EoS, defined by b(T) = b(Tc) * beta(T)

Author

Ailo, Jan 2020

5.5.2 Function/Subroutine Documentation

5.5.2.1 tpinitbetacorr()

```
subroutine, public cbbeta::tpinitbetacorr (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc), intent(in) comp,
    class(cb_eos), intent(inout) cbeos,
    character (len=*), intent(in) betastr,
    integer, intent(in), optional setno )
```

Initializes beta correlations (the same correlation for all components).

This routine is invoked after eoslibinit as one of the subsequent initialization calls. To change correlation, one has to call setSingleBetaCorr.

5.6 cbhelm Module Reference

Get reduced Helmholtz function ($F = A^{r}/RT$) and differentials from eoscubic type. The cubiceos instance stores F and its derivatives as a function of certain explicit quantities, which includes the variable T, v and n, but also the cubic EoS parameters a and b that depend on (T,V,n). To get the total derivatives of F wrt (T,V,n), these have to be combined in the appropriate way, which is the purpose of this module.

Functions/Subroutines

- real function, public cbf (cubiceos)
 - Get reduced residual Helmholtz energy for cubic equation of state.
- real function, public cbfv (cubiceos)
 - Get reduced residual Helmholtz energy differential wrpt. specific volume for cubic equation of state.
- real function, public cbfvv (cubiceos)
- Get reduced residual Helmholtz energy second differential wrpt. specific volume for cubic equation of state. • real function, public cbfvvv (cubiceos, t, v)
 - Get reduced residual Helmholtz energy third differential wrpt. specific volume for cubic equation of state.
- real function, public cbft (cubiceos)
 - Get reduced residual Helmholtz energy differential wrpt. temperature for cubic equation of state.
- real function, public cbftt (cubiceos)
 - Get reduced residual Helmholtz energy second differential wrpt. specific volume for cubic equation of state.
- real function, public cbfvt (cubiceos)

Get reduced residual Helmholtz energy differential wrpt. specific volume and temperature for cubic equation of state. • subroutine, public cbfi (nc, cubiceos, fi)

- Get reduced residual Helmholtz energy differentials wrpt. mole numbers for cubic equation of state.
- subroutine, public cbfij (nc, cubiceos, fij)

Get reduced residual Helmholtz energy second differentials wrpt. mole numbers for cubic equation of state.

- subroutine, public cbfit (nc, cubiceos, fit)
 - Get reduced residual Helmholtz energy second differentials wrpt. mole numbers and temperature for cubic equation of state.
- subroutine, public cbfiv (nc, cubiceos, fiv)

Get reduced residual Helmholtz energy second differentials wrpt. mole numbers and volume for cubic equation of state.

real function, public cbpress (cubiceos, t, v)

Pressure from cubic equation of state.

real function, public cbpv (cubiceos)

Pressure differential wrpt. volume from cubic equation of state.

real function, public cbpvv (cubiceos, t, v)

Second pressure differential wrpt. volume from cubic equation of state.

real function, public cbprst (cubiceos)

Pressure differential wrpt. temperature from cubic equation of state.

subroutine, public cbpi (nc, cubiceos, pi)
 Get pressure differential wrpt. mole number i for cubic equation of state.

5.6.1 Detailed Description

Get reduced Helmholtz function ($F = A^{r}/RT$) and differentials from eoscubic type. The cubiceos instance stores F and its derivatives as a function of certain explicit quantities, which includes the variable T, v and n, but also the cubic EoS parameters a and b that depend on (T,V,n). To get the total derivatives of F wrt (T,V,n), these have to be combined in the appropriate way, which is the purpose of this module.

5.6.2 Function/Subroutine Documentation

5.6.2.1 cbf()

Get reduced residual Helmholtz energy for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.2 cbfi()

```
subroutine, public cbhelm::cbfi (
    integer, intent(in) nc,
    class(cb_eos), intent(in) cubiceos,
    real, dimension(nc), intent(out) fi )
```

Get reduced residual Helmholtz energy differentials wrpt. mole numbers for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.3 cbfij()

```
subroutine, public cbhelm::cbfij (
    integer, intent(in) nc,
    class(cb_eos), intent(in) cubiceos,
    real, dimension(nc,nc), intent(out) fij)
```

Get reduced residual Helmholtz energy second differentials wrpt. mole numbers for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.4 cbfit()

```
subroutine, public cbhelm::cbfit (
    integer, intent(in) nc,
    class(cb_eos), intent(in) cubiceos,
    real, dimension(nc), intent(out) fit )
```

Get reduced residual Helmholtz energy second differentials wrpt. mole numbers and temperature for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.5 cbfiv()

```
subroutine, public cbhelm::cbfiv (
    integer, intent(in) nc,
    class(cb_eos), intent(in) cubiceos,
    real, dimension(nc), intent(out) fiv )
```

Get reduced residual Helmholtz energy second differentials wrpt. mole numbers and volume for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.6 cbft()

Get reduced residual Helmholtz energy differential wrpt. temperature for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.7 cbftt()

Get reduced residual Helmholtz energy second differential wrpt. specific volume for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.8 cbfv()

Get reduced residual Helmholtz energy differential wrpt. specific volume for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.9 cbfvt()

Get reduced residual Helmholtz energy differential wrpt. specific volume and temperature for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.10 cbfvv()

Get reduced residual Helmholtz energy second differential wrpt. specific volume for cubic equation of state.

Author

MH, 2013-11-30

5.6.2.11 cbfvvv()

Get reduced residual Helmholtz energy third differential wrpt. specific volume for cubic equation of state.

Author

MH, 2015-10

5.6.2.12 cbpi()

```
subroutine, public cbhelm::cbpi (
    integer, intent(in) nc,
    class(cb_eos), intent(in) cubiceos,
    real, dimension(nc), intent(out) pi)
```

Get pressure differential wrpt. mole number i for cubic equation of state.

Author

MH, 2015-03

5.6.2.13 cbpress()

Pressure from cubic equation of state.

Author

MH, 2014-04

5.6.2.14 cbprst()

Pressure differential wrpt. temperature from cubic equation of state.

Author

MH, 2015-03

5.6.2.15 cbpv()

Pressure differential wrpt. volume from cubic equation of state.

Author

MH, 2015-02

5.6.2.16 cbpvv()

Second pressure differential wrpt. volume from cubic equation of state.

Author

MH, 2015-02

5.7 cbselect Module Reference

Selection of components, eos etc.

Functions/Subroutines

- subroutine get_mixing_rule_index (eosidx, mrulestr, mruleidx)
 From mixing rule string get mixing rule index.
- subroutine, public selectcubiceos (nc, comp, cbeos, alphastr, alpha_reference, betastr)
- Selection of equation of state and the mixing rule Data from the eos-database is copied to the global variable cbeos.
- subroutine cbcalcparameters (nc, cbeos)
 - Calculates constants for the various cubic EOS.
- subroutine selectmixingrules (nc, comp, cbeos, mrulestr, param_reference, b_exponent)
- Selection of equation of state and the mixing rule Data from the eos-database is copied to the global variable cbeos. • subroutine initcubictcpcacf (nc, comp, cbeos, tcspec, pcspec, acfspec)
 - Initialize Tc, Pc and acentric factor to use in the cubic EoS.
- subroutine redefine_tcpcacf_comp_cubic (j, tcspec, pcspec, acfspec, ierr)
- Redefine the critical temperature, critical pressure, and acentric factor of the cubic EoS.
- subroutine redefine_fallback_tcpcacf (tcspec, pcspec, acfspec)

Redefine the critical temperature, critical pressure, and acentric factor of the cubic fallback EoS. Can be used to enforce the fallback EoS to have the same Tc, Pc and Acf as the main EoS.

subroutine, public tpselectinteractionparameters (nc, comp, cbeos, param_reference)

Selection of binary interacion parameters This routine is called with a default set from tpSelectEOS. If more than one set of interaction parameters are available this set can be retrieved. All interaction parameters are stored in the variable kijdb in the kijdatadb structure. The selected binary interaction parameters are stored in a 2-dimensional array in the global cbeos type.

integer function getcompindex (nc, comp, compid)

The function retun the index of the working data record (in the module compdata) for the compoentent that is found.

- real function getkij (cbeos, eosid, mruleid, ref, uid1, uid2)
- real function getlij (cbeos, eosid, mruleid, ref, uid1, uid2)
- subroutine getinterdatageij (mge, eosid, ref, uid1, uid2, indxi, indxj, found)

5.7.1 Detailed Description

Selection of components, eos etc.

5.7.2 Function/Subroutine Documentation

5.7.2.1 cbcalcparameters()

Calculates constants for the various cubic EOS.

Author

Geir Skaugen

Date

2012-06-12

Author

Morten Hammer

Parameters

in, out | *cbeos* | Uses the calculated m1 and m2 for two-param eos

5.7.2.2 get_mixing_rule_index()

From mixing rule string get mixing rule index.

Parameters

eosidx	Index of EOS
mrulestr	The mixing rule as a character string e.g 'Classic'

Return values

mruleidx	Mixing rule index The character strings are case-insensitive
----------	--

Author

Geir S Morten Hammer

5.7.2.3 getcompindex()

The function return the index of the working data record (in the module compdata) for the compoentent that is found.

Parameters

compid Character string for a single component ID.

Return values

idx The array index of compdb.

5.7.2.4 initcubictcpcacf()

```
subroutine cbselect::initcubictcpcacf (
    integer, intent(in) nc,
    type(gendata_pointer), dimension(nc), intent(in) comp,
    class(cb_eos) cbeos,
    real, dimension(nc), intent(in), optional tcspec,
    real, dimension(nc), intent(in), optional pcspec,
    real, dimension(nc), intent(in), optional acfspec )
```

Initialize Tc, Pc and acentric factor to use in the cubic EoS.

Author

Ailo Aasen

Parameters

in	tcspec	Specified critical temperature [K]
in	pcspec	Specified critical pressure [Pa]
in	acfspec	Specified acentric factor [-]

5.7.2.5 redefine_fallback_tcpcacf()

```
subroutine cbselect::redefine_fallback_tcpcacf (
            real, dimension(nce), intent(in), optional tcspec,
            real, dimension(nce), intent(in), optional pcspec,
            real, dimension(nce), intent(in), optional acfspec )
```

Redefine the critical temperature, critical pressure, and acentric factor of the cubic fallback EoS. Can be used to enforce the fallback EoS to have the same Tc, Pc and Acf as the main EoS.

Author

Ailo Aasen

Parameters

in	tcspec	Specified critical temperature [K]
in	pcspec	Specified critical pressure [Pa]
in	acfspec	Specified acentric factor [-]

5.7.2.6 redefine_tcpcacf_comp_cubic()

real, intent(in) acfspec, integer, intent(out) ierr)

Redefine the critical temperature, critical pressure, and acentric factor of the cubic EoS.

Author

Morten Hammer

Parameters

in	j	Component index
out	ierr	Component index
in	tcspec	Specified critical temperature [K]
in	pcspec	Specified critical pressure [Pa]
in	acfspec	Specified acentric factor [-]

5.7.2.7 selectcubiceos()

```
subroutine, public cbselect::selectcubiceos (
    integer, intent(in) nc,
    type(gendata_pointer), dimension(:), intent(in) comp,
    class(cb_eos), intent(inout) cbeos,
    character (len=*), intent(in) alphastr,
    character (len=*), intent(in) alpha_reference,
    character (len=*), intent(in), optional betastr )
```

Selection of equation of state and the mixing rule Data from the eos-database is copied to the global variable cbeos.

Parameters

eosstr	The equation of state as a character string e.g 'SRK' og 'PR'
mrulestr	The mixing rule as a character string e.g 'Classic'

The character strings are case-insensitive

Author

Geir S Morten Hammer

5.7.2.8 selectmixingrules()

```
subroutine cbselect::selectmixingrules (
    integer, intent(in) nc,
    type(gendata_pointer), dimension(nc), intent(in) comp,
    type(cb_eos) cbeos,
    character (len=*), intent(in) mrulestr,
    character (len=*), intent(in) param_reference,
    real, intent(in), optional b_exponent )
```

Selection of equation of state and the mixing rule Data from the eos-database is copied to the global variable cbeos.

Parameters

eosstr	The equation of state as a character string e.g 'SRK' og 'PR'
mrulestr	The mixing rule as a character string e.g 'Classic'

The character strings are case-insensitive

Author

Geir S Morten Hammer

5.7.2.9 tpselectinteractionparameters()

```
subroutine, public cbselect::tpselectinteractionparameters (
    integer, intent(in) nc,
    type(gendata_pointer), dimension(nc), intent(in) comp,
    type(cb_eos), intent(inout) cbeos,
    character (len=*), intent(in) param_reference )
```

Selection of binary interacion parameters This routine is called with a default set from tpSelectEOS. If more than one set of interaction parameters are available this set can be retrieved. All interaction parameters are stored in the variable kijdb in the kijdatadb structure. The selected binary interaction parameters are stored in a 2-dimensional array in the global cbeos type.

Parameters

setno Set no

Author

Geir S

5.8 co2_gibbs Module Reference

Module calculating thermodynamic potentials and differentials for solid CO2.

Functions/Subroutines

- subroutine, public sco2init (sl_tr, g_tr, t_tr, p_tr)
 - Initialize module for solid co2 Gibbs energy to same reference levels as another EoS.
- real function, public sco2_gibbs (t, p)
 - Calculate gibbs energy for dry-ice. Unit: J/mol.
- real function, public sco2_dgdp (t, p)

Calculate specific volume of dry-ice. Gibbs differential wrpt. pressure at constant temperature. Unit: m3/mol.

real function, public sco2_d2gdp2 (t, p)

Calculate specific volume differential wrpt. pressure of dry-ice. Temperature is held constant Unit: m3/mol/Pa.

 real function, public sco2_dgdt (t, p) Calculate Gibbs differential wrpt. temperature. Pressure is held constant Unit: J/mol/K. real function, public sco2 d2gdt2 (t, p) Calculate Gibbs second differential wrpt. temperature. Pressure is held constant Unit: J/mol/K2. real function, public sco2_d2gdtdp (t, p) Calculate Gibbs second differential wrpt. temperature and pressure. Unit: J/mol/K/Pa. real function, public sco2 specvol (t, p) Calculate specific volume of dry-ice. Gibbs differential wrpt. pressure at constant temperature. Unit: m3/mol. real function, public sco2_entropy (t, p) Calculate specific entropy of dry-ice. Unit: J/mol/K. real function, public sco2_enthalpy (t, p) Calculate specific enthalpy of dry-ice. Unit: J/mol. real function, public sco2_energy (t, p) Calculate specific internal energy of dry-ice. Unit: J/mol. • real function, public sco2_helmholtz (t, p) Calculate specific Helmholtz energy of dry-ice. Unit: J/mol. real function, public sco2_heat_capacity (t, p) Calculate specific heat-capasity of dry-ice at constant pressure. Unit: J/mol/K. real function, public sco2_speed_of_sound (t, p)

5.8.1 Detailed Description

Module calculating thermodynamic potentials and differentials for solid CO2.

Ref: Equation of State for Solid Carbon Dioxide Based on the Gibbs Free Energy Andreas Jäger and Roland Span Journal of Chemical & Engineering Data (J. Chem. Eng. Data) Pages: 590-597 January 2012 Number 57

5.8.2 Function/Subroutine Documentation

Calculate speed of sound. Unit: m/s.

5.8.2.1 sco2_d2gdp2()

```
real function, public co2_gibbs::sco2_d2gdp2 (
    real, intent(in) t,
    real, intent(in) p )
```

Calculate specific volume differential wrpt. pressure of dry-ice. Temperature is held constant Unit: m3/mol/Pa.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.2 sco2_d2gdt2()

```
real function, public co2_gibbs::sco2_d2gdt2 (
    real, intent(in) t,
    real, intent(in) p )
```

Calculate Gibbs second differential wrpt. temperature. Pressure is held constant Unit: J/mol/K2.

Author

MH, 2013-03-01

Parameters

ir	1	t	K - Temperature
ir	1	р	Pa - Pressure

5.8.2.3 sco2_d2gdtdp()

Calculate Gibbs second differential wrpt. temperature and pressure. Unit: J/mol/K/Pa.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.4 sco2_dgdp()

```
real function, public co2_gibbs::sco2_dgdp (
    real, intent(in) t,
    real, intent(in) p )
```

Calculate specific volume of dry-ice. Gibbs differential wrpt. pressure at constant temperature. Unit: m3/mol.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.5 sco2_dgdt()

```
real function, public co2_gibbs::sco2_dgdt (
    real, intent(in) t,
    real, intent(in) p )
```

Calculate Gibbs differential wrpt. temperature. Pressure is held constant Unit: J/mol/K.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.6 sco2_energy()

```
real function, public co2_gibbs::sco2_energy (
    real, intent(in) t,
    real, intent(in) p )
```

Calculate specific internal energy of dry-ice. Unit: J/mol.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.7 sco2_enthalpy()

Calculate specific enthalpy of dry-ice. Unit: J/mol.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.8 sco2_entropy()

Calculate specific entropy of dry-ice. Unit: J/mol/K.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.9 sco2_gibbs()

Calculate gibbs energy for dry-ice. Unit: J/mol.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.10 sco2_heat_capacity()

real function, public co2_gibbs::sco2_heat_capacity (

real, intent(in) t,
real, intent(in) p)

Calculate specific heat-capasity of dry-ice at constant pressure. Unit: J/mol/K.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.11 sco2_helmholtz()

Calculate specific Helmholtz energy of dry-ice. Unit: J/mol.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.12 sco2_specvol()

Calculate specific volume of dry-ice. Gibbs differential wrpt. pressure at constant temperature. Unit: m3/mol.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.13 sco2_speed_of_sound()

Calculate speed of sound. Unit: m/s.

Author

MH, 2013-03-01

Parameters

in	t	K - Temperature
in	р	Pa - Pressure

5.8.2.14 sco2init()

```
subroutine, public co2_gibbs::sco2init (
    real, intent(in) sl_tr,
    real, intent(in) g_tr,
    real, intent(in) t_tr,
    real, intent(in) p_tr )
```

Initialize module for solid co2 Gibbs energy to same reference levels as another EoS.

Author

MH, 2013-03-01

Parameters

in	sl⇔	J/mol/K - Liquid entropy at triple point
	_tr	
in	g⇔	J/mol - Gibbs energy at triple point
	_tr	
in	t_tr	K - Triple point temperature
in	p⇔	Pa - Triple point pressure
	_tr	

5.9 compdata Module Reference

The module compdata stores pure component data. After initialisation of a mixture, data from the database "compdatadb.f90" are selected and copied into the working array "comp" of active components.

Data Types

type alphadatadb

Alpha correlation for cubic EoS.

- type cidatadb
 - Volume shift parameters.
- type cpadata

Pure component parameters. This data structure stores pure component parameters for the CPA-SRK and CPA-PR equations of state.

type cpdata

Ideal heat capacity at constant pressure.

- type gendata
- type gendata_pointer
- type gendatadb

Functions/Subroutines

• logical function iscomponent (cid, cname)

Is this component named cname?

- logical function isref (ref, ref_list)
- Is referance tag in referance list?logical function iseos (eosid, eos)

Is it match in eosid?

• subroutine assign_gendatadb (this, cmp)

Assignment operator for gendatadb.

- subroutine **assign_gendata** (this, cmp) Assignment operator for gendata.
- integer function, public **compindex** (complist, compname)
- · subroutine, public initcomplist (componentstring, ncomp, complist)
- integer function, public parsecompvector (compvector)
- integer function, public getcomp (compvector)
- subroutine init_component_data_from_db (complist, nc, ref, comp, ierr)

Initialize component data from compdatadb.

- subroutine, public deallocate_comp (comp)
- subroutine, public copy_comp (comp_cpy, comp)
- subroutine cidatadb_get_vol_trs_c (cid, t, ci, cit, cit, ci_temp_dep)
- subroutine cidatadb_set_zero_vol_trs (cid)

Variables

- integer, parameter cp_poly3_cal =1
- integer, parameter cp_api44_mass =2
- integer, parameter cp_hypotetic_mass =3
- integer, parameter cp_poly3_si =4
- integer, parameter cp_ici_mass =5
- integer, parameter cp_chen_bender_mass =6
- integer, parameter cp_dippr_kmol =7
- integer, parameter cp_poly4_si =8
- integer, parameter cp_mogensen_si =9
- integer, parameter cp_h2_kmol =10
- integer, parameter cp trend si =11
- integer, parameter cp_shomate_si =12
- integer, parameter vs_constant = 1
- integer, parameter vs linear = 2
- integer, parameter vs_quadratic = 3
- integer, parameter **vs_quintic** = 6

5.9.1 Detailed Description

The module compdata stores pure component data. After initialisation of a mixture, data from the database "compdatadb.f90" are selected and copied into the working array "comp" of active components.

5.9.2 Function/Subroutine Documentation

5.9.2.1 cidatadb_get_vol_trs_c()

Parameters

in	t	Temperature (K)
out	ci	Volume translation (m3/mol)
out	cit	Volume translation differential (m3/mol/K)
out	citt	Volume translation second differential (m3/mol/K2)
out	ci_temp_dep	Volume translation is temp. dependent

5.9.2.2 init_component_data_from_db()

Initialize component data from compdatadb.

Parameters

in	complist	List of component names
in	nc	Number of components
in	ref	Reference for ideal cp correlation
in,out	сотр	Pointer to structure for holding data

5.10 compdatadb Module Reference

Automatically generated to file compdatadb.f90 using utility python code pyUtils Time stamp: 2023-09-28T12:56↔ :50.126803.

Variables

- type(gendatadb), parameter cx1 = gendatadb(ident = "BUT1OL", formula = "C4H10O", name = "1-BUTANOL", mw = 74.1216, Tc = 562.2000, Pc = 4500000.00, Zc = 0.263800, acf = 0.592980, Tb = 390.6000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.254900, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu1 = alphadatadb(eosid="PR", cid="BUT1OL", ref="tcPR", coeff=(/1.↔ 62670000e+00, 1.00000000e+00, 6.99800000e-01/))
- type(cidatadb), parameter c1 = cidatadb(eosid="PR", cid="BUT1OL", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.91930000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu2 = alphadatadb(eosid="SRK", cid="BUT1OL", ref="tcRK", coeff=(/1.↔ 51560000e+00, 1.00000000e+00, 8.55400000e-01/))
- type(cpadata), parameter cpa1 = CPAdata(eosid="CPA-SRK", compName="BUT1OL", ref="Default/Oliveira2008", bib_reference="10.1016/j.fluid.2008.02.020", a0=1.80190000e+06, b=8.13090000e-02, eps=2.00690000e+04, beta=3.66940000e-03, alphacorridx = cbAlphaClassicIdx, alphaParams = (/9.87660000e-01,0.↔ 00000000e+00,0.0000000e+00/), assoc scheme = assoc scheme 2B)
- type(gendatadb), parameter cx2 = gendatadb(ident = "HEX1OL", formula = "C6H14O", name = "1-HEXANOL", mw = 102.1748, Tc = 610.5000, Pc = 3413000.00, Zc = 0.260200, acf = 0.570000, Tb = 430.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.254400, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu3 = alphadatadb(eosid="PR", cid="HEX1OL", ref="tcPR", coeff=(/2.↔ 35820000e+00, 1.00000000e+00, 4.48600000e-01/))
- type(alphadatadb), parameter twu4 = alphadatadb(eosid="SRK", cid="HEX1OL", ref="tcRK", coeff=(/2.↔ 08320000e+00, 1.00000000e+00, 5.78300000e-01/))
- type(cidatadb), parameter c4 = cidatadb(eosid="SRK", cid="HEX1OL", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=2.59066000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa2 = CPAdata(eosid="CPA-SRK", compName="HEX1OL", ref="Default/Oliveira2008", bib_reference="10.1016/j.fluid.2008.02.020", a0=2.83860000e+06, b=1.13130000e-01, eps=2.27590000e+04, beta=1.67270000e-03, alphacorridx = cbAlphaClassicIdx, alphaParams = (/9.69590000e-01,0.↔ 00000000e+00,0.0000000e+00/), assoc_scheme = assoc_scheme_2B)
- type(gendatadb), parameter cx3 = gendatadb(ident = "PENT1OL", formula = "C5H12O", name = "1-PENTANOL", mw = 88.1482, Tc = 580.0000, Pc = 390000.00, Zc = 0.264300, acf = 0.578980, Tb = 411.↔ 0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.256100, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu5 = alphadatadb(eosid="PR", cid="PENT1OL", ref="tcPR", coeff=(/1.↔ 68580000e+00, 1.00000000e+00, 6.61800000e-01/))

- type(alphadatadb), parameter twu6 = alphadatadb(eosid="SRK", cid="PENT1OL", ref="tcRK", coeff=(/1.↔ 63720000e+00, 1.00000000e+00, 7.71700000e-01/))
- type(cidatadb), parameter **c6** = cidatadb(eosid="SRK", cid="PENT1OL", ref="tcRK", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=1.99375000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa3 = CPAdata(eosid="CPA-SRK", compName="PENT1OL", ref="Default/Oliveira2008", bib_reference="10.1016/j.fluid.2008.02.020", a0=2.35520000e+06, b=9.71790000e-02, eps=1.86660000e+04, beta=2.67240000e-03, alphacorridx = cbAlphaClassicIdx, alphaParams = (/1.06900000e+00,0...
 00000000e+00,0.00000000e+00/), assoc_scheme = assoc_scheme_2B)
- type(gendatadb), parameter cx4 = gendatadb(ident = "PROP1OL", formula = "C3H8O", name = "1-PROPANOL", mw = 60.0950, Tc = 536.9000, Pc = 5200000.00, Zc = 0.254300, acf = 0.623000, Tb = 370.↔ 3000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.251100, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu7 = alphadatadb(eosid="PR", cid="PROP1OL", ref="tcPR", coeff=(/1.↔ 37950000e+00, 1.00000000e+00, 8.77200000e-01/))
- type(cidatadb), parameter **c7** = cidatadb(eosid="PR", cid="PROP1OL", ref="tcPR", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=3.27770000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu8 = alphadatadb(eosid="SRK", cid="PROP1OL", ref="tcRK", coeff=(/1.↔ 37350000e+00, 1.00000000e+00, 9.94100000e-01/))
- type(cidatadb), parameter **c8** = cidatadb(eosid="SRK", cid="PROP1OL", ref="tcRK", bib_ref="10.1016/j.⇔ fluid.2016.09.003", ciA=1.58803000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa4 = CPAdata(eosid="CPA-SRK", compName="PROP1OL", ref="Default/Oliveira2008", bib_reference="10.1016/j.fluid.2008.02.020", a0=1.14240000e+06, b=6.37880000e-02, eps=2.19130000e+04, beta=7.73600000e-03, alphacorridx = cbAlphaClassicIdx, alphaParams = (/9.01340000e-01,0.↔ 00000000e+00,0.0000000e+00/), assoc_scheme = assoc_scheme_2B)
- type(gendatadb), parameter cx5 = gendatadb(ident = "13BD", formula = "C4H6", name = "1,3-BUTADIENE", mw = 54.0920, Tc = 425.0000, Pc = 4330000.00, Zc = 0.270000, acf = 0.195000, Tb = 268.7000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.↔ 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.267500, mu_dipole = 0.00000, q_quadrupole = 0.00000)
- type(cpdata), parameter cp5 = cpdata(cid = "13BD", ref = "Default", bib_ref = "", cptype = 4, cp = (/-1.↔ 68700000e+00,3.41900000e-01,-2.34000000e-04,6.33500000e-08,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu9 = alphadatadb(eosid="PR", cid="13BD", ref="tcPR", coeff=(/1.↔ 61800000e-01, 8.59200000e-01, 2.40880000e+00/))
- type(cidatadb), parameter **c9** = cidatadb(eosid="PR", cid="13BD", ref="tcPR", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=-1.61400000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu10 = alphadatadb(eosid="SRK", cid="13BD", ref="tcRK", coeff=(/2.↔ 22300000e-01, 8.58400000e-01, 2.41930000e+00/))
- type(cidatadb), parameter c10 = cidatadb(eosid="SRK", cid="13BD", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.12082000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx6 = gendatadb(ident = "2MHX", formula = "C7H16", name = "2-METHYLHEXANE", mw = 100.2050, Tc = 530.4000, Pc = 2730000.00, Zc = 0.261000, acf = 0.329000, Tb = 363.2000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.263800, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp6 = cpdata(cid = "2MHX", ref = "Default", bib_ref = "", cptype = 2, cp = (/1.↔ 78937090e+01,4.04849000e-01,1.33465300e-03,2.87769800e-06,-3.51181800e-09, 1.25400550e-12,1.↔ 82345600e+00,0.0000000e+00,0.0000000e+00,0.000000e+00/), Tcpmin = -75.0000, Tcpmax = 700.↔ 0000)
- type(alphadatadb), parameter twu11 = alphadatadb(eosid="PR", cid="2MHX", ref="tcPR", coeff=(/3.↔ 79600000e-01, 8.10300000e-01, 1.68300000e+00/))

- type(cidatadb), parameter c11 = cidatadb(eosid="PR", cid="2MHX", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=7.27700000e-07, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu12 = alphadatadb(eosid="SRK", cid="2MHX", ref="tcRK", coeff=(/3.↔ 42600000e-01, 8.32200000e-01, 2.20210000e+00/))
- type(gendatadb), parameter cx7 = gendatadb(ident = "3MP", formula = "C6H14", name = "3-METHYLPENTANE", mw = 86.1780, Tc = 504.5000, Pc = 3120000.00, Zc = 0.273000, acf = 0.272000, Tb = 336.4000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.269000, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter **cp7** = cpdata(cid = "3MP", ref = "Default", bib_ref = "", cptype = 2, cp = (/1.↔ 79647680e+01,3.97799000e-01,1.20987000e-03,3.25455600e-06,-3.94266100e-09, 1.43841480e-12,2.↔ 14954100e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -75.0000, Tcpmax = 700.↔ 0000)
- type(alphadatadb), parameter twu13 = alphadatadb(eosid="PR", cid="3MP", ref="tcPR", coeff=(/2.↔ 52500000e-01, 8.32200000e-01, 2.04680000e+00/))
- type(cidatadb), parameter c13 = cidatadb(eosid="PR", cid="3MP", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-1.74790000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu14 = alphadatadb(eosid="SRK", cid="3MP", ref="tcRK", coeff=(/2.↔ 76300000e-01, 8.45100000e-01, 2.37500000e+00/))
- type(cidatadb), parameter c14 = cidatadb(eosid="SRK", cid="3MP", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.88966000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx8 = gendatadb(ident = "ACETONE", formula = "C3H6O", name = "ACETONE", mw = 58.0800, Tc = 508.1000, Pc = 4700000.00, Zc = 0.233000, acf = 0.307000, Tb = 329.2200, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.↔ 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.244200, mu_dipole = 2.880000, q_quadrupole = 0.00000)
- type(cpdata), parameter cp8 = cpdata(cid = "ACETONE", ref = "Default", bib_ref = "", cptype = 6, cp = (/7.↔ 33799960e-01,2.16303500e-04,8.20407250e-06,-1.02740600e-08,3.90520150e-12, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 50.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu15 = alphadatadb(eosid="PR", cid="ACETONE", ref="tcPR", coeff=(/6. ← 04100000e-01, 8.40200000e-01, 1.19840000e+00/))
- type(cidatadb), parameter c15 = cidatadb(eosid="PR", cid="ACETONE", ref="tcPR", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=1.26537000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu16 = alphadatadb(eosid="SRK", cid="ACETONE", ref="tcRK", coeff=(/3.↔ 20700000e-01, 8.54700000e-01, 2.36300000e+00/))
- type(cidatadb), parameter c16 = cidatadb(eosid="SRK", cid="ACETONE", ref="tcRK", bib_ref="10.1016/j... fluid.2016.09.003", ciA=2.61512000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx9 = gendatadb(ident = "ACETYLENE", formula = "C2H2", name = "ACETYLENE", mw = 26.0380, Tc = 308.3000, Pc = 6140000.00, Zc = 0.270000, acf = 0.190000, Tb = 188.4000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.↔ 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = -1.000000, mu_dipole = 0.00000, q_quadrupole = 4.600000)
- type(cpdata), parameter cp9 = cpdata(cid = "ACETYLENE", ref = "Default", bib_ref = "", cptype = 4, cp = (/2.↔ 68200000e+01,7.57800000e-02,-5.00700000e-05,1.41200000e-08,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(gendatadb), parameter cx10 = gendatadb(ident = "ALLENE", formula = "C3H4", name = "PROPADI-ENE", mw = 40.0650, Tc = 393.8500, Pc = 5248600.00, Zc = 0.259700, acf = 0.120000, Tb = 238.6500, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/6.53610000e+00, 1.05472000e+03, -7.70800000e+01/), Tantmin = 174.0000, Tantmax = 257.0000, Zra = 0.267700, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp10 = cpdata(cid = "ALLENE", ref = "Default", bib_ref = "", cptype = 4, cp = (/9.↔ 90600000e+00,1.97700000e-01,-1.18200000e-04,2.78200000e-08,0.00000000e+00, 0.0000000e+00,0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)

- type(alphadatadb), parameter twu17 = alphadatadb(eosid="PR", cid="ALLENE", ref="tcPR", coeff=(/1.↔ 08530000e+00, 4.78800000e-01, 4.5930000e-01/))
- type(alphadatadb), parameter twu18 = alphadatadb(eosid="SRK", cid="ALLENE", ref="tcRK", coeff=(/4.↔ 19800000e-01, 7.25600000e-01, 1.03070000e+00/))
- type(cidatadb), parameter c18 = cidatadb(eosid="SRK", cid="ALLENE", ref="tcRK", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=1.1899700e-05, ciB=0.0000000e+00, ciC=0.0000000e+00, c_type=1)
- type(gendatadb), parameter cx11 = gendatadb(ident = "NH3", formula = "NH3", name = "AMMONIA", mw = 17.0310, Tc = 405.6000, Pc = 11470000.00, Zc = 0.242000, acf = 0.250000, Tb = 239.7000, Ttr = 0...
 0000, Ptr = 0.0000, sref = 192.7700, href = -45900.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.69481000e+01, 2.13250000e+03, -3.29800000e+01/), Tantmin = 179.0000, Tantmax = 261.0000, Zra = 0.246500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp11 = cpdata(cid = "NH3", ref = "Default", bib_ref = "", cptype = 2, cp = (/-2.20260600e+00,2.01031700e+00,-6.50061000e-04,2.37326400e-06,-1.59759500e-09, 3.76173900e-13,9.90447000e-01,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -175.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu19 = alphadatadb(eosid="PR", cid="NH3", ref="tcPR", coeff=(/2.↔ 27400000e-01, 8.64500000e-01, 2.33200000e+00/))
- type(alphadatadb), parameter mc1 = alphadatadb(eosid="PR", cid="NH3", ref="Chapoy2005", coeff=(/7.↔ 4800000e-01, -2.50000000e-02, 1.0000000e-03/))
- type(cidatadb), parameter c19 = cidatadb(eosid="PR", cid="NH3", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=4.03030000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu20 = alphadatadb(eosid="SRK", cid="NH3", ref="tcRK", coeff=(/2.↔ 98100000e-01, 8.65100000e-01, 2.32450000e+00/))
- type(alphadatadb), parameter mc2 = alphadatadb(eosid="SRK", cid="NH3", ref="Chapoy2005", coeff=(/9. ← 16000000e-01, -3.69000000e-01, 4.17000000e-01/))
- type(cidatadb), parameter c20 = cidatadb(eosid="SRK", cid="NH3", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=8.63980000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa5 = CPAdata(eosid="CPA-SRK", compName="NH3", ref="Default/SINTEF", bib_reference="", a0=3.73160000e+05, b=2.07666000e-02, eps=7.60835000e+03, beta=7.93725000e-04, alphacorridx = cbAlphaClassicIdx, alphaParams = (/7.17324000e-01,0.00000000e+00,0.0000000e+00/), assoc_scheme = assoc_scheme_2B)
- type(gendatadb), parameter cx12 = gendatadb(ident = "AR", formula = "AR", name = "ARGON", mw = 39.↔ 9480, Tc = 150.8000, Pc = 4873700.00, Zc = 0.291000, acf = -0.004000, Tb = 87.3000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.52330000e+01, 7.00510000e+02, -5.84000000e+00/), Tantmin = 81.0000, Tantmax = 94.0000, Zra = 0.308500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu21 = alphadatadb(eosid="PR", cid="AR", ref="tcPR", coeff=(/1.22800000e-01, 9.04500000e-01, 1.85390000e+00/))
- type(alphadatadb), parameter **mc3** = alphadatadb(eosid="PR", cid="AR", ref="Default", coeff=(/3.↔ 97483000e-01, -2.82393000e-01, 7.96288000e-01/))
- type(cidatadb), parameter c21 = cidatadb(eosid="PR", cid="AR", ref="tcPR", bib_ref="10.1016/j.fluid.2016. 09.003", ciA=-3.29390000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu22 = alphadatadb(eosid="SRK", cid="AR", ref="tcRK", coeff=(/2.↔ 02300000e-01, 9.08600000e-01, 1.81290000e+00/))
- type(cidatadb), parameter c22 = cidatadb(eosid="SRK", cid="AR", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=8.72800000e-07, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx13 = gendatadb(ident = "BENZENE", formula = "C6H6", name = "BENZENE", mw = 78.1140, Tc = 562.1000, Pc = 4894000.00, Zc = 0.271000, acf = 0.212000, Tb = 353.3000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.↔ 59008000e+01, 2.78851000e+03, -5.23600000e+01/), Tantmin = 280.0000, Tantmax = 377.0000, Zra = 0.↔ 269800, mu_dipole = 0.000000, q_quadrupole = 0.000000)

- type(cpdata), parameter cp13 = cpdata(cid = "BENZENE", ref = "Default", bib_ref = "", cptype = 2, cp = (/8.44670620e+01,-5.13560000e-01,3.24874000e-03,-1.54391300e-06,3.65037000e-10, -2.48222000e-14,5.63104100e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter mc4 = alphadatadb(eosid="PR", cid="BENZENE", ref="Chapoy2005", coeff=(/7.01000000e-01, -2.52000000e-01, 9.76000000e-01/))
- type(alphadatadb), parameter twu23 = alphadatadb(eosid="PR", cid="BENZENE", ref="tcPR", coeff=(/1.↔ 26100000e-01, 8.46000000e-01, 2.61370000e+00/))
- type(cidatadb), parameter c23 = cidatadb(eosid="PR", cid="BENZENE", ref="tcPR", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=-1.39140000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter mc5 = alphadatadb(eosid="SRK", cid="BENZENE", ref="Chapoy2005", coeff=(/8.40000000e-01, -3.89000000e-01, 9.17000000e-01/))
- type(alphadatadb), parameter twu24 = alphadatadb(eosid="SRK", cid="BENZENE", ref="tcRK", coeff=(/1.↔ 82300000e-01, 8.44800000e-01, 2.63540000e+00/))
- type(cidatadb), parameter c24 = cidatadb(eosid="SRK", cid="BENZENE", ref="tcRK", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=1.35115000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(gendatadb), parameter cx14 = gendatadb(ident = "BUTANAL", formula = "C4H8O", name = "BUTANAL", mw = 72.1070, Tc = 537.2000, Pc = 4410000.00, Zc = 0.249000, acf = 0.282600, Tb = 348.0000, Ttr = 176.8000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.↔ 00000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.259300, mu_dipole = 2.720000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu25 = alphadatadb(eosid="PR", cid="BUTANAL", ref="tcPR", coeff=(/1.↔ 97600000e-01, 8.5000000e-01, 2.54930000e+00/))
- type(cidatadb), parameter c25 = cidatadb(eosid="PR", cid="BUTANAL", ref="tcPR", bib_ref="Le Guennec et al. (2016): 10.1016/j.fluid.2016.09.003", ciA=4.04360000e-06, ciB=0.00000000e+00, ciC=0.0000000e+00, c_type=1)
- type(alphadatadb), parameter twu26 = alphadatadb(eosid="SRK", cid="BUTANAL", ref="tcRK", coeff=(/2.↔ 81600000e-01, 8.54400000e-01, 2.47990000e+00/))
- type(cidatadb), parameter c26 = cidatadb(eosid="SRK", cid="BUTANAL", ref="tcRK", bib_ref="Le Guennec et al. (2016): 10.1016/j.fluid.2016.09.003", ciA=1.95438000e-05, ciB=0.00000000e+00, ciC=0.0000000e+00, c_type=1)
- type(gendatadb), parameter cx15 = gendatadb(ident = "CO2", formula = "CO2", name = "CARBON DIOX-IDE", mw = 44.0100, Tc = 304.2000, Pc = 7376500.00, Zc = 0.274000, acf = 0.225000, Tb = 194.7000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/2.25898000e+01, 3.10339000e+03, -1.60000000e-01/), Tantmin = 154.0000, Tantmax = 204.0000, Zra = 0.272200, mu_dipole = 0.000000, q_quadrupole = 4.400000)
- type(cpdata), parameter cp15 = cpdata(cid = "CO2", ref = "Default", bib_ref = "", cptype = 2, cp = (/1.↔ 11137440e+01,4.79107000e-01,7.62159000e-04,-3.59392000e-07,8.47440000e-11, -5.77520000e-15,2.↔ 71918000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -175.0000, Tcpmax = 1200.0000)
- type(cpdata), parameter cp16 = cpdata(cid = "CO2", ref = "", bib_ref = "", cptype = 5, cp = (/5.↔ 67998955e-01,1.25397835e-03,-7.65547666e-07,1.80606165e-10,-3.10473875e+03, 0.0000000e+00,0.↔ 0000000e+00,0.0000000e+00,0.0000000e+00,0.000000e+00/), Tcpmin = 50.0000, Tcpmax = 5000.↔ 0000)
- type(alphadatadb), parameter twu27 = alphadatadb(eosid="PR", cid="CO2", ref="tcPR", coeff=(/1.↔ 78300000e-01, 8.59000000e-01, 2.41070000e+00/))
- type(alphadatadb), parameter **mc6** = alphadatadb(eosid="PR", cid="CO2", ref="Default", coeff=(/7.↔ 04606000e-01, -3.14862000e-01, 1.89083000e+00/))
- type(alphadatadb), parameter **mc7** = alphadatadb(eosid="PR", cid="CO2", ref="Chapoy2005", coeff=(/7.↔ 05000000e-01, -3.15000000e-01, 1.8900000e+00/))
- type(cidatadb), parameter c27 = cidatadb(eosid="PR", cid="CO2", ref="tcPR", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=-1.13680000e-06, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)

- type(alphadatadb), parameter twu28 = alphadatadb(eosid="SRK", cid="CO2", ref="tcRK", coeff=(/2.↔ 80700000e-01, 8.68500000e-01, 2.27780000e+00/))
- type(alphadatadb), parameter mc8 = alphadatadb(eosid="SRK", cid="CO2", ref="Chapoy2005", coeff=(/8.↔ 6700000e-01, -6.7400000e-01, 2.4710000e+00/))
- type(cidatadb), parameter c28 = cidatadb(eosid="SRK", cid="CO2", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=4.15820000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa6 = CPAdata(eosid="CPA-SRK", compName="CO2", ref="Default/Kontogeorgis-Folas2010", bib_reference="10.1002/9780470747537", a0=3.50790000e+05, b=2.72000000e-02, eps=0...
 00000000e+00, beta=0.00000000e+00, alphacorridx = cbAlphaClassicIdx, alphaParams = (/7.60200000e-01,0.00000000e+00/), assoc_scheme = no_assoc)
- type(cpadata), parameter cpa7 = CPAdata(eosid="CPA-SRK", compName="CO2", ref="SINTEF", bib⇔ _reference="", a0=3.50790000e+05, b=2.72000000e-02, eps=0.00000000e+00, beta=5.00000000e-02, alphacorridx = cbAlphaClassicIdx, alphaParams = (/7.60200000e-01,0.00000000e+00,0.00000000e+00/), assoc_scheme = assoc_scheme_1EA)
- type(cpadata), parameter cpa8 = CPAdata(eosid="CPA-SRK", compName="CO2", ref="SINTEF2", bib⇔ _reference="", a0=2.99377508e+05, b=2.68729432e-02, eps=1.28604049e+04, beta=9.08545617e-03, alphacorridx = cbAlphaClassicIdx, alphaParams = (/4.62138711e-01,0.00000000e+00,0.0000000e+00/), assoc_scheme = assoc_scheme_1)
- type(gendatadb), parameter cx16 = gendatadb(ident = "CO", formula = "CO", name = "CARBON MONOX-IDE", mw = 28.0100, Tc = 132.8500, Pc = 3494000.00, Zc = 0.292000, acf = 0.045000, Tb = 81.6600, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.54140000e+01, 6.71763100e+02, -5.15400000e+00/), Tantmin = 69.7300, Tantmax = 88.0800, Zra = 0.289600, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter **cp17** = cpdata(cid = "CO", ref = "Default", bib_ref = "", cptype = 6, cp = (/1.↔ 16120000e+00,-1.16150000e-03,3.50860000e-06,-3.86480000e-09,1.52870000e-12, 0.00000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 50.0000, Tcpmax = 1000.↔ 0000)
- type(alphadatadb), parameter twu29 = alphadatadb(eosid="PR", cid="CO", ref="tcPR", coeff=(/9.↔ 8300000e-02, 8.77700000e-01, 2.15680000e+00/))
- type(alphadatadb), parameter **mc9** = alphadatadb(eosid="PR", cid="CO", ref="Default", coeff=(/7.↔ 05000000e-01, -3.18500000e-01, 1.90120000e+00/))
- type(cidatadb), parameter c29 = cidatadb(eosid="PR", cid="CO", ref="tcPR", bib_ref="10.1016/j.fluid.2016...
 09.003", ciA=-3.67610000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(alphadatadb), parameter twu30 = alphadatadb(eosid="SRK", cid="CO", ref="tcRK", coeff=(/1.↔ 62500000e-01, 8.77800000e-01, 2.15620000e+00/))
- type(cidatadb), parameter c30 = cidatadb(eosid="SRK", cid="CO", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.40680000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx17 = gendatadb(ident = "CL2", formula = "CL2", name = "CHLORINE", mw = 70.9050, Tc = 417.1500, Pc = 7710000.00, Zc = 0.275000, acf = 0.068800, Tb = 239.1200, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/4.06280000e+00, 8.61340000e+02, -2.68200000e+01/), Tantmin = 176.3100, Tantmax = 255.7900, Zra = 0.277400, mu_dipole = 0.000000, q_quadrupole = 4.100000)
- type(cpdata), parameter cp18 = cpdata(cid = "CL2", ref = "Default", bib_ref = "Poling et al. (2001): 978-0-07-011682-5", cptype = 8, cp = (/3.05600000e+00,5.37080000e-03,-8.09800000e-06,5.69300000e-09,-1.52560000e-12, 0.00000000e+00,0.00000000e+00,0.00000000e+00,0.00000000e+00/), Tcpmin = 50.0000, Tcpmax = 1000.0000)
- type(alphadatadb), parameter twu31 = alphadatadb(eosid="PR", cid="CL2", ref="tcPR", coeff=(/7.↔ 08200000e-01, 8.81200000e-01, 6.30600000e-01/))
- type(cidatadb), parameter c31 = cidatadb(eosid="PR", cid="CL2", ref="tcPR", bib_ref="Le Guennec et al. (2016): 10.1016/j.fluid.2016.09.003", ciA=-1.48230000e-06, ciB=0.00000000e+00, ciC=0.0000000e+00, c_type=1)
- type(alphadatadb), parameter twu32 = alphadatadb(eosid="SRK", cid="CL2", ref="tcRK", coeff=(/3.↔ 92300000e-01, 8.52400000e-01, 1.21020000e+00/))
- type(cidatadb), parameter c32 = cidatadb(eosid="SRK", cid="CL2", ref="tcRK", bib_ref="Le Guennec et al. (2016): 10.1016/j.fluid.2016.09.003", ciA=5.77920000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c.
 _type=1)
- type(gendatadb), parameter cx18 = gendatadb(ident = "CIF3Si", formula = "CIF3Si", name = "CHLOROTRI-FLUOROSILANE", mw = 120.5000, Tc = 307.7000, Pc = 3470000.00, Zc = 0.000000, acf = 0.270730, Tb = 203.2000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = -1.000000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(gendatadb), parameter cx19 = gendatadb(ident = "CYCLOHEX", formula = "C6H12", name = "CYCLOHEX", mw = 84.1610, Tc = 553.5000, Pc = 4073000.00, Zc = 0.273000, acf = 0.211000, Tb = 353.9300, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.↔ 273000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp20 = cpdata(cid = "CYCLOHEX", ref = "Default", bib_ref = "", cptype = 8, cp = (/4. ↔ 03500000e+00,-4.43300000e-03,1.68340000e-04,-2.07750000e-07,7.74600000e-11, 0.00000000e+00,0...↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -100.0000, Tcpmax = 1000.0000)
- type(alphadatadb), parameter twu33 = alphadatadb(eosid="PR", cid="CYCLOHEX", ref="tcPR", coeff=(/3.↔ 69100000e-01, 8.12000000e-01, 1.36170000e+00/))
- type(cidatadb), parameter c33 = cidatadb(eosid="PR", cid="CYCLOHEX", ref="tcPR", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=-4.23270000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu34 = alphadatadb(eosid="SRK", cid="CYCLOHEX", ref="tcRK", coeff=(/3.16900000e-01, 8.33200000e-01, 1.86290000e+00/))
- type(cidatadb), parameter c34 = cidatadb(eosid="SRK", cid="CYCLOHEX", ref="tcRK", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=1.3337700e-05, ciB=0.0000000e+00, ciC=0.0000000e+00, c_type=1)
- type(cpdata), parameter cp21 = cpdata(cid = "C3_1", ref = "Default", bib_ref = "", cptype = 4, cp = (/-3.↔ 52400000e+01,3.81300000e-01,-2.88100000e-04,9.03500000e-08,0.00000000e+00, 0.00000000e+00,0.↔ 00000000e+00,0.00000000e+00,0.00000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000
- type(alphadatadb), parameter twu35 = alphadatadb(eosid="PR", cid="C3_1", ref="tcPR", coeff=(/2.↔ 16300000e-01, 8.56300000e-01, 1.73750000e+00/))
- type(cidatadb), parameter c35 = cidatadb(eosid="PR", cid="C3_1", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-3.05740000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(alphadatadb), parameter twu36 = alphadatadb(eosid="SRK", cid="C3_1", ref="tcRK", coeff=(/2.↔ 28700000e-01, 8.71400000e-01, 2.15940000e+00/))
- type(cidatadb), parameter c36 = cidatadb(eosid="SRK", cid="C3_1", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=6.36470000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx21 = gendatadb(ident = "D2", formula = "D2", name = "DEUTERIUM", mw = 4.0282, Tc = 38.3400, Pc = 1679600.00, Zc = 0.304200, acf = -0.136290, Tb = 23.6610, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.00000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.315000, mu_dipole = 0.00000, q quadrupole = 0.00000)
- type(alphadatadb), parameter twu37 = alphadatadb(eosid="PR", cid="D2", ref="tcPR", coeff=(/1.48600000e-01, 9.96800000e-01, 1.05870000e+00/))
- type(alphadatadb), parameter twu38 = alphadatadb(eosid="PR", cid="D2", ref="QuantumCubic", coeff=(/5.↔ 50070000e+01, -1.69810000e-02, 3.16210000e+00/))

- type(cidatadb), parameter c37 = cidatadb(eosid="PR", cid="D2", ref="tcPR", bib_ref="10.1016/j.fluid.2016. 09.003", ciA=-4.55550000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cidatadb), parameter **c38** = cidatadb(eosid="PR", cid="D2", ref="QuantumCubic", bib_ref="10.1016/j... fluid.2020.112790", ciA=-3.87180000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu39 = alphadatadb(eosid="SRK", cid="D2", ref="tcRK", coeff=(/2.↔ 1500000e-01, 9.92100000e-01, 1.10790000e+00/))
- type(cidatadb), parameter **c39** = cidatadb(eosid="SRK", cid="D2", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-1.25430000e-06, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx22 = gendatadb(ident = "S434", formula = "C12H26O", name = "DI-n-HEXYL ETHER", mw = 186.3390, Tc = 657.0000, Pc = 1823900.00, Zc = 0.240000, acf = 0.700000, Tb = 499.6000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.63372000e+01, 3.98278000e+03, -8.91500000e+01/), Tantmin = 373.0000, Tantmax = 545.0000, Zra = -1.000000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp23 = cpdata(cid = "S434", ref = "Default", bib_ref = "", cptype = 1, cp = (/8.↔ 01000000e+00,2.56400000e-01,-1.32200000e-04,4.00700000e-08,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(gendatadb), parameter cx23 = gendatadb(ident = "DME", formula = "C2H6O", name = "di-methyl ether", mw = 46.0684, Tc = 400.3780, Pc = 5336800.00, Zc = 0.269890, acf = 0.196000, Tb = 248.3680, Ttr = 131.6600, Ptr = 2.2000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.↔ 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = -1.000000, mu_dipole = 1.300000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp24 = cpdata(cid = "DME", ref = "Default", bib_ref = "The properties of gases and liquids, 5th ed. ISBN: 978-0-07-011682-5", cptype = 8, cp = (/4.36100000e+00,6.07000000e-03,2.↔ 89900000e-05,-3.58100000e-08,1.28200000e-11, 0.0000000e+00,0.00000000e+00,0.0000000e+00,0.↔ 00000000e+00,0.00000000e+00/), Tcpmin = 100.0000, Tcpmax = 1000.0000)
- type(gendatadb), parameter cx24 = gendatadb(ident = "N2O4", formula = "N2O4", name = "DINITROGEN TETROXIDE", mw = 92.0110, Tc = 431.0100, Pc = 10100000.00, Zc = 0.470700, acf = 1.007000, Tb = 302...
 2200, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.70046000e+01, 2.73020000e+03, -3.89700000e+01/), Tantmin = 254.1700, Tantmax = 320.6900, Zra = 0.366500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp25 = cpdata(cid = "N2O4", ref = "Default", bib_ref = "", cptype = 6, cp = (/3.↔ 04890000e-01,2.46305000e-03,-1.73230000e-06,-5.56640000e-10,7.76230000e-13, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 50.0000, Tcpmax = 1000.↔ 0000)
- type(gendatadb), parameter cx25 = gendatadb(ident = "E-H2", formula = "H2", name = "EQUILIBRIUM-HYDROGEN", mw = 2.0159, Tc = 32.9380, Pc = 1285800.00, Zc = 0.302000, acf = -0.219000, Tb = 20.2710, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 10, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 15.0000, Tantmax = 32.5000, Zra = 0.306000, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp26 = cpdata(cid = "E-H2", ref = "Default", bib_ref = "", cptype = 10, cp = (/2.86719970e+01,1.33961560e+01,2.96013100e-03,-3.98074400e-06,2.66166700e-09, -6.09986300e-13,-1.18013710e+01,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 5.0000, Tcpmax = 5.0000)
- type(gendatadb), parameter cx26 = gendatadb(ident = "C2", formula = "C2H6", name = "ETHANE", mw = 30.0700, Tc = 305.4000, Pc = 4883900.00, Zc = 0.285000, acf = 0.098000, Tb = 184.5000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.56637000e+01, 1.51142000e+03, -1.71600000e+01/), Tantmin = 130.0000, Tantmax = 199.0000, Zra = 0.280800, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp27 = cpdata(cid = "C2", ref = "Default", bib_ref = "", cptype = 2, cp = (/-4.↔ 93340000e-02,1.10899200e+00,-1.88512000e-04,3.96558000e-06,-3.14020900e-09, 8.00818700e-13,1.↔ 99588900e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -175.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu40 = alphadatadb(eosid="PR", cid="C2", ref="tcPR", coeff=(/1.45900000e-01, 8.78000000e-01, 2.15360000e+00/))
- type(alphadatadb), parameter **mc10** = alphadatadb(eosid="PR", cid="C2", ref="Default", coeff=(/7.↔ 17800000e-01, -7.64400000e-01, 1.63960000e+00/))

- type(alphadatadb), parameter **mc11** = alphadatadb(eosid="PR", cid="C2", ref="Chapoy2005", coeff=(/5.↔ 31000000e-01, -6.20000000e-02, 2.14000000e-01/))
- type(cidatadb), parameter c40 = cidatadb(eosid="PR", cid="C2", ref="tcPR", bib_ref="10.1016/j.fluid.2016...
 09.003", ciA=-3.70740000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu41 = alphadatadb(eosid="SRK", cid="C2", ref="tcRK", coeff=(/2.↔ 24000000e-01, 8.81600000e-01, 2.10900000e+00/))
- type(alphadatadb), parameter **mc12** = alphadatadb(eosid="SRK", cid="C2", ref="Default", coeff=(/7.↔ 17800000e-01, -7.64400000e-01, 1.63960000e+00/))
- type(alphadatadb), parameter mc13 = alphadatadb(eosid="SRK", cid="C2", ref="Chapoy2005", coeff=(/7.
 11000000e-01, -5.73000000e-01, 8.94000000e-01/))
- type(cidatadb), parameter c41 = cidatadb(eosid="SRK", cid="C2", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=4.57390000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx27 = gendatadb(ident = "ETOH", formula = "ETOH", name = "ETHANOL", mw = 46.0684, Tc = 514.7100, Pc = 6268000.00, Zc = 0.247000, acf = 0.646000, Tb = 351.5700, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.243000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu42 = alphadatadb(eosid="PR", cid="ETOH", ref="tcPR", coeff=(/9.↔ 86100000e-01, 9.64200000e-01, 1.33380000e+00/))
- type(alphadatadb), parameter twu43 = alphadatadb(eosid="SRK", cid="ETOH", ref="tcRK", coeff=(/9.↔ 43700000e-01, 9.36300000e-01, 1.55900000e+00/))
- type(cidatadb), parameter c43 = cidatadb(eosid="SRK", cid="ETOH", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.60736000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(cpadata), parameter cpa9 = CPAdata(eosid="CPA-SRK", compName="ETOH", ref="SINTEF/Queimada2005", bib_reference="10.1016/j.fluid.2004.08.011", a0=8.67160000e+05, b=4.91100000e-02, eps=2.15320000e+04, beta=8.00000000e-03, alphacorridx = cbAlphaClassicIdx, alphaParams = (/7.36900000e-01,0.↔ 00000000e+00,0.0000000e+00/), assoc_scheme = assoc_scheme_2B)
- type(cpadata), parameter cpa10 = CPAdata(eosid="CPA-SRK", compName="ETOH", ref="Default/Oliveira2008", bib_reference="10.1016/j.fluid.2008.02.020", a0=6.84150000e+05, b=4.75080000e-02, eps=2.13360000e+04, beta=1.92120000e-02, alphacorridx = cbAlphaClassicIdx, alphaParams = (/9.39230000e-01,0.↔ 00000000e+00,0.0000000e+00/), assoc_scheme = assoc_scheme_2B)
- type(gendatadb), parameter cx28 = gendatadb(ident = "EBZN", formula = "C8H10", name = "ETHYLBEN-ZENE", mw = 106.1670, Tc = 617.1600, Pc = 3608000.00, Zc = 0.263000, acf = 0.302000, Tb = 409.3600, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.↔ 0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.262000, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu44 = alphadatadb(eosid="PR", cid="EBZN", ref="tcPR", coeff=(/4.↔ 99100000e-01, 8.22900000e-01, 1.35530000e+00/))
- type(alphadatadb), parameter twu45 = alphadatadb(eosid="SRK", cid="EBZN", ref="tcRK", coeff=(/5.↔ 11300000e-01, 8.33400000e-01, 1.56830000e+00/))
- type(gendatadb), parameter cx29 = gendatadb(ident = "C2_1", formula = "C2H4", name = "ETHYLENE", mw = 28.0540, Tc = 282.4000, Pc = 5035900.00, Zc = 0.276000, acf = 0.085000, Tb = 169.4000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.55368000e+01,

1.34701000e+03, -1.81500000e+01/), Tantmin = 120.0000, Tantmax = 182.0000, Zra = 0.281500, mu_dipole = 0.000000, q_quadrupole = 2.000000)

- type(cpdata), parameter cp30 = cpdata(cid = "C2_1", ref = "Default", bib_ref = "", cptype = 2, cp = (/6.00935360e+01,6.06930000e-01,1.28878800e-03,1.03363600e-06,-1.09953700e-09, 2.92932600e-13,4.48985300e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter **mc14** = alphadatadb(eosid="PR", cid="C2_1", ref="Chapoy2005", coeff=(/5.↔ 12000000e-01, -8.70000000e-02, 3.49000000e-01/))
- type(alphadatadb), parameter mc15 = alphadatadb(eosid="SRK", cid="C2_1", ref="Chapoy2005", coeff=(/6.52000000e-01, -3.15000000e-01, 5.63000000e-01/))
- type(gendatadb), parameter cx30 = gendatadb(ident = "HE", formula = "HE", name = "HELIUM-4", mw = 4.0030, Tc = 5.1953, Pc = 227600.00, Zc = 0.301000, acf = -0.385000, Tb = 4.2100, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.22514000e+01, 3.37329000e+01, 1.79000000e+00/), Tantmin = 3.7000, Tantmax = 4.3000, Zra = 0.335500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu46 = alphadatadb(eosid="PR", cid="HE", ref="tcPR", coeff=(/6.3000000e-03, 1.21750000e+00, 1.09090000e+00/))
- type(alphadatadb), parameter twu47 = alphadatadb(eosid="PR", cid="HE", ref="QuantumCubic", coeff=(/4.85580000e-01, 1.71730000e+00, 3.02710000e-01/))
- type(cidatadb), parameter c46 = cidatadb(eosid="PR", cid="HE", ref="tcPR", bib_ref="10.1016/j.fluid.2016.↔ 09.003", ciA=-4.89150000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cidatadb), parameter c47 = cidatadb(eosid="PR", cid="HE", ref="QuantumCubic", bib_ref="10.1016/j.↔ fluid.2020.112790", ciA=-3.17910000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu48 = alphadatadb(eosid="SRK", cid="HE", ref="tcRK", coeff=(/-4.↔ 6600000e-02, 1.24730000e+00, 5.40100000e-01/))
- type(cidatadb), parameter c48 = cidatadb(eosid="SRK", cid="HE", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-1.46080000e-06, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx31 = gendatadb(ident = "N2H4", formula = "N2H4", name = "HYDRAZINE", mw = 32.0452, Tc = 653.1500, Pc = 14700000.00, Zc = 0.280000, acf = 0.314300, Tb = 386.6500, Ttr = 0.0000, Ptr = 0.0000, sref = 238.6600, href = 95353.4000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.264100, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp32 = cpdata(cid = "N2H4", ref = "Default", bib_ref = "Poling, Prausnitz and O'Connell. ISBN: 978-0-07-011682-5", cptype = 8, cp = (/3.62700000e+00,2.23900000e-03,2.↔ 87600000e-05,-4.06000000e-08,1.69000000e-11, 0.00000000e+00,0.00000000e+00,0.00000000e+00,0..↔ 00000000e+00,0.00000000e+00/), Tcpmin = 50.0000, Tcpmax = 1000.0000)
- type(alphadatadb), parameter twu49 = alphadatadb(eosid="PR", cid="N2H4", ref="tcPR", coeff=(/4.↔ 60900000e-01, 8.42800000e-01, 1.52790000e+00/))
- type(cidatadb), parameter c49 = cidatadb(eosid="PR", cid="N2H4", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.13000000e-08, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter **twu50** = alphadatadb(eosid="SRK", cid="N2H4", ref="tcRK", coeff=(/4.↔ 30600000e-01, 8.48400000e-01, 1.89450000e+00/))
- type(cidatadb), parameter c50 = cidatadb(eosid="SRK", cid="N2H4", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=5.66000000e-06, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx32 = gendatadb(ident = "H2", formula = "H2", name = "HYDROGEN", mw = 2.0160, Tc = 33.1450, Pc = 1296400.00, Zc = 0.305000, acf = -0.220000, Tb = 20.4000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.36333000e+01, 1.64900000e+02, 3.1900000e+00/), Tantmin = 14.0000, Tantmax = 25.0000, Zra = 0.306000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp33 = cpdata(cid = "H2", ref = "Default", bib_ref = "", cptype = 2, cp = (/2.86719970e+01,1.33961560e+01,2.96013100e-03,-3.98074400e-06,2.66166700e-09, -6.09986300e-13,-1.18013710e+01,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -175.0000, Tcpmax = 1200.0000)

- type(alphadatadb), parameter **twu51** = alphadatadb(eosid="PR", cid="H2", ref="tcPR", coeff=(/1.↔ 51470000e+00, -3.79590000e+00, -1.37700000e-01/))
- type(alphadatadb), parameter twu52 = alphadatadb(eosid="PR", cid="H2", ref="QuantumCubic", coeff=(/1.↔ 56210000e+02, -6.20720000e-03, 5.04700000e+00/))
- type(alphadatadb), parameter mc16 = alphadatadb(eosid="PR", cid="H2", ref="Chapoy2005", coeff=(/9.↔ 5000000e-02, -2.75000000e-01, -2.9000000e-02/))
- type(cidatadb), parameter c51 = cidatadb(eosid="PR", cid="H2", ref="tcPR", bib_ref="10.1016/j.fluid.2016.
 09.003", ciA=-5.33860000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cidatadb), parameter c52 = cidatadb(eosid="PR", cid="H2", ref="QuantumCubic", bib_ref="10.1016/j.↔ fluid.2020.112790", ciA=-3.81390000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu53 = alphadatadb(eosid="SRK", cid="H2", ref="tcRK", coeff=(/9.↔ 44400000e-01, 3.00870000e+00, 1.76200000e-01/))
- type(alphadatadb), parameter mc17 = alphadatadb(eosid="SRK", cid="H2", ref="Chapoy2005", coeff=(/1.↔ 6100000e-01, -2.2500000e-01, -2.3200000e-01/))
- type(gendatadb), parameter cx33 = gendatadb(ident = "H2O2", formula = "H2O2", name = "HYDROGEN PEROXIDE", mw = 34.0147, Tc = 730.1500, Pc = 21700000.00, Zc = 0.274800, acf = 0.358200, Tb = 424.↔ 5500, Ttr = 272.7403, Ptr = 0.0000, sref = 232.9500, href = -136106.4000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.267000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu54 = alphadatadb(eosid="PR", cid="H2O2", ref="tcPR", coeff=(/3.↔ 19100000e-01, 8.64900000e-01, 2.28830000e+00/))
- type(cidatadb), parameter c54 = cidatadb(eosid="PR", cid="H2O2", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-8.74100000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(cidatadb), parameter c55 = cidatadb(eosid="PR", cid="H2O2", ref="tcPR-ENGINEERING", bib_ref="", ciA=1.79175791e-06, ciB=-4.92958300e-09, ciC=0.0000000e+00, c_type=2)
- type(alphadatadb), parameter twu55 = alphadatadb(eosid="SRK", cid="H2O2", ref="tcRK", coeff=(/4.↔ 35100000e-01, 8.77500000e-01, 2.16040000e+00/))
- type(cidatadb), parameter c56 = cidatadb(eosid="SRK", cid="H2O2", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=3.35320000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx34 = gendatadb(ident = "H2S", formula = "H2S", name = "HYDROGEN SUL-FIDE", mw = 34.0800, Tc = 373.2000, Pc = 8936900.00, Zc = 0.284000, acf = 0.100000, Tb = 212.8000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.61040000e+01, 1.76869000e+03, -2.60600000e+01/), Tantmin = 190.0000, Tantmax = 230.0000, Zra = 0.285500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp35 = cpdata(cid = "H2S", ref = "Default", bib_ref = "", cptype = 2, cp = (/-1.43704900e+00,9.98865000e-01,-1.84315000e-04,5.57087000e-07,-7.86320000e-11, 6.98500000e-15,1.80540900e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -175.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu56 = alphadatadb(eosid="PR", cid="H2S", ref="tcPR", coeff=(/1.↔ 1200000e-01, 8.6880000e-01, 2.27350000e+00/))
- type(alphadatadb), parameter **mc18** = alphadatadb(eosid="PR", cid="H2S", ref="Chapoy2005", coeff=(/5.↔ 07000000e-01, 8.0000000e-03, 3.42000000e-01/))
- type(alphadatadb), parameter twu57 = alphadatadb(eosid="SRK", cid="H2S", ref="tcRK", coeff=(/1.↔ 74900000e-01, 8.68600000e-01, 2.27610000e+00/))
- type(alphadatadb), parameter mc19 = alphadatadb(eosid="SRK", cid="H2S", ref="Chapoy2005", coeff=(/6.↔ 41000000e-01, -1.83000000e-01, 5.13000000e-01/))
- type(cidatadb), parameter c58 = cidatadb(eosid="SRK", cid="H2S", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=3.01750000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)

- type(gendatadb), parameter cx35 = gendatadb(ident = "IC4", formula = "C4H10", name = "ISOBUTANE", mw = 58.1240, Tc = 408.1000, Pc = 3647700.00, Zc = 0.283000, acf = 0.176000, Tb = 261.3000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.55381000e+01, 2.03273000e+03, -3.31500000e+01/), Tantmin = 187.0000, Tantmax = 280.0000, Zra = 0.275400, mu_dipole = 0.000000, q quadrupole = 0.000000)
- type(cpdata), parameter **cp36** = cpdata(cid = "IC4", ref = "Default", bib_ref = "", cptype = 2, cp = (/2.↔ 67442080e+01,1.95448000e-01,2.52314300e-03,1.95651000e-07,-7.72615000e-10, 2.38608700e-13,3.↔ 46659500e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -75.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter **mc20** = alphadatadb(eosid="PR", cid="IC4", ref="Default", coeff=(/8.↔ 28800000e-01, -8.28500000e-01, 2.32010000e+00/))
- type(alphadatadb), parameter mc21 = alphadatadb(eosid="PR", cid="IC4", ref="Chapoy2005", coeff=(/6.↔ 52000000e-01, -1.49000000e-01, 5.99000000e-01/))
- type(alphadatadb), parameter twu58 = alphadatadb(eosid="PR", cid="IC4", ref="tcPR", coeff=(/1.↔ 5750000e-01, 8.6010000e-01, 2.39510000e+00/))
- type(cidatadb), parameter c59 = cidatadb(eosid="PR", cid="IC4", ref="tcPR", bib_ref="10.1016/j.fluid.2016.
 09.003", ciA=-4.07050000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter **mc22** = alphadatadb(eosid="SRK", cid="IC4", ref="Default", coeff=(/8.↔ 28800000e-01, -8.28500000e-01, 2.32010000e+00/))
- type(alphadatadb), parameter mc23 = alphadatadb(eosid="SRK", cid="IC4", ref="Chapoy2005", coeff=(/8.↔ 07000000e-01, -4.32000000e-01, 9.10000000e-01/))
- type(alphadatadb), parameter twu59 = alphadatadb(eosid="SRK", cid="IC4", ref="tcRK", coeff=(/2.↔ 31300000e-01, 8.62500000e-01, 2.35980000e+00/))
- type(cidatadb), parameter c60 = cidatadb(eosid="SRK", cid="IC4", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.04875000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx36 = gendatadb(ident = "IC5", formula = "C5H12", name = "ISOPENTANE", mw = 72.1510, Tc = 460.4000, Pc = 3384300.00, Zc = 0.271000, acf = 0.227000, Tb = 301.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.↔ 56338000e+01, 2.34867000e+03, -4.00500000e+01/), Tantmin = 216.0000, Tantmax = 322.0000, Zra = 0.↔ 271700, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp37 = cpdata(cid = "IC5", ref = "Default", bib_ref = "", cptype = 2, cp = (/6.42520750e+01,-1.31900000e-01,3.54115600e-03,-1.33322500e-06,2.51463000e-10, -1.29589000e-14,4.57297600e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter **mc24** = alphadatadb(eosid="PR", cid="IC5", ref="Default", coeff=(/8.↔ 76700000e-01, -6.04300000e-01, 1.40250000e+00/))
- type(alphadatadb), parameter mc25 = alphadatadb(eosid="PR", cid="IC5", ref="Chapoy2005", coeff=(/7.↔ 2400000e-01, -1.6600000e-01, 5.1500000e-01/))
- type(alphadatadb), parameter twu60 = alphadatadb(eosid="PR", cid="IC5", ref="tcPR", coeff=(/2.↔ 08400000e-01, 8.41800000e-01, 2.13820000e+00/))
- type(cidatadb), parameter c61 = cidatadb(eosid="PR", cid="IC5", ref="tcPR", bib_ref="10.1016/j.fluid.2016.
 09.003", ciA=-3.62110000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter **mc26** = alphadatadb(eosid="SRK", cid="IC5", ref="Default", coeff=(/8.↔ 76700000e-01, -6.04300000e-01, 1.40250000e+00/))
- type(alphadatadb), parameter mc27 = alphadatadb(eosid="SRK", cid="IC5", ref="Chapoy2005", coeff=(/8.↔ 76000000e-01, -3.86000000e-01, 6.60000000e-01/))
- type(alphadatadb), parameter twu61 = alphadatadb(eosid="SRK", cid="IC5", ref="tcRK", coeff=(/2.↔ 37400000e-01, 8.54800000e-01, 2.47360000e+00/))
- type(gendatadb), parameter cx37 = gendatadb(ident = "KR", formula = "KR", name = "KRYPTON", mw = 83.7980, Tc = 209.4800, Pc = 5525000.00, Zc = 0.291000, acf = -0.004000, Tb = 119.9300, Ttr = 115.↔ 7750, Ptr = 73530.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.52330000e+01, 7.00510000e+02, -5.84000000e+00/), Tantmin = 81.0000, Tantmax = 94.0000, Zra = 0.308500, mu_dipole = 0.000000, q_quadrupole = 0.000000)

- type(gendatadb), parameter cx38 = gendatadb(ident = "LJF", formula = "LJF", name = "LENNARD-JONES ← _FLUID", mw = 1.0000, Tc = 132.0000, Pc = 6650000.00, Zc = 0.310000, acf = 0.317700, Tb = 0.8000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0. ← 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = -1.000000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(gendatadb), parameter cx39 = gendatadb(ident = "MXYL", formula = "C8H10", name = "M-XYLENE", mw = 106.1670, Tc = 617.0500, Pc = 3536000.00, Zc = 0.259000, acf = 0.326000, Tb = 412.2700, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.↔ 0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.258700, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter **cp40** = cpdata(cid = "MXYL", ref = "Default", bib_ref = "", cptype = 7, cp = (/7.56800000e+04,3.39240000e+05,1.49600000e+03,2.24700000e+05,-6.75900000e+02, 0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 200.↔ 0000, Tcpmax = 1500.0000)
- type(alphadatadb), parameter twu62 = alphadatadb(eosid="PR", cid="MXYL", ref="tcPR", coeff=(/3.↔ 5060000e-01, 8.3320000e-01, 1.85940000e+00/))
- type(alphadatadb), parameter twu63 = alphadatadb(eosid="SRK", cid="MXYL", ref="tcRK", coeff=(/3.↔ 4920000e-01, 8.4810000e-01, 2.26170000e+00/))
- type(cidatadb), parameter c64 = cidatadb(eosid="SRK", cid="MXYL", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=2.70949000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(gendatadb), parameter cx40 = gendatadb(ident = "C1", formula = "CH4", name = "METHANE", mw = 16.0425, Tc = 190.5550, Pc = 4598837.00, Zc = 0.283742, acf = 0.011310, Tb = 111.7000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.52243000e+01, 8.97840000e+02, -7.16000000e+00/), Tantmin = 93.0000, Tantmax = 120.0000, Zra = 0.289200, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp41 = cpdata(cid = "C1", ref = "Default", bib_ref = "", cptype = 2, cp = (/-1.↔ 62285490e+01,2.39359400e+00,-2.21800700e-03,5.74022000e-06,-3.72790500e-09, 8.54968500e-13,-3.39779000e-01,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -175.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu64 = alphadatadb(eosid="PR", cid="C1", ref="tcPR", coeff=(/1.47100000e-01, 9.07400000e-01, 1.82530000e+00/))
- type(alphadatadb), parameter **mc28** = alphadatadb(eosid="PR", cid="C1", ref="Default", coeff=(/5.↔ 85700000e-01, -7.20600000e-01, 1.28990000e+00/))
- type(alphadatadb), parameter **mc29** = alphadatadb(eosid="PR", cid="C1", ref="Chapoy2005", coeff=(/4.↔ 1600000e-01, -1.73000000e-01, 3.48000000e-01/))
- type(cidatadb), parameter c65 = cidatadb(eosid="PR", cid="C1", ref="tcPR", bib_ref="10.1016/j.fluid.2016. 09.003", ciA=-3.56060000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu65 = alphadatadb(eosid="SRK", cid="C1", ref="tcRK", coeff=(/2.↔ 17100000e-01, 9.08200000e-01, 1.81720000e+00/))
- type(alphadatadb), parameter **mc30** = alphadatadb(eosid="SRK", cid="C1", ref="Default", coeff=(/5.↔ 85700000e-01, -7.20600000e-01, 1.28990000e+00/))
- type(alphadatadb), parameter mc31 = alphadatadb(eosid="SRK", cid="C1", ref="Chapoy2005", coeff=(/5.↔ 4900000e-01, -4.09000000e-01, 6.03000000e-01/))
- type(cidatadb), parameter c66 = cidatadb(eosid="SRK", cid="C1", ref="tcRK", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=2.05030000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)

- type(gendatadb), parameter cx41 = gendatadb(ident = "MEOH", formula = "CH4O", name = "METHANOL", mw = 32.0420, Tc = 512.6000, Pc = 8095900.00, Zc = 0.224000, acf = 0.559000, Tb = 337.8000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.↔ 85875000e+01, 3.62655000e+03, -3.4290000e+01/), Tantmin = 257.0000, Tantmax = 364.0000, Zra = 0.↔ 233400, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp42 = cpdata(cid = "MEOH", ref = "Default", bib_ref = "", cptype = 1, cp = (/5.↔ 05200000e+00,1.69400000e-02,6.17900000e-06,-6.81100000e-09,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu66 = alphadatadb(eosid="PR", cid="MEOH", ref="tcPR", coeff=(/6.↔ 75500000e-01, 9.14100000e-01, 1.75860000e+00/))
- type(cidatadb), parameter c67 = cidatadb(eosid="PR", cid="MEOH", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=9.18650000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu67 = alphadatadb(eosid="SRK", cid="MEOH", ref="tcRK", coeff=(/7.↔ 08200000e-01, 9.02200000e-01, 1.87800000e+00/))
- type(cpadata), parameter cpa11 = CPAdata(eosid="CPA-SRK", compName="MEOH", ref="Default/Kontogeorgis2008", bib_reference="10.2516/ogst:2008025", a0=4.05310000e+05, b=3.09780000e-02, eps=2.45910000e+04, beta=1.61000000e-02, alphacorridx = cbAlphaClassicIdx, alphaParams = (/4.31020000e-01,0.↔ 00000000e+00,0.0000000e+00/), assoc_scheme = assoc_scheme_2B)
- type(gendatadb), parameter cx42 = gendatadb(ident = "MTC5", formula = "C6H12", name = "METHYLCY-CLOPENTANE", mw = 84.1620, Tc = 532.7000, Pc = 3789600.00, Zc = 0.273000, acf = 0.239000, Tb = 345.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.58023000e+01, 2.73100000e+03, -4.71100000e+01/), Tantmin = 250.0000, Tantmax = 375.0000, Zra = 0.271100, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp43 = cpdata(cid = "MTC5", ref = "Default", bib_ref = "", cptype = 1, cp = (/-1.↔ 19680000e+01,1.52400000e-01,-8.69900000e-05,1.91400000e-08,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu68 = alphadatadb(eosid="PR", cid="MTC5", ref="tcPR", coeff=(/3.↔ 83900000e-01, 8.08200000e-01, 1.37410000e+00/))
- type(cidatadb), parameter c69 = cidatadb(eosid="PR", cid="MTC5", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-3.43780000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu69 = alphadatadb(eosid="SRK", cid="MTC5", ref="tcRK", coeff=(/3.↔ 05400000e-01, 8.29300000e-01, 1.96110000e+00/))
- type(cidatadb), parameter c70 = cidatadb(eosid="SRK", cid="MTC5", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.46862000e-05, ciB=0.0000000e+00, ciC=0.0000000e+00, c_type=1)
- type(gendatadb), parameter cx43 = gendatadb(ident = "MEG", formula = "C2H6O2", name = "ETHYLENE GLYCOL", mw = 62.0700, Tc = 720.0000, Pc = 820000.00, Zc = 0.261600, acf = 0.534700, Tb = 470.2500, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.89090800e+01, 4.97797500e+03, -6.47210000e+01/), Tantmin = 200.0000, Tantmax = 720.0000, Zra = 0.242400, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter **twu70** = alphadatadb(eosid="PR", cid="MEG", ref="tcPR", coeff=(/1.↔ 57530000e+00, 1.00000000e+00, 6.61400000e-01/))
- type(cidatadb), parameter c71 = cidatadb(eosid="PR", cid="MEG", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=8.38700000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter **twu71** = alphadatadb(eosid="SRK", cid="MEG", ref="tcRK", coeff=(/1.↔ 54540000e+00, 1.00000000e+00, 7.62500000e-01/))
- type(cidatadb), parameter c72 = cidatadb(eosid="SRK", cid="MEG", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.92954000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)

- type(gendatadb), parameter cx44 = gendatadb(ident = "NE", formula = "NE", name = "NEON", mw = 20.↔ 1830, Tc = 44.4000, Pc = 2661630.00, Zc = 0.311000, acf = -0.038450, Tb = 27.1000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/2.56553000e+01, -2.95285000e+02, 4.97548000e+00/), Tantmin = 30.0000, Tantmax = 40.0000, Zra = 0.308500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp45 = cpdata(cid = "NE", ref = "Default", bib_ref = "", cptype = 4, cp = (/2.07860000e+01,0.0000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00, 0...
 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu72 = alphadatadb(eosid="PR", cid="NE", ref="tcPR", coeff=(/1.88700000e-01, 9.47000000e-01, 1.46980000e+00/))
- type(alphadatadb), parameter twu73 = alphadatadb(eosid="PR", cid="NE", ref="QuantumCubic", coeff=(/4.04530000e-01, 9.58610000e-01, 8.39600000e-01/))
- type(cidatadb), parameter c73 = cidatadb(eosid="PR", cid="NE", ref="tcPR", bib_ref="10.1016/j.fluid.2016.
 09.003", ciA=-2.35730000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cidatadb), parameter c74 = cidatadb(eosid="PR", cid="NE", ref="QuantumCubic", bib_ref="10.1016/j.↔ fluid.2020.112790", ciA=-2.46650000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu74 = alphadatadb(eosid="SRK", cid="NE", ref="tcRK", coeff=(/3.↔ 27500000e-01, 9.69900000e-01, 1.28930000e+00/))
- type(cidatadb), parameter c75 = cidatadb(eosid="SRK", cid="NE", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-7.12000000e-08, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx45 = gendatadb(ident = "NO", formula = "NO", name = "NITRIC OXIDE", mw = 30.0061, Tc = 180.0000, Pc = 6480000.00, Zc = 0.251127, acf = 0.582000, Tb = 121.3800, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/2.01315000e+01, 1.57250000e+03, -4.88000000e+00/), Tantmin = 106.9000, Tantmax = 127.5600, Zra = 0.266800, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp46 = cpdata(cid = "NO", ref = "Default", bib_ref = "", cptype = 6, cp = (/8.↔ 5650000e-01,-1.44390000e-03,3.90260000e-06,-4.07270000e-09,1.52250000e-12, 0.00000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 50.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu75 = alphadatadb(eosid="PR", cid="NO", ref="tcPR", coeff=(/8.↔ 81500000e-01, 9.55200000e-01, 1.40470000e+00/))
- type(cidatadb), parameter c76 = cidatadb(eosid="PR", cid="NO", ref="tcPR", bib_ref="10.1016/j.fluid.2016.
 09.003", ciA=-7.54000000e-07, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu76 = alphadatadb(eosid="SRK", cid="NO", ref="tcRK", coeff=(/8.↔ 68100000e-01, 9.32000000e-01, 1.59540000e+00/))
- type(cidatadb), parameter c77 = cidatadb(eosid="SRK", cid="NO", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=2.63650000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx46 = gendatadb(ident = "N2", formula = "N2", name = "NITROGEN", mw = 28.0130, Tc = 126.1610, Pc = 3394400.00, Zc = 0.290000, acf = 0.040000, Tb = 77.4000, Ttr = 0.0000, Ptr = 0.0000, sref = 191.6100, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.49542000e+01, 5.88720000e+02, -6.60000000e+00/), Tantmin = 54.0000, Tantmax = 90.0000, Zra = 0.290000, mu_dipole = 0.000000, q_quadrupole = 1.430000)
- type(cpdata), parameter **cp47** = cpdata(cid = "N2", ref = "Default", bib_ref = "", cptype = 2, cp = (/-2.↔ 17250700e+00,1.06849000e+00,-1.34096000e-04,2.15569000e-07,-7.86320000e-11, 6.98500000e-15,1.↔ 80540900e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -175.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu77 = alphadatadb(eosid="PR", cid="N2", ref="tcPR", coeff=(/1.24000000e-01, 8.89700000e-01, 2.01380000e+00/))
- type(alphadatadb), parameter **mc32** = alphadatadb(eosid="PR", cid="N2", ref="Default", coeff=(/4.↔ 04606000e-01, 3.91057000e-01, -9.63495000e-01/))
- type(alphadatadb), parameter mc33 = alphadatadb(eosid="PR", cid="N2", ref="Chapoy2005", coeff=(/4.↔ 48000000e-01, -1.57000000e-01, 4.69000000e-01/))
- type(cidatadb), parameter c78 = cidatadb(eosid="PR", cid="N2", ref="tcPR", bib_ref="10.1016/j.fluid.2016. 09.003", ciA=-3.64220000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu78 = alphadatadb(eosid="SRK", cid="N2", ref="tcRK", coeff=(/1.↔ 90200000e-01, 8.9000000e-01, 2.01060000e+00/))

- type(alphadatadb), parameter **mc34** = alphadatadb(eosid="SRK", cid="N2", ref="Default", coeff=(/5.↔ 86700000e-01, -4.45900000e-01, 8.92600000e-01/))
- type(alphadatadb), parameter **mc35** = alphadatadb(eosid="SRK", cid="N2", ref="Chapoy2005", coeff=(/5.↔ 84000000e-01, -3.96000000e-01, 7.36000000e-01/))
- type(cidatadb), parameter c79 = cidatadb(eosid="SRK", cid="N2", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.34700000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx47 = gendatadb(ident = "N2O", formula = "N2O", name = "NITROUS OXIDE", mw = 44.0130, Tc = 309.6000, Pc = 7240000.00, Zc = 0.274000, acf = 0.165000, Tb = 184.7000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.↔ 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.275800, mu_dipole = 0.000000, q_quadrupole = 0.00000)
- type(cpdata), parameter cp48 = cpdata(cid = "N2O", ref = "Default", bib_ref = "", cptype = 4, cp = (/2.↔ 16200000e+01,7.28100000e-02,-5.77800000e-05,1.83000000e-08,0.00000000e+00, 0.00000000e+00,0....
 00000000e+00,0.00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu79 = alphadatadb(eosid="PR", cid="N2O", ref="tcPR", coeff=(/6.↔ 24800000e-01, 7.93300000e-01, 7.97600000e-01/))
- type(alphadatadb), parameter twu80 = alphadatadb(eosid="SRK", cid="N2O", ref="tcRK", coeff=(/3.↔ 08500000e-01, 8.13400000e-01, 1.56750000e+00/))
- type(cidatadb), parameter c81 = cidatadb(eosid="SRK", cid="N2O", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=4.39740000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx48 = gendatadb(ident = "N-H2", formula = "H2", name = "N-HYDROGEN", mw = 2.0159, Tc = 33.1450, Pc = 1296400.00, Zc = 0.303000, acf = -0.219000, Tb = 20.3690, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 10, ant = (/0.0000000e+00, 0.0000000e+00/), Tantmin = 15.0989, Tantmax = 32.6952, Zra = 0.306000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp49 = cpdata(cid = "N-H2", ref = "Default", bib_ref = "", cptype = 10, cp = (/2.86719970e+01,1.33961560e+01,2.96013100e-03,-3.98074400e-06,2.66166700e-09, -6.09986300e-13,-1.18013710e+01,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 5.0000, Tcpmax = 5.0000)
- type(gendatadb), parameter cx49 = gendatadb(ident = "O-H2", formula = "H2", name = "ORTHO-HYDROGEN", mw = 2.0159, Tc = 33.2200, Pc = 1310650.00, Zc = 0.307000, acf = -0.218000, Tb = 20.3800, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 10, ant = (/0.00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 15.0989, Tantmax = 32.6952, Zra = 0.306000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp50 = cpdata(cid = "O-H2", ref = "Default", bib_ref = "", cptype = 10, cp = (/2.86719970e+01,1.33961560e+01,2.96013100e-03,-3.98074400e-06,2.66166700e-09, -6.09986300e-13,-1.18013710e+01,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 5.0000, Tcpmax = 5.0000)
- type(gendatadb), parameter cx50 = gendatadb(ident = "OXYL", formula = "C8H10", name = "O-XYLENE", mw = 106.1670, Tc = 630.3300, Pc = 3734000.00, Zc = 0.263000, acf = 0.310400, Tb = 417.5800, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.↔ 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.261600, mu_dipole = 0.000000, q_quadrupole = 0.00000)
- type(cpdata), parameter **cp51** = cpdata(cid = "OXYL", ref = "Default", bib_ref = "", cptype = 7, cp = (/8.52100000e+04,3.29540000e+05,1.49440000e+03,2.11500000e+05,-6.75800000e+02, 0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 200.↔ 0000, Tcpmax = 1500.0000)
- type(alphadatadb), parameter twu81 = alphadatadb(eosid="PR", cid="OXYL", ref="tcPR", coeff=(/3.↔ 10800000e-01, 8.46300000e-01, 2.02890000e+00/))
- type(cidatadb), parameter c82 = cidatadb(eosid="PR", cid="OXYL", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=2.52880000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu82 = alphadatadb(eosid="SRK", cid="OXYL", ref="tcRK", coeff=(/3.↔ 2060000e-01, 8.58600000e-01, 2.41770000e+00/))

- type(cidatadb), parameter **c83** = cidatadb(eosid="SRK", cid="OXYL", ref="tcRK", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=2.38251000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx51 = gendatadb(ident = "O2", formula = "O2", name = "OXYGEN", mw = 31.↔ 9990, Tc = 154.6000, Pc = 5045990.00, Zc = 0.288000, acf = 0.021000, Tb = 90.2000, Ttr = 0.0000, Ptr = 0.0000, sref = 205.1500, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.54075000e+01, 7.34550000e+02, -6.45000000e+00/), Tantmin = 63.0000, Tantmax = 100.0000, Zra = 0.290500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp52 = cpdata(cid = "O2", ref = "Default", bib_ref = "", cptype = 2, cp = (/-2.↔ 28357400e+00,9.52440000e-01,-2.81140000e-04,6.55223000e-07,-4.52316000e-10, 1.08774400e-13,2.↔ 08031000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -175.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu83 = alphadatadb(eosid="PR", cid="O2", ref="tcPR", coeff=(/2.12900000e-01, 8.91300000e-01, 1.40050000e+00/))
- type(alphadatadb), parameter **mc36** = alphadatadb(eosid="PR", cid="O2", ref="Chapoy2005", coeff=(/4.↔ 13000000e-01, -1.70000000e-02, 9.20000000e-02/))
- type(cidatadb), parameter c84 = cidatadb(eosid="PR", cid="O2", ref="tcPR", bib_ref="10.1016/j.fluid.2016.↔ 09.003", ciA=-2.76670000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu84 = alphadatadb(eosid="SRK", cid="O2", ref="tcRK", coeff=(/2.↔ 11800000e-01, 9.02000000e-01, 1.87980000e+00/))
- type(alphadatadb), parameter mc37 = alphadatadb(eosid="SRK", cid="O2", ref="Chapoy2005", coeff=(/5.↔ 4500000e-01, -2.35000000e-01, 2.92000000e-01/))
- type(cidatadb), parameter c85 = cidatadb(eosid="SRK", cid="O2", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.34570000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx52 = gendatadb(ident = "P-H2", formula = "H2", name = "PARA-HYDROGEN", mw = 2.0159, Tc = 32.9380, Pc = 1285800.00, Zc = 0.302000, acf = -0.219000, Tb = 20.2710, Ttr = 0...
 0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 10, ant = (/0...
 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 15.0000, Tantmax = 32.5000, Zra = 0...
 306000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp53 = cpdata(cid = "P-H2", ref = "Default", bib_ref = "", cptype = 10, cp = (/2.86719970e+01,1.33961560e+01,2.96013100e-03,-3.98074400e-06,2.66166700e-09, -6.09986300e-13,-1.18013710e+01,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 5.0000, Tcpmax = 5.0000)
- type(gendatadb), parameter cx53 = gendatadb(ident = "PXYL", formula = "C8H10", name = "P-XYLENE", mw = 106.1670, Tc = 616.2300, Pc = 3511000.00, Zc = 0.260000, acf = 0.321500, Tb = 411.5100, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.↔ 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.258500, mu dipole = 0.00000, g quadrupole = 0.000000)
- type(cpdata), parameter **cp54** = cpdata(cid = "PXYL", ref = "Default", bib_ref = "", cptype = 7, cp = (/7.51200000e+04,3.39700000e+05,1.49280000e+03,2.24700000e+05,-6.75100000e+02, 0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 200.↔ 0000, Tcpmax = 1500.0000)
- type(alphadatadb), parameter **twu85** = alphadatadb(eosid="PR", cid="PXYL", ref="tcPR", coeff=(/2.↔ 2620000e-01, 8.5010000e-01, 2.54710000e+00/))
- type(cidatadb), parameter **c86** = cidatadb(eosid="PR", cid="PXYL", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=5.37320000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu86 = alphadatadb(eosid="SRK", cid="PXYL", ref="tcRK", coeff=(/2.↔ 97900000e-01, 8.51400000e-01, 2.52780000e+00/))
- type(cidatadb), parameter **c87** = cidatadb(eosid="SRK", cid="PXYL", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=2.76019000e-05, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx54 = gendatadb(ident = "C3", formula = "C3H8", name = "PROPANE", mw = 44.0970, Tc = 369.8000, Pc = 4245500.00, Zc = 0.281000, acf = 0.152000, Tb = 231.1000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.57260000e+01, 1.87246000e+03, -2.51600000e+01/), Tantmin = 164.0000, Tantmax = 249.0000, Zra = 0.276600, mu_dipole = 0.000000, q_quadrupole = 0.000000)

- type(alphadatadb), parameter twu87 = alphadatadb(eosid="PR", cid="C3", ref="tcPR", coeff=(/1.59600000e-01, 8.68100000e-01, 2.28200000e+00/))
- type(alphadatadb), parameter **mc38** = alphadatadb(eosid="PR", cid="C3", ref="Default", coeff=(/7.↔ 86300000e-01, -7.45900000e-01, 1.84540000e+00/))
- type(alphadatadb), parameter mc39 = alphadatadb(eosid="PR", cid="C3", ref="Chapoy2005", coeff=(/6. ← 00000000e-01, -6.00000000e-03, 1.74000000e-01/))
- type(cidatadb), parameter c88 = cidatadb(eosid="PR", cid="C3", ref="tcPR", bib_ref="10.1016/j.fluid.2016.↔ 09.003", ciA=-3.89270000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu88 = alphadatadb(eosid="SRK", cid="C3", ref="tcRK", coeff=(/2.↔ 45300000e-01, 8.73700000e-01, 2.20880000e+00/))
- type(alphadatadb), parameter **mc40** = alphadatadb(eosid="SRK", cid="C3", ref="Default", coeff=(/7.↔ 86300000e-01, -7.45900000e-01, 1.84540000e+00/))
- type(alphadatadb), parameter **mc41** = alphadatadb(eosid="SRK", cid="C3", ref="Chapoy2005", coeff=(/7.↔ 75000000e-01, -4.76000000e-01, 8.15000000e-01/))
- type(cidatadb), parameter c89 = cidatadb(eosid="SRK", cid="C3", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=7.46600000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa12 = CPAdata(eosid="CPA-SRK", compName="C3", ref="Default/Kontogeorgis-Folas2010", bib_reference="10.1002/9780470747537", a0=9.11875000e+05, b=5.78340000e-02, eps=0.↔ 00000000e+00, beta=0.0000000e+00, alphacorridx = cbAlphaClassicIdx, alphaParams = (/6.30700000e-01,0.00000000e+00/), assoc_scheme = no_assoc)
- type(gendatadb), parameter cx55 = gendatadb(ident = "PRLN", formula = "C3H6", name = "PROPYLENE", mw = 42.0810, Tc = 364.9000, Pc = 4600000.00, Zc = 0.274000, acf = 0.144000, Tb = 225.5000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.↔ 57027000e+01, 1.80753000e+03, -2.61500000e+01/), Tantmin = 160.0000, Tantmax = 240.0000, Zra = 0.↔ 277900, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp56 = cpdata(cid = "PRLN", ref = "Default", bib_ref = "", cptype = 2, cp = (/6.63699910e+01,1.28994000e-01,2.64691000e-03,-6.71019000e-07,-5.52250000e-11, 4.94690000e-14,5.11755300e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu89 = alphadatadb(eosid="PR", cid="PRLN", ref="tcPR", coeff=(/4.↔ 64100000e-01, 8.41900000e-01, 1.04550000e+00/))
- type(alphadatadb), parameter twu90 = alphadatadb(eosid="SRK", cid="PRLN", ref="tcRK", coeff=(/3.↔ 84900000e-01, 8.51300000e-01, 1.46570000e+00/))
- type(cidatadb), parameter c91 = cidatadb(eosid="SRK", cid="PRLN", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=6.89870000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(gendatadb), parameter cx56 = gendatadb(ident = "R11", formula = "CCL3F", name = "TRICHLOROFLU-OROMETHANE", mw = 137.3680, Tc = 471.2000, Pc = 4407600.00, Zc = 0.279000, acf = 0.188000, Tb = 297.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.58516000e+01, 2.40161000e+03, -3.63000000e+01/), Tantmin = 240.0000, Tantmax = 300.0000, Zra = 0.274500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp57 = cpdata(cid = "R11", ref = "Default", bib_ref = "", cptype = 1, cp = (/9.↔ 78900000e+00,3.89300000e-02,-3.38300000e-05,9.90300000e-09,0.00000000e+00, 0.00000000e+00,0....
 00000000e+00,0.00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu91 = alphadatadb(eosid="PR", cid="R11", ref="tcPR", coeff=(/3.↔ 33800000e-01, 8.31800000e-01, 1.44220000e+00/))
- type(alphadatadb), parameter twu92 = alphadatadb(eosid="SRK", cid="R11", ref="tcRK", coeff=(/3.↔ 24500000e-01, 8.48400000e-01, 1.82270000e+00/))
- type(cidatadb), parameter c93 = cidatadb(eosid="SRK", cid="R11", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=9.15060000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(gendatadb), parameter cx57 = gendatadb(ident = "R1114", formula = "C2F4", name = "TETRAFLUO-ROETHYLENE", mw = 100.0160, Tc = 306.5000, Pc = 3940000.00, Zc = 0.267000, acf = 0.223000, Tb = 197.2000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode =

2, ant = (/0.00000000e+00, 0.0000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.270100, mu_dipole = 0.000000, q_quadrupole = 0.000000)

- type(cpdata), parameter cp58 = cpdata(cid = "R1114", ref = "Default", bib_ref = "", cptype = 4, cp = (/2.↔ 90100000e+01,2.27700000e-01,-2.03600000e-04,6.77800000e-08,0.00000000e+00, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu93 = alphadatadb(eosid="PR", cid="R1114", ref="tcPR", coeff=(/2.↔ 84800000e-01, 8.17800000e-01, 1.67930000e+00/))
- type(alphadatadb), parameter twu94 = alphadatadb(eosid="SRK", cid="R1114", ref="tcRK", coeff=(/2.↔ 8290000e-01, 8.3670000e-01, 2.09660000e+00/))
- type(gendatadb), parameter cx58 = gendatadb(ident = "R1132a", formula = "C2H2F2", name = "1,1-DIFLUOROETHYLENE", mw = 64.0350, Tc = 302.9000, Pc = 4460000.00, Zc = 0.273000, acf = 0.140000, Tb = 187.5000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.271300, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp59 = cpdata(cid = "R1132a", ref = "Default", bib_ref = "", cptype = 4, cp = (/3.↔ 07300000e+00,2.44500000e-01,-2.09900000e-04,7.02100000e-08,0.0000000e+00, 0.0000000e+00,0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00,0.00000000e+00,0.00000000e+00,0.00000000e+00,0.00000000e+00,0.00000000e+00,0.00000000e+00,0.00000000e+00,0.00000000e+00,0.00000000e+00,0.00000000e+00,0.↔
- type(alphadatadb), parameter twu95 = alphadatadb(eosid="PR", cid="R1132a", ref="tcPR", coeff=(/6.↔ 7900000e-02, 8.44700000e-01, 2.63710000e+00/))
- type(alphadatadb), parameter twu96 = alphadatadb(eosid="SRK", cid="R1132a", ref="tcRK", coeff=(/1.↔ 3500000e-01, 8.4620000e-01, 2.61180000e+00/))
- type(cidatadb), parameter **c97** = cidatadb(eosid="SRK", cid="R1132a", ref="tcRK", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=8.45540000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx59 = gendatadb(ident = "R114", formula = "C2CL2F4", name = "1,2-DICHLOROTETRAFLUOROETHANE", mw = 170.9220, Tc = 418.9000, Pc = 3262700.00, Zc = 0.275000, acf = 0.255000, Tb = 277.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.273700, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp60 = cpdata(cid = "R114", ref = "Default", bib_ref = "", cptype = 1, cp = (/9.↔ 2620000e+00,8.21600000e-02,-7.04700000e-05,2.03200000e-08,0.00000000e+00, 0.0000000e+00,0...↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu97 = alphadatadb(eosid="PR", cid="R114", ref="tcPR", coeff=(/1.↔ 49200000e-01, 8.43900000e-01, 2.65050000e+00/))
- type(alphadatadb), parameter twu98 = alphadatadb(eosid="SRK", cid="R114", ref="tcRK", coeff=(/2.↔ 21100000e-01, 8.45900000e-01, 2.61660000e+00/))
- type(cidatadb), parameter **c99** = cidatadb(eosid="SRK", cid="R114", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.14150000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx60 = gendatadb(ident = "R115", formula = "C2CLF5", name = "CHLOROPENTAFLUOROETHANE", mw = 154.4670, Tc = 353.2000, Pc = 3161300.00, Zc = 0.271000, acf = 0.253000, Tb = 234.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.57343000e+01, 1.84890000e+03, -3.08800000e+01/), Tantmin = 175.0000, Tantmax = 230.0000, Zra = 0.275700, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp61 = cpdata(cid = "R115", ref = "Default", bib_ref = "", cptype = 1, cp = (/6.↔ 64800000e+00,8.34000000e-02,-6.90400000e-05,1.94400000e-08,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)

- type(alphadatadb), parameter twu99 = alphadatadb(eosid="PR", cid="R115", ref="tcPR", coeff=(/7.↔ 21200000e-01, 8.70300000e-01, 9.54000000e-01/))
- type(cidatadb), parameter c100 = cidatadb(eosid="PR", cid="R115", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-6.21940000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu100 = alphadatadb(eosid="SRK", cid="R115", ref="tcRK", coeff=(/3.↔ 45600000e-01, 8.39400000e-01, 1.94490000e+00/))
- type(cidatadb), parameter c101 = cidatadb(eosid="SRK", cid="R115", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=8.07540000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx61 = gendatadb(ident = "R116", formula = "C2F6", name = "HEXAFLUO-ROETHANE", mw = 138.0120, Tc = 293.0000, Pc = 3060000.00, Zc = 0.279000, acf = 0.253680, Tb = 194.9000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.277800, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp62 = cpdata(cid = "R116", ref = "Default", bib_ref = "", cptype = 4, cp = (/2.↔ 68200000e+01,3.45800000e-01,-2.86900000e-04,8.13500000e-08,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu101 = alphadatadb(eosid="PR", cid="R116", ref="tcPR", coeff=(/2.↔ 2000000e-01, 8.32600000e-01, 2.13210000e+00/))
- type(cidatadb), parameter c102 = cidatadb(eosid="PR", cid="R116", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-6.70800000e-06, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu102 = alphadatadb(eosid="SRK", cid="R116", ref="tcRK", coeff=(/2.↔ 27400000e-01, 8.46900000e-01, 2.59910000e+00/))
- type(cidatadb), parameter c103 = cidatadb(eosid="SRK", cid="R116", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=5.60370000e-06, ciB=0.0000000e+00, ciC=0.0000000e+00, c_type=1)
- type(gendatadb), parameter cx62 = gendatadb(ident = "R12", formula = "CCL2F2", name = "DICHLORODI-FLUOROMETHANE", mw = 120.9140, Tc = 385.0000, Pc = 4123900.00, Zc = 0.280000, acf = 0.176000, Tb = 243.4000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.275700, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp63 = cpdata(cid = "R12", ref = "Default", bib_ref = "", cptype = 1, cp = (/7.↔ 54700000e+00,4.25700000e-02,-3.60300000e-05,1.03700000e-08,0.00000000e+00, 0.0000000e+00,0...
 00000000e+00,0.00000000e+00,0.00000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu103 = alphadatadb(eosid="PR", cid="R12", ref="tcPR", coeff=(/1.↔ 55200000e-01, 8.60100000e-01, 2.39040000e+00/))
- type(cidatadb), parameter c104 = cidatadb(eosid="PR", cid="R12", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-4.23300000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu104 = alphadatadb(eosid="SRK", cid="R12", ref="tcRK", coeff=(/2.↔ 18200000e-01, 8.60000000e-01, 2.39650000e+00/))
- type(gendatadb), parameter cx63 = gendatadb(ident = "R1234yf", formula = "CF3CF=CH2", name = "2,3,3,3-TETRAFLUOROPROPENE", mw = 114.0416, Tc = 367.8500, Pc = 3382200.00, Zc = 0.265190, acf = 0...
 276000, Tb = 243.7000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.67996000e+01, 2.41112000e+03, -6.30281000e+00/), Tantmin = 243.7000, Tantmax = 366.0700, Zra = 0.264500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp64 = cpdata(cid = "R1234yf", ref = "Default", bib_ref = "", cptype = 6, cp = (/2.↔ 13968000e-01,2.10720000e-03,1.89670000e-06,-6.68177000e-09,4.25854000e-12, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 170.0000, Tcpmax = 1000.0000)
- type(alphadatadb), parameter twu105 = alphadatadb(eosid="PR", cid="R1234yf", ref="tcPR", coeff=(/1.↔ 71200000e-01, 8.37400000e-01, 2.58130000e+00/))
- type(cidatadb), parameter c106 = cidatadb(eosid="PR", cid="R1234yf", ref="tcPR", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=4.91000000e-07, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu106 = alphadatadb(eosid="SRK", cid="R1234yf", ref="tcRK", coeff=(/2.↔ 42900000e-01, 8.45500000e-01, 2.62360000e+00/))

- type(cidatadb), parameter c107 = cidatadb(eosid="SRK", cid="R1234yf", ref="tcRK", bib_ref="10.1016/j.⇔ fluid.2016.09.003", ciA=1.42961000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx64 = gendatadb(ident = "R1234ze", formula = "CHF=CHCF3_(t", name = "TRANS-1,3,3,3-TETRAFLUOROPROPENE", mw = 114.0416, Tc = 382.5130, Pc = 3634900.00, Zc = 0...
 266412, acf = 0.313000, Tb = 254.1770, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0...
 0000, DfG = 0.0000, psatcode = 1, ant = (/1.69543000e+01, 2.50917000e+03, -1.08418000e+01/), Tantmin = 253.8000, Tantmax = 383.0200, Zra = 0.266400, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp65 = cpdata(cid = "R1234ze", ref = "Default", bib_ref = "", cptype = 6, cp = (/-1.↔ 75392000e-01,7.96320000e-03,-2.60047000e-05,4.67071000e-08,-3.17226000e-11, 0.00000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 170.0000, Tcpmax = 500.↔ 0000)
- type(alphadatadb), parameter twu107 = alphadatadb(eosid="PR", cid="R1234ze", ref="tcPR", coeff=(/1.↔ 47200000e-01, 8.30400000e-01, 2.88900000e+00/))
- type(cidatadb), parameter c108 = cidatadb(eosid="PR", cid="R1234ze", ref="tcPR", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=-1.47890000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu108 = alphadatadb(eosid="SRK", cid="R1234ze", ref="tcRK", coeff=(/2.↔ 23900000e-01, 8.33600000e-01, 2.83390000e+00/))
- type(cidatadb), parameter c109 = cidatadb(eosid="SRK", cid="R1234ze", ref="tcRK", bib_ref="10.1016/j... fluid.2016.09.003", ciA=1.16861000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx65 = gendatadb(ident = "R124", formula = "C2HCLF4", name = "2-CHLORO-1,1,1,2-TETRAFLUOROETHANE", mw = 136.4750, Tc = 395.4000, Pc = 3620000.00, Zc = 0.266000, acf = 0.288000, Tb = 261.1000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.269700, mu dipole = 0.00000, g quadrupole = 0.000000)
- type(cpdata), parameter cp66 = cpdata(cid = "R124", ref = "Default", bib_ref = "", cptype = 5, cp = (/4.↔ 56447000e-01,1.78778000e-03,3.17361700e-08,-2.23347000e-11,-3.56841800e+01, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu109 = alphadatadb(eosid="PR", cid="R124", ref="tcPR", coeff=(/2.↔ 00900000e-01, 8.50200000e-01, 2.54620000e+00/))
- type(cidatadb), parameter c110 = cidatadb(eosid="PR", cid="R124", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-3.07770000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(alphadatadb), parameter twu110 = alphadatadb(eosid="SRK", cid="R124", ref="tcRK", coeff=(/2.↔ 64900000e-01, 8.49600000e-01, 2.55500000e+00/))
- type(gendatadb), parameter cx66 = gendatadb(ident = "R124a", formula = "C2HCLF4", name = "1-CHLORO-1,1,2,2-TETRAFLUOROETHANE", mw = 136.4750, Tc = 399.9000, Pc = 3720000.00, Zc = 0.273000, acf = 0.281000, Tb = 263.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = -1.000000, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp67 = cpdata(cid = "R124a", ref = "Default", bib_ref = "", cptype = 4, cp = (/1.↔ 2700000e+01,3.79500000e-01,-3.46000000e-04,1.15400000e-07,0.00000000e+00, 0.0000000e+00,0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000
- type(gendatadb), parameter cx67 = gendatadb(ident = "R125", formula = "C2HF5", name = "PENTAFLU-OROETHANE", mw = 120.0300, Tc = 343.7000, Pc = 3870000.00, Zc = 0.298600, acf = 0.269000, Tb = 224.6500, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.267100, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp68 = cpdata(cid = "R125", ref = "Default", bib_ref = "", cptype = 4, cp = (/5.↔ 37000000e+00,3.84500000e-01,-3.42000000e-04,1.12000000e-07,0.00000000e+00, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu111 = alphadatadb(eosid="PR", cid="R125", ref="tcPR", coeff=(/1.↔ 7800000e-01, 8.4140000e-01, 2.69360000e+00/))

- type(alphadatadb), parameter twu112 = alphadatadb(eosid="SRK", cid="R125", ref="tcRK", coeff=(/2.↔ 6400000e-01, 8.4630000e-01, 2.60960000e+00/))
- type(cidatadb), parameter c113 = cidatadb(eosid="SRK", cid="R125", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.04040000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx68 = gendatadb(ident = "R13", formula = "CCLF3", name = "CHLOROTRI-FLUOROMETHANE", mw = 104.4590, Tc = 302.0000, Pc = 3921300.00, Zc = 0.282000, acf = 0.180000, Tb = 191.7000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.277100, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu113 = alphadatadb(eosid="PR", cid="R13", ref="tcPR", coeff=(/1.↔ 40000000e-01, 8.58100000e-01, 2.42490000e+00/))
- type(alphadatadb), parameter twu114 = alphadatadb(eosid="SRK", cid="R13", ref="tcRK", coeff=(/2.↔ 15200000e-01, 8.60900000e-01, 2.38380000e+00/))
- type(gendatadb), parameter cx69 = gendatadb(ident = "R134a", formula = "C2H2F4", name = "1,1,1,2-TETRAFLUOROETHANE", mw = 102.0300, Tc = 374.1790, Pc = 4056000.00, Zc = 0.259100, acf = 0...
 326680, Tb = 246.7000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.259600, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp70 = cpdata(cid = "R134a", ref = "Default", bib_ref = "", cptype = 5, cp = (/1.↔ 31419000e-01,3.00600000e-03,-2.23892000e-06,5.97826000e-10,4.30007700e+02, 0.00000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu115 = alphadatadb(eosid="PR", cid="R134a", ref="tcPR", coeff=(/2.↔ 29200000e-01, 8.5000000e-01, 2.54990000e+00/))
- type(alphadatadb), parameter twu116 = alphadatadb(eosid="SRK", cid="R134a", ref="tcRK", coeff=(/3.↔ 22600000e-01, 8.56200000e-01, 2.45240000e+00/))
- type(cidatadb), parameter c117 = cidatadb(eosid="SRK", cid="R134a", ref="tcRK", bib_ref="10.1016/j... fluid.2016.09.003", ciA=1.38434000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx70 = gendatadb(ident = "R14", formula = "CF4", name = "CARBON TETRAFLUORIDE", mw = 88.0050, Tc = 227.6000, Pc = 3738900.00, Zc = 0.277000, acf = 0.191000, Tb = 145.2000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.60543000e+01, 1.24455000e+03, -1.30600000e+01/), Tantmin = 93.0000, Tantmax = 148.0000, Zra = 0.281000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp71 = cpdata(cid = "R14", ref = "Default", bib_ref = "", cptype = 1, cp = (/3.↔ 33900000e+00,4.83800000e-02,-3.88300000e-05,1.07800000e-08,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu117 = alphadatadb(eosid="PR", cid="R14", ref="tcPR", coeff=(/1.↔ 65300000e-01, 8.58400000e-01, 2.29530000e+00/))
- type(cidatadb), parameter c118 = cidatadb(eosid="PR", cid="R14", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-4.52580000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu118 = alphadatadb(eosid="SRK", cid="R14", ref="tcRK", coeff=(/2.↔ 40400000e-01, 8.65900000e-01, 2.31260000e+00/))
- type(cidatadb), parameter c119 = cidatadb(eosid="SRK", cid="R14", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=3.34870000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)

- type(gendatadb), parameter cx71 = gendatadb(ident = "R142b", formula = "C2H3CIF2", name = "1-CHLORO-1,1-DIFLUOROETHANE", mw = 100.4960, Tc = 409.6000, Pc = 4218000.00, Zc = 0.286100, acf = 0.236000, Tb = 262.9300, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.266800, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp72 = cpdata(cid = "R142b", ref = "Default", bib_ref = "", cptype = 1, cp = (/4.↔ 01700000e+00,6.58400000e-02,-4.75800000e-05,1.26700000e-08,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu119 = alphadatadb(eosid="PR", cid="R142b", ref="tcPR", coeff=(/1.↔ 78700000e-01, 8.55600000e-01, 2.46250000e+00/))
- type(cidatadb), parameter c120 = cidatadb(eosid="PR", cid="R142b", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-2.19000000e-08, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu120 = alphadatadb(eosid="SRK", cid="R142b", ref="tcRK", coeff=(/2.↔ 56100000e-01, 8.58500000e-01, 2.41880000e+00/))
- type(cidatadb), parameter c121 = cidatadb(eosid="SRK", cid="R142b", ref="tcRK", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=1.30216000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx72 = gendatadb(ident = "R143a", formula = "C2H3F3", name = "1,1,1-TRIFLUOROETHANE", mw = 84.0410, Tc = 346.3000, Pc = 3760000.00, Zc = 0.253000, acf = 0.251000, Tb = 225.6000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.256700, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp73 = cpdata(cid = "R143a", ref = "Default", bib_ref = "", cptype = 4, cp = (/5.↔ 74400000e+00,3.14100000e-01,-2.59700000e-04,8.41500000e-08,0.00000000e+00, 0.00000000e+00,0...
 00000000e+00,0.00000000e+00,0.00000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu121 = alphadatadb(eosid="PR", cid="R143a", ref="tcPR", coeff=(/2.↔ 03700000e-01, 8.56000000e-01, 2.45580000e+00/))
- type(cidatadb), parameter c122 = cidatadb(eosid="PR", cid="R143a", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=4.78330000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu122 = alphadatadb(eosid="SRK", cid="R143a", ref="tcRK", coeff=(/2.↔ 95700000e-01, 8.62300000e-01, 2.36330000e+00/))
- type(cidatadb), parameter c123 = cidatadb(eosid="SRK", cid="R143a", ref="tcRK", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=1.65099000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx73 = gendatadb(ident = "R152a", formula = "C2H4F2", name = "1,1-DIFLUOROETHANE", mw = 66.0510, Tc = 386.6000, Pc = 4498800.00, Zc = 0.253000, acf = 0.266000, Tb = 248.4000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.61871000e+01, 2.09535000e+03, -2.91600000e+01/), Tantmin = 238.0000, Tantmax = 273.0000, Zra = 0.253800, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp74 = cpdata(cid = "R152a", ref = "Default", bib_ref = "", cptype = 1, cp = (/2.↔ 07200000e+00,5.72200000e-02,-3.48000000e-05,8.10700000e-09,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu123 = alphadatadb(eosid="PR", cid="R152a", ref="tcPR", coeff=(/2.↔ 77700000e-01, 8.73100000e-01, 2.21630000e+00/))
- type(cidatadb), parameter c124 = cidatadb(eosid="PR", cid="R152a", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=5.59180000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu124 = alphadatadb(eosid="SRK", cid="R152a", ref="tcRK", coeff=(/3.↔ 87500000e-01, 8.83100000e-01, 2.09120000e+00/))
- type(cidatadb), parameter c125 = cidatadb(eosid="SRK", cid="R152a", ref="tcRK", bib_ref="10.1016/j.↔ fluid.2016.09.003", ciA=1.64932000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx74 = gendatadb(ident = "R21", formula = "CHCL2F", name = "DICHLO-ROFLUOROMETHANE", mw = 102.9230, Tc = 451.6000, Pc = 5167600.00, Zc = 0.272000, acf = 0.202000, Tb = 282.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.270500, mu_dipole = 0.00000, q_quadrupole = 0.000000)

- type(cpdata), parameter cp75 = cpdata(cid = "R21", ref = "Default", bib_ref = "", cptype = 1, cp = (/5.↔ 65200000e+00,3.77700000e-02,-2.86600000e-05,7.79500000e-09,0.00000000e+00, 0.0000000e+00,0...↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu125 = alphadatadb(eosid="PR", cid="R21", ref="tcPR", coeff=(/1.↔ 44100000e-01, 8.51500000e-01, 2.52500000e+00/))
- type(cidatadb), parameter c126 = cidatadb(eosid="PR", cid="R21", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-1.78500000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu126 = alphadatadb(eosid="SRK", cid="R21", ref="tcRK", coeff=(/2.↔ 04900000e-01, 8.50900000e-01, 2.53470000e+00/))
- type(gendatadb), parameter cx75 = gendatadb(ident = "R218", formula = "C3F8", name = "OCTAFLUO-ROPROPANE", mw = 188.0170, Tc = 345.1000, Pc = 2680000.00, Zc = 0.280000, acf = 0.325000, Tb = 236.5000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.277800, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp76 = cpdata(cid = "R218", ref = "Default", bib_ref = "", cptype = 4, cp = (/1.↔ 29400000e+01,6.22000000e-01,-6.40800000e-04,2.39800000e-07,0.00000000e+00, 0.0000000e+00,0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu127 = alphadatadb(eosid="PR", cid="R218", ref="tcPR", coeff=(/1.↔ 03840000e+00, 1.00000000e+00, 8.04600000e-01/))
- type(cidatadb), parameter c128 = cidatadb(eosid="PR", cid="R218", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-1.06166000e-05, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu128 = alphadatadb(eosid="SRK", cid="R218", ref="tcRK", coeff=(/8.↔ 8400000e-01, 9.71000000e-01, 1.11890000e+00/))
- type(gendatadb), parameter **cx76** = gendatadb(ident = "R22", formula = "CHCLF2", name = "CHLORODI-FLUOROMETHANE", mw = 86.4690, Tc = 369.2000, Pc = 4975100.00, Zc = 0.267000, acf = 0.215000, Tb = 232.4000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.55602000e+01, 1.70480000e+03, -4.13000000e+01/), Tantmin = 225.0000, Tantmax = 240.0000, Zra = 0.266300, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp77 = cpdata(cid = "R22", ref = "Default", bib_ref = "", cptype = 1, cp = (/4.↔ 13200000e+00,3.86500000e-02,-2.79400000e-05,7.30500000e-09,0.00000000e+00, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu129 = alphadatadb(eosid="PR", cid="R22", ref="tcPR", coeff=(/4.↔ 51300000e-01, 8.26700000e-01, 1.24430000e+00/))
- type(cidatadb), parameter c130 = cidatadb(eosid="PR", cid="R22", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-1.18800000e-07, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu130 = alphadatadb(eosid="SRK", cid="R22", ref="tcRK", coeff=(/4.↔ 03800000e-01, 8.40800000e-01, 1.63470000e+00/))
- type(cidatadb), parameter c131 = cidatadb(eosid="SRK", cid="R22", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=9.50070000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx77 = gendatadb(ident = "R23", formula = "CHF3", name = "TRIFLUO-ROMETHANE", mw = 70.0130, Tc = 299.3000, Pc = 4860000.00, Zc = 0.259000, acf = 0.260000, Tb = 191.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.257600, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp78 = cpdata(cid = "R23", ref = "Default", bib_ref = "", cptype = 4, cp = (/8.↔ 15600000e+00,1.81300000e-01,-1.37900000e-04,3.93800000e-08,0.00000000e+00, 0.00000000e+00,0....
 00000000e+00,0.00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu131 = alphadatadb(eosid="PR", cid="R23", ref="tcPR", coeff=(/3.↔ 86400000e-01, 8.42000000e-01, 1.57440000e+00/))

- type(cidatadb), parameter c132 = cidatadb(eosid="PR", cid="R23", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=2.94380000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu132 = alphadatadb(eosid="SRK", cid="R23", ref="tcRK", coeff=(/3.↔ 60900000e-01, 8.53700000e-01, 2.00220000e+00/))
- type(cidatadb), parameter c133 = cidatadb(eosid="SRK", cid="R23", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.08742000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx78 = gendatadb(ident = "R32", formula = "CH2F2", name = "DIFLUO-ROMETHANE", mw = 52.0230, Tc = 351.6000, Pc = 5830000.00, Zc = 0.241000, acf = 0.271000, Tb = 221.5000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.244400, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp79 = cpdata(cid = "R32", ref = "Default", bib_ref = "", cptype = 4, cp = (/1.↔ 17900000e+01,1.18100000e-01,-4.84300000e-05,2.12500000e-09,0.00000000e+00, 0.00000000e+00,0....
 00000000e+00,0.00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu133 = alphadatadb(eosid="PR", cid="R32", ref="tcPR", coeff=(/2.↔ 48300000e-01, 8.64400000e-01, 2.33320000e+00/))
- type(alphadatadb), parameter twu134 = alphadatadb(eosid="SRK", cid="R32", ref="tcRK", coeff=(/3.↔ 48300000e-01, 8.72400000e-01, 2.22590000e+00/))
- type(gendatadb), parameter cx79 = gendatadb(ident = "R41", formula = "CH3F", name = "METHYL FLUO-RIDE", mw = 34.0330, Tc = 315.0000, Pc = 5600000.00, Zc = 0.240000, acf = 0.187000, Tb = 194.7000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0. \leftrightarrow 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.248100, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu135 = alphadatadb(eosid="PR", cid="R41", ref="tcPR", coeff=(/2.↔ 5660000e-01, 8.7300000e-01, 1.96820000e+00/))
- type(alphadatadb), parameter twu136 = alphadatadb(eosid="SRK", cid="R41", ref="tcRK", coeff=(/2.↔ 95400000e-01, 8.77000000e-01, 2.16570000e+00/))

- type(cpdata), parameter cp81 = cpdata(cid = "F6S", ref = "Default", bib_ref = "", cptype = 4, cp = (/-6.↔ 59900000e-01,4.63900000e-01,-5.08900000e-04,1.95300000e-07,0.00000000e+00, 0.00000000e+00,0....
 00000000e+00,0.00000000e+00,0.00000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(alphadatadb), parameter twu137 = alphadatadb(eosid="PR", cid="F6S", ref="tcPR", coeff=(/4.↔ 93500000e-01, 4.81600000e-01, 8.17500000e-01/))
- type(alphadatadb), parameter twu138 = alphadatadb(eosid="SRK", cid="F6S", ref="tcRK", coeff=(/1.↔ 05890000e+00, 8.35400000e-01, 7.30700000e-01/))
- type(cidatadb), parameter c139 = cidatadb(eosid="SRK", cid="F6S", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=5.39720000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)

- type(gendatadb), parameter cx81 = gendatadb(ident = "SO2", formula = "SO2", name = "SULFUR DIOXIDE", mw = 64.0650, Tc = 430.8000, Pc = 7885000.00, Zc = 0.269000, acf = 0.251000, Tb = 263.1300, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.↔ 67681000e+01, 2.30240000e+03, -3.59600000e+01/), Tantmin = 199.7100, Tantmax = 279.4700, Zra = 0.↔ 266100, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter **cp82** = cpdata(cid = "SO2", ref = "Default", bib_ref = "", cptype = 6, cp = (/5.↔ 73200000e-01,-2.89930000e-04,3.04210000e-06,-4.24520000e-09,1.80790000e-12, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 50.0000, Tcpmax = 1000.↔ 0000)
- type(alphadatadb), parameter twu139 = alphadatadb(eosid="PR", cid="SO2", ref="tcPR", coeff=(/4.↔ 18400000e-01, 8.23800000e-01, 1.40680000e+00/))
- type(alphadatadb), parameter twu140 = alphadatadb(eosid="SRK", cid="SO2", ref="tcRK", coeff=(/4.↔ 01400000e-01, 8.35800000e-01, 1.73550000e+00/))
- type(cidatadb), parameter c141 = cidatadb(eosid="SRK", cid="SO2", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=6.99930000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter **cx82** = gendatadb(ident = "F4N2", formula = "F4N2", name = "TETRAFLUO-ROHYDRAZINE", mw = 104.0160, Tc = 309.3000, Pc = 3750000.00, Zc = 0.000000, acf = 0.206000, Tb = 199.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = -1.000000, mu dipole = 0.000000, q quadrupole = 0.000000)
- type(cpdata), parameter cp83 = cpdata(cid = "F4N2", ref = "Default", bib_ref = "", cptype = 4, cp = (/3.↔ 55300000e+00,3.50900000e-01,-3.63700000e-04,1.33800000e-07,0.00000000e+00, 0.00000000e+00,0....
 00000000e+00,0.00000000e+00,0.00000000e+00,0....
 00000000e+00,0.00000000e+00,0.00000000e+00,0....
- type(alphadatadb), parameter twu141 = alphadatadb(eosid="PR", cid="F4N2", ref="tcPR", coeff=(/4.↔ 61700000e-01, 9.45500000e-01, 1.48230000e+00/))
- type(cidatadb), parameter c142 = cidatadb(eosid="PR", cid="F4N2", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=0.0000000e+00, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu142 = alphadatadb(eosid="SRK", cid="F4N2", ref="tcRK", coeff=(/5.↔ 05000000e-01, 9.34500000e-01, 1.57380000e+00/))
- type(gendatadb), parameter cx83 = gendatadb(ident = "TOLU", formula = "C7H8", name = "TOLUENE", mw = 92.1410, Tc = 591.7900, Pc = 4108600.00, Zc = 0.264000, acf = 0.264100, Tb = 383.7800, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.264300, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter **cp84** = cpdata(cid = "TOLU", ref = "Default", bib_ref = "", cptype = 7, cp = (/5.81400000e+04,2.86300000e+05,1.44060000e+03,1.89800000e+05,-6.50430000e+02, 0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 200.↔ 0000, Tcpmax = 1500.0000)
- type(alphadatadb), parameter **mc42** = alphadatadb(eosid="PR", cid="TOLU", ref="Chapoy2005", coeff=(/7.↔ 62000000e-01, -4.20000000e-02, 2.71000000e-01/))
- type(alphadatadb), parameter twu143 = alphadatadb(eosid="PR", cid="TOLU", ref="tcPR", coeff=(/3.↔ 09400000e-01, 8.30500000e-01, 1.78080000e+00/))
- type(cidatadb), parameter c144 = cidatadb(eosid="PR", cid="TOLU", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.23690000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter mc43 = alphadatadb(eosid="SRK", cid="TOLU", ref="Chapoy2005", coeff=(/9.23000000e-01, -3.01000000e-01, 4.94000000e-01/))
- type(alphadatadb), parameter twu144 = alphadatadb(eosid="SRK", cid="TOLU", ref="tcRK", coeff=(/3.↔ 25200000e-01, 8.43800000e-01, 2.10000000e+00/))
- type(cidatadb), parameter c145 = cidatadb(eosid="SRK", cid="TOLU", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.96684000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)

- type(gendatadb), parameter cx84 = gendatadb(ident = "F3NO", formula = "F3N0", name = "TRIFLUOROAMI-NEOXIDE", mw = 87.0010, Tc = 303.0000, Pc = 6430000.00, Zc = 0.375000, acf = 0.212000, Tb = 186.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = -1.↔ 000000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp85 = cpdata(cid = "F3NO", ref = "Default", bib_ref = "", cptype = 4, cp = (/1.↔ 51300000e+01,2.44600000e-01,-2.52800000e-04,9.37500000e-08,0.00000000e+00, 0.00000000e+00,0...↔ 00000000e+00,0.00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = 0.0000, Tcpmax = 0.0000)
- type(gendatadb), parameter cx85 = gendatadb(ident = "H2O", formula = "H2O", name = "WATER", mw = 18.0150, Tc = 647.3000, Pc = 22048300.00, Zc = 0.229000, acf = 0.344000, Tb = 373.2000, Ttr = 0...
 0000, Ptr = 0.0000, sref = 188.8400, href = -241826.4000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.83036000e+01, 3.81644000e+03, -4.61300000e+01/), Tantmin = 284.0000, Tantmax = 441.0000, Zra = 0.233800, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp86 = cpdata(cid = "H2O", ref = "Default", bib_ref = "", cptype = 2, cp = (/-5.72991500e+00,1.91500700e+00,-3.95741000e-04,8.76232000e-07,-4.95086000e-10, 1.03861300e-13,7.02815000e-01,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -175.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu145 = alphadatadb(eosid="PR", cid="H2O", ref="tcPR", coeff=(/3.↔ 86500000e-01, 8.72000000e-01, 1.96930000e+00/))
- type(alphadatadb), parameter **mc44** = alphadatadb(eosid="PR", cid="H2O", ref="Chapoy2005", coeff=(/9.↔ 1900000e-01, -3.32000000e-01, 3.17000000e-01/))
- type(cidatadb), parameter c146 = cidatadb(eosid="PR", cid="H2O", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=5.30410000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cidatadb), parameter c147 = cidatadb(eosid="PR", cid="H2O", ref="tcPR-ENGINEERING", bib_ref="", ciA=-8.12803800e-08, ciB=1.04455800e-08, ciC=0.00000000e+00, c type=2)
- type(alphadatadb), parameter twu146 = alphadatadb(eosid="SRK", cid="H2O", ref="tcRK", coeff=(/4.↔ 16300000e-01, 8.75600000e-01, 2.18420000e+00/))
- type(alphadatadb), parameter mc45 = alphadatadb(eosid="SRK", cid="H2O", ref="Chapoy2005", coeff=(/1.09500000e+00, -6.78000000e-01, 7.00000000e-01/))
- type(cidatadb), parameter c148 = cidatadb(eosid="SRK", cid="H2O", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=8.99950000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa13 = CPAdata(eosid="CPA-SRK", compName="H2O", ref="Default/Queimada2005", bib_reference="10.1016/j.fluid.2004.08.011", a0=1.22770000e+05, b=1.45150000e-02, eps=1.66550000e+04, beta=6.92000000e-02, alphacorridx = cbAlphaClassicIdx, alphaParams = (/6.73590000e-01,0.↔ 00000000e+00,0.0000000e+00/), assoc_scheme = assoc_scheme_4C)
- type(cpadata), parameter cpa14 = CPAdata(eosid="CPA-SRK", compName="H2O", ref="SINTEF", bib
 __reference="", a0=4.67542000e+05, b=1.57983000e-02, eps=4.44953000e+03, beta=6.21918000e-03,
 alphacorridx = cbAlphaClassicIdx, alphaParams = (/7.76671000e-01,0.00000000e+00,0.0000000e+00/),
 assoc scheme = assoc scheme 2B)
- type(gendatadb), parameter cx86 = gendatadb(ident = "XE", formula = "XE", name = "XENON", mw = 131.↔ 3000, Tc = 289.7000, Pc = 5840000.00, Zc = 0.287000, acf = 0.008000, Tb = 165.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 2, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.282900, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(gendatadb), parameter cx87 = gendatadb(ident = "NC4", formula = "C4H10", name = "N-BUTANE", mw = 58.1240, Tc = 425.2000, Pc = 3799700.00, Zc = 0.274000, acf = 0.193000, Tb = 272.7000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.56782000e+01, 2.15490000e+03, -3.44200000e+01/), Tantmin = 195.0000, Tantmax = 290.0000, Zra = 0.273000, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp88 = cpdata(cid = "NC4", ref = "Default", bib_ref = "", cptype = 2, cp = (/1.↔ 72831340e+01,4.12696000e-01,2.02860100e-03,7.02953000e-07,-1.02587100e-09, 2.88339400e-13,2.↔ 71486100e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -75.0000, Tcpmax = 1200.0000)

- type(alphadatadb), parameter **mc46** = alphadatadb(eosid="PR", cid="NC4", ref="Default", coeff=(/8.↔ 78700000e-01, -9.39900000e-01, 2.26660000e+00/))
- type(alphadatadb), parameter **mc47** = alphadatadb(eosid="PR", cid="NC4", ref="Chapoy2005", coeff=(/6.↔ 77000000e-01, -8.10000000e-02, 2.99000000e-01/))
- type(alphadatadb), parameter twu147 = alphadatadb(eosid="PR", cid="NC4", ref="tcPR", coeff=(/1.↔ 86700000e-01, 8.64500000e-01, 2.33270000e+00/))
- type(cidatadb), parameter c149 = cidatadb(eosid="PR", cid="NC4", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=-3.58180000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter **mc48** = alphadatadb(eosid="SRK", cid="NC4", ref="Default", coeff=(/8.↔ 78700000e-01, -9.39900000e-01, 2.26660000e+00/))
- type(alphadatadb), parameter mc49 = alphadatadb(eosid="SRK", cid="NC4", ref="Chapoy2005", coeff=(/8.23000000e-01, -2.67000000e-01, 4.02000000e-01/))
- type(alphadatadb), parameter twu148 = alphadatadb(eosid="SRK", cid="NC4", ref="tcRK", coeff=(/2.↔ 62100000e-01, 8.66900000e-01, 2.29960000e+00/))
- type(cidatadb), parameter c150 = cidatadb(eosid="SRK", cid="NC4", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.09178000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(cpadata), parameter cpa15 = CPAdata(eosid="CPA-SRK", compName="NC4", ref="Default/Kontogeorgis-Folas2010", bib_reference="10.1002/9780470747537", a0=1.31427400e+06, b=7.20810000e-02, eps=0...
 00000000e+00, beta=0.00000000e+00, alphacorridx = cbAlphaClassicIdx, alphaParams = (/7.07710000e-01,0.00000000e+00/), assoc_scheme = no_assoc)
- type(gendatadb), parameter cx88 = gendatadb(ident = "NC10", formula = "C10H22", name = "N-DECANE", mw = 142.2860, Tc = 617.6000, Pc = 2107600.00, Zc = 0.247000, acf = 0.490000, Tb = 447.3000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.60114000e+01, 3.45680000e+03, -7.86700000e+01/), Tantmin = 330.0000, Tantmax = 476.0000, Zra = 0.250700, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp89 = cpdata(cid = "NC10", ref = "Default", bib_ref = "", cptype = 2, cp = (/-6.96202000e+00,8.51375000e-01,-2.63041000e-04,5.52181600e-06,-5.63173300e-09, 1.88854430e-12,-4.12446000e-01,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -75.0000, Tcpmax = 700.0000)
- type(alphadatadb), parameter twu149 = alphadatadb(eosid="PR", cid="NC10", ref="tcPR", coeff=(/3.↔ 67700000e-01, 8.11900000e-01, 2.21880000e+00/))
- type(alphadatadb), parameter twu150 = alphadatadb(eosid="SRK", cid="NC10", ref="tcRK", coeff=(/3.↔ 55300000e-01, 8.31000000e-01, 2.72810000e+00/))
- type(cidatadb), parameter c152 = cidatadb(eosid="SRK", cid="NC10", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=4.85857000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa16 = CPAdata(eosid="CPA-SRK", compName="NC10", ref="Default/Kontogeorgis-Folas2010", bib_reference="10.1002/9780470747537", a0=4.73890000e+06, b=1.78650000e-01, eps=0.↔
 00000000e+00, beta=0.0000000e+00, alphacorridx = cbAlphaClassicIdx, alphaParams = (/1.↔
 13243000e+00,0.00000000e+00,0.0000000e+00/), assoc_scheme = no_assoc)
- type(gendatadb), parameter cx89 = gendatadb(ident = "NC22", formula = "C22H46", name = "N-DOCOSANE", mw = 310.6100, Tc = 787.0000, Pc = 1060000.00, Zc = 0.240000, acf = 0.972200, Tb = 641.7500, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.229950, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter **cp90** = cpdata(cid = "NC22", ref = "Default", bib_ref = "", cptype = 7, cp = (/3.92560000e+05,1.18200000e+06,1.72340000e+03,8.15780000e+05,7.85130000e+02, 0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 300.↔ 0000, Tcpmax = 1500.0000)
- type(alphadatadb), parameter twu151 = alphadatadb(eosid="PR", cid="NC22", ref="tcPR", coeff=(/4.↔ 78800000e-01, 7.99000000e-01, 2.84990000e+00/))
- type(cidatadb), parameter c153 = cidatadb(eosid="PR", cid="NC22", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=8.51555000e-05, ciB=0.0000000e+00, ciC=0.0000000e+00, c_type=1)
- type(alphadatadb), parameter twu152 = alphadatadb(eosid="SRK", cid="NC22", ref="tcRK", coeff=(/5.↔ 01600000e-01, 8.08200000e-01, 3.12430000e+00/))

- type(cidatadb), parameter c154 = cidatadb(eosid="SRK", cid="NC22", ref="tcRK", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=1.71456100e-04, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx90 = gendatadb(ident = "NC12", formula = "C12H26", name = "N-DODECANE", mw = 170.3400, Tc = 658.1000, Pc = 1817000.00, Zc = 0.249700, acf = 0.574000, Tb = 489.3000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.00000000e+00, 0.00000000e+00, 0.00000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.246680, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp91 = cpdata(cid = "NC12", ref = "Default", bib_ref = "", cptype = 8, cp = (/1.↔ 72290000e+01,-7.24200000e-03,3.19220000e-04,-4.23220000e-07,1.70220000e-10, 0.00000000e+00,0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu153 = alphadatadb(eosid="PR", cid="NC12", ref="tcPR", coeff=(/3.↔ 95600000e-01, 8.11200000e-01, 2.35490000e+00/))
- type(alphadatadb), parameter twu154 = alphadatadb(eosid="SRK", cid="NC12", ref="tcRK", coeff=(/3.↔ 88700000e-01, 8.27500000e-01, 2.82130000e+00/))
- type(gendatadb), parameter cx91 = gendatadb(ident = "NC20", formula = "C20H42", name = "N-EICOSANE", mw = 282.5500, Tc = 768.0000, Pc = 1070000.00, Zc = 0.243000, acf = 0.865000, Tb = 616.8400, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.↔ 00000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.232780, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter **cp92** = cpdata(cid = "NC20", ref = "Default", bib_ref = "", cptype = 7, cp = (/3.24810000e+05,1.10900000e+06,1.63600000e+03,7.45000000e+05,7.26270000e+02, 0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 200.↔ 0000, Tcpmax = 1500.0000)
- type(alphadatadb), parameter twu155 = alphadatadb(eosid="PR", cid="NC20", ref="tcPR", coeff=(/4.↔ 77100000e-01, 8.16000000e-01, 2.92090000e+00/))
- type(cidatadb), parameter c157 = cidatadb(eosid="PR", cid="NC20", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=6.37019000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu156 = alphadatadb(eosid="SRK", cid="NC20", ref="tcRK", coeff=(/5.↔ 21900000e-01, 8.21000000e-01, 3.08880000e+00/))
- type(gendatadb), parameter cx92 = gendatadb(ident = "NC21", formula = "C21H44", name = "N-HENEICOSANE", mw = 296.5800, Tc = 778.0000, Pc = 1110000.00, Zc = 0.242000, acf = 0.942000, Tb = 629.6500, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.231530, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter **cp93** = cpdata(cid = "NC21", ref = "Default", bib_ref = "", cptype = 7, cp = (/3.82820000e+05,7.71070000e+05,8.01080000e+02,4.99080000e+05,2.36160000e+03, 0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = 300.↔ 0000, Tcpmax = 1500.0000)
- type(alphadatadb), parameter twu157 = alphadatadb(eosid="PR", cid="NC21", ref="tcPR", coeff=(/4.↔ 54600000e-01, 8.18600000e-01, 3.14140000e+00/))
- type(cidatadb), parameter c159 = cidatadb(eosid="PR", cid="NC21", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=7.24116000e-05, ciB=0.0000000e+00, ciC=0.0000000e+00, c_type=1)
- type(alphadatadb), parameter twu158 = alphadatadb(eosid="SRK", cid="NC21", ref="tcRK", coeff=(/5.↔ 3020000e-01, 8.1890000e-01, 3.13490000e+00/))
- type(cidatadb), parameter c160 = cidatadb(eosid="SRK", cid="NC21", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.53342200e-04, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx93 = gendatadb(ident = "NC17", formula = "C17H36", name = "N-HEPTADECANE", mw = 240.4700, Tc = 736.0000, Pc = 1340000.00, Zc = 0.242000, acf = 0.753000, Tb = 574.5600, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.236420, mu_dipole = 0.00000, q_quadrupole = 0.000000)

- type(cpdata), parameter **cp94** = cpdata(cid = "NC17", ref = "Default", bib_ref = "", cptype = 8, cp = (/2.↔ 38130000e+01,-9.21000000e-03,4.53330000e-04,-6.06010000e-07,2.44550000e-10, 0.00000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0., Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter **twu159** = alphadatadb(eosid="PR", cid="NC17", ref="tcPR", coeff=(/5.↔ 25700000e-01, 7.96900000e-01, 2.30920000e+00/))
- type(cidatadb), parameter c161 = cidatadb(eosid="PR", cid="NC17", ref="tcPR", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=5.24579000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu160 = alphadatadb(eosid="SRK", cid="NC17", ref="tcRK", coeff=(/5.↔ 16100000e-01, 8.09800000e-01, 2.69190000e+00/))
- type(cidatadb), parameter c162 = cidatadb(eosid="SRK", cid="NC17", ref="tcRK", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=1.17184700e-04, ciB=0.00000000e+00, ciC=0.00000000e+00, c type=1)
- type(gendatadb), parameter **cx94** = gendatadb(ident = "NC7", formula = "C7H16", name = "N-HEPTANE", mw = 100.2050, Tc = 540.2000, Pc = 2735800.00, Zc = 0.263000, acf = 0.351000, Tb = 371.6000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.58737000e+01, 2.91132000e+03, -5.65100000e+01/), Tantmin = 270.0000, Tantmax = 400.0000, Zra = 0.260400, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter **cp95** = cpdata(cid = "NC7", ref = "Default", bib_ref = "", cptype = 2, cp = (/-1.53725000e-01,7.54499000e-01,2.61728000e-04,4.36635800e-06,-4.48451000e-09, 1.48420990e-12,3.↔ 80048000e-01,0.00000000e+00,0.0000000e+00/), Tcpmin = -75.0000, Tcpmax = 700.↔ 0000)
- type(alphadatadb), parameter **mc50** = alphadatadb(eosid="PR", cid="NC7", ref="Default", coeff=(/1.↔ 22780000e+00, -1.55580000e+00, 3.93610000e+00/))
- type(alphadatadb), parameter **mc51** = alphadatadb(eosid="PR", cid="NC7", ref="Chapoy2005", coeff=(/8.↔ 78000000e-01, -3.10000000e-02, 3.02000000e-01/))
- type(alphadatadb), parameter twu161 = alphadatadb(eosid="PR", cid="NC7", ref="tcPR", coeff=(/3.↔ 29700000e-01, 8.22200000e-01, 1.96150000e+00/))
- type(cidatadb), parameter c163 = cidatadb(eosid="PR", cid="NC7", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=3.09080000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter **mc52** = alphadatadb(eosid="SRK", cid="NC7", ref="Default", coeff=(/1.↔ 22780000e+00, -1.55580000e+00, 3.93610000e+00/))
- type(alphadatadb), parameter mc53 = alphadatadb(eosid="SRK", cid="NC7", ref="Chapoy2005", coeff=(/1.03600000e+00, -2.58000000e-01, 4.88000000e-01/))
- type(alphadatadb), parameter twu162 = alphadatadb(eosid="SRK", cid="NC7", ref="tcRK", coeff=(/3.↔ 26900000e-01, 8.38700000e-01, 2.39600000e+00/))
- type(cidatadb), parameter c164 = cidatadb(eosid="SRK", cid="NC7", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=2.78263000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa17 = CPAdata(eosid="CPA-SRK", compName="NC7", ref="Default/Kontogeorgis-Folas2010", bib_reference="10.1002/9780470747537", a0=2.91780000e+06, b=1.25350000e-01, eps=0...
 00000000e+00, beta=0.00000000e+00, alphacorridx = cbAlphaClassicIdx, alphaParams = (/9.13700000e-01,0.00000000e+00/), assoc_scheme = no_assoc)
- type(gendatadb), parameter cx95 = gendatadb(ident = "NC16", formula = "C16H34", name = "N-HEXADECANE", mw = 226.4460, Tc = 717.0000, Pc = 1418600.00, Zc = 0.230000, acf = 0.742000, Tb = 560.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.61841000e+01, 4.21491000e+03, -1.18700000e+02/), Tantmin = 423.0000, Tantmax = 594.0000, Zra = 0.238800, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp96 = cpdata(cid = "NC16", ref = "Default", bib_ref = "", cptype = 2, cp = (/6.09270110e+01,-9.5563000e-02,3.45931300e-03,-1.35680700e-06,2.65935000e-10, -1.46753000e-14,3.09512800e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(cpdata), parameter **cp97** = cpdata(cid = "NC16", ref = "", bib_ref = "", cptype = 8, cp = (/3.↔ 97470000e+01,-2.06152000e-01,1.14814000e-03,-1.55548000e-06,6.75340000e-10, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter **twu163** = alphadatadb(eosid="PR", cid="NC16", ref="tcPR", coeff=(/5.↔ 37200000e-01, 7.92900000e-01, 2.14580000e+00/))

- type(alphadatadb), parameter twu164 = alphadatadb(eosid="SRK", cid="NC16", ref="tcRK", coeff=(/5.↔ 2620000e-01, 8.0680000e-01, 2.5080000e+00/))
- type(cidatadb), parameter c166 = cidatadb(eosid="SRK", cid="NC16", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.13300800e-04, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx96 = gendatadb(ident = "NC6", formula = "C6H14", name = "N-HEXANE", mw = 86.1780, Tc = 507.4000, Pc = 2968800.00, Zc = 0.260000, acf = 0.296000, Tb = 341.9000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.58366000e+01, 2.69755000e+03, -4.87800000e+01/), Tantmin = 245.0000, Tantmax = 370.0000, Zra = 0.263500, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp98 = cpdata(cid = "NC6", ref = "Default", bib_ref = "", cptype = 2, cp = (/-1.71910710e+01,9.59226000e-01,-6.14725000e-04,6.14210100e-06,-6.16095200e-09, 2.08681900e-12,-2.07040000e-01,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -75.0000, Tcpmax = 700.0000)
- type(alphadatadb), parameter **mc54** = alphadatadb(eosid="PR", cid="NC6", ref="Default", coeff=(/1.↔ 04300000e+00, -1.15530000e+00, 2.92350000e+00/))
- type(alphadatadb), parameter mc55 = alphadatadb(eosid="PR", cid="NC6", ref="Chapoy2005", coeff=(/8.↔ 7000000e-01, -5.8800000e-01, 1.5040000e+00/))
- type(alphadatadb), parameter twu165 = alphadatadb(eosid="PR", cid="NC6", ref="tcPR", coeff=(/2.↔ 55700000e-01, 8.37700000e-01, 2.18710000e+00/))
- type(cidatadb), parameter c167 = cidatadb(eosid="PR", cid="NC6", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=7.92500000e-07, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter mc56 = alphadatadb(eosid="SRK", cid="NC6", ref="Default", coeff=(/1.↔ 04300000e+00, -1.15530000e+00, 2.92350000e+00/))
- type(alphadatadb), parameter mc57 = alphadatadb(eosid="SRK", cid="NC6", ref="Chapoy2005", coeff=(/1.00500000e+00, -5.91000000e-01, 1.20300000e+00/))
- type(alphadatadb), parameter twu166 = alphadatadb(eosid="SRK", cid="NC6", ref="tcRK", coeff=(/2.↔ 77300000e-01, 8.50300000e-01, 2.54390000e+00/))
- type(cpadata), parameter cpa18 = CPAdata(eosid="CPA-SRK", compName="NC6", ref="Default/Kontogeorgis-Folas2010", bib_reference="10.1002/9780470747537", a0=2.36810000e+06, b=1.07890000e-01, eps=0...
 00000000e+00, beta=0.00000000e+00, alphacorridx = cbAlphaClassicIdx, alphaParams = (/8.31300000e-01, 0.00000000e+00/), assoc scheme = no assoc)
- type(gendatadb), parameter cx97 = gendatadb(ident = "NC19", formula = "C19H40", name = "N-NONADECANE", mw = 268.5300, Tc = 755.0000, Pc = 1160000.00, Zc = 0.242000, acf = 0.845000, Tb = 602.3400, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.233370, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp99 = cpdata(cid = "NC19", ref = "Default", bib_ref = "", cptype = 8, cp = (/2.↔ 64470000e+01,-9.99800000e-03,5.06970000e-04,-6.79120000e-07,2.74280000e-10, 0.00000000e+00,0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.,↔ Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu167 = alphadatadb(eosid="PR", cid="NC19", ref="tcPR", coeff=(/5.↔ 9460000e-01, 7.93400000e-01, 2.26540000e+00/))
- type(cidatadb), parameter c169 = cidatadb(eosid="PR", cid="NC19", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=6.49064000e-05, ciB=0.0000000e+00, ciC=0.0000000e+00, c_type=1)
- type(alphadatadb), parameter twu168 = alphadatadb(eosid="SRK", cid="NC19", ref="tcRK", coeff=(/6.↔ 08600000e-01, 8.02400000e-01, 2.52710000e+00/))
- type(cidatadb), parameter c170 = cidatadb(eosid="SRK", cid="NC19", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.37989500e-04, ciB=0.0000000e+00, ciC=0.0000000e+00, c_type=1)
- type(gendatadb), parameter cx98 = gendatadb(ident = "NC9", formula = "C9H20", name = "N-NONANE", mw = 128.2590, Tc = 594.6000, Pc = 2310200.00, Zc = 0.260000, acf = 0.444000, Tb = 424.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.59671000e+01, 3.29145000e+03, -7.13300000e+01/), Tantmin = 312.0000, Tantmax = 452.0000, Zra = 0.254300, mu_dipole = 0.000000, q_quadrupole = 0.000000)

- type(cpdata), parameter cp100 = cpdata(cid = "NC9", ref = "Default", bib_ref = "", cptype = 2, cp = (/4.↔ 00027800e+00,7.07805000e-01,4.38048000e-04,3.96934200e-06,-4.04315800e-09, 1.28760280e-12,2.↔ 57265000e-01,0.0000000e+00,0.0000000e+00/), Tcpmin = -75.0000, Tcpmax = 700.↔ 0000)
- type(alphadatadb), parameter twu169 = alphadatadb(eosid="PR", cid="NC9", ref="tcPR", coeff=(/4.↔ 05400000e-01, 8.09700000e-01, 1.93430000e+00/))
- type(cidatadb), parameter c171 = cidatadb(eosid="PR", cid="NC9", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=9.31890000e-06, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu170 = alphadatadb(eosid="SRK", cid="NC9", ref="tcRK", coeff=(/3.↔ 85800000e-01, 8.29400000e-01, 2.40410000e+00/))
- type(cidatadb), parameter c172 = cidatadb(eosid="SRK", cid="NC9", ref="tcRK", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=4.13357000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa19 = CPAdata(eosid="CPA-SRK", compName="NC9", ref="Default/Kontogeorgis-Folas2010", bib_reference="10.1002/9780470747537", a0=4.12506100e+06, b=1.60350000e-01, eps=0...
 00000000e+00, beta=0.00000000e+00, alphacorridx = cbAlphaClassicIdx, alphaParams = (/1...
 04628000e+00,0.0000000e+00,0.0000000e+00/), assoc_scheme = no_assoc)
- type(gendatadb), parameter cx99 = gendatadb(ident = "NC18", formula = "C18H38", name = "N-OCTADECANE", mw = 254.5000, Tc = 747.0000, Pc = 1290000.00, Zc = 0.247000, acf = 0.800000, Tb = 588.3000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.234730, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp101 = cpdata(cid = "NC18", ref = "Default", bib_ref = "", cptype = 8, cp = (/2.↔ 51300000e+01,-9.60300000e-03,4.80150000e-04,-6.42560000e-07,2.59420000e-10, 0.00000000e+00,0.↔ 00000000e+00,0.00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu171 = alphadatadb(eosid="PR", cid="NC18", ref="tcPR", coeff=(/5.↔ 53300000e-01, 7.95500000e-01, 2.30670000e+00/))
- type(cidatadb), parameter c173 = cidatadb(eosid="PR", cid="NC18", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=5.90709000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu172 = alphadatadb(eosid="SRK", cid="NC18", ref="tcRK", coeff=(/5.↔ 5000000e-01, 8.07600000e-01, 2.65400000e+00/))
- type(cidatadb), parameter c174 = cidatadb(eosid="SRK", cid="NC18", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.27994400e-04, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx100 = gendatadb(ident = "NC8", formula = "C8H18", name = "N-OCTANE", mw = 114.2320, Tc = 568.8000, Pc = 2482500.00, Zc = 0.259000, acf = 0.394000, Tb = 398.8000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.59426000e+01, 3.12029000e+03, -6.36300000e+01/), Tantmin = 292.0000, Tantmax = 425.0000, Zra = 0.257100, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp102 = cpdata(cid = "NC8", ref = "Default", bib_ref = "", cptype = 2, cp = (/2.↔ 60472500e+00,7.24670000e-01,3.67845000e-04,4.14283300e-06,-4.24019900e-09, 1.37340550e-12,3.↔ 27588000e-01,0.0000000e+00,0.0000000e+00/), Tcpmin = -75.0000, Tcpmax = 700.↔ 0000)
- type(alphadatadb), parameter **mc58** = alphadatadb(eosid="PR", cid="NC8", ref="Default", coeff=(/1.↔ 27980000e+00, -1.38220000e+00, 3.39330000e+00/))
- type(alphadatadb), parameter **mc59** = alphadatadb(eosid="PR", cid="NC8", ref="Chapoy2005", coeff=(/9.↔ 58000000e-01, -1.34000000e-01, 4.87000000e-01/))
- type(alphadatadb), parameter twu173 = alphadatadb(eosid="PR", cid="NC8", ref="tcPR", coeff=(/3.↔ 38500000e-01, 8.18500000e-01, 2.07470000e+00/))
- type(cidatadb), parameter c175 = cidatadb(eosid="PR", cid="NC8", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=6.41340000e-06, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter **mc60** = alphadatadb(eosid="SRK", cid="NC8", ref="Default", coeff=(/1.↔ 27980000e+00, -1.38220000e+00, 3.39330000e+00/))
- type(alphadatadb), parameter mc61 = alphadatadb(eosid="SRK", cid="NC8", ref="Chapoy2005", coeff=(/1.15000000e+00, -5.87000000e-01, 1.09600000e+00/))
- type(alphadatadb), parameter twu174 = alphadatadb(eosid="SRK", cid="NC8", ref="tcRK", coeff=(/3.↔ 44900000e-01, 8.34100000e-01, 2.46600000e+00/))

- type(cidatadb), parameter c176 = cidatadb(eosid="SRK", cid="NC8", ref="tcRK", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=3.48304000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(cpadata), parameter cpa20 = CPAdata(eosid="CPA-SRK", compName="NC8", ref="Default/Kontogeorgis-Folas2010", bib_reference="10.1002/9780470747537", a0=3.48750000e+06, b=1.42440000e-01, eps=0...
 00000000e+00, beta=0.00000000e+00, alphacorridx = cbAlphaClassicIdx, alphaParams = (/9.94150000e-01,0.0000000e+00/), assoc_scheme = no_assoc)
- type(gendatadb), parameter cx101 = gendatadb(ident = "NC25", formula = "C25H52", name = "N-PENTACOSANE", mw = 352.6900, Tc = 812.0000, Pc = 950000.00, Zc = 0.240000, acf = 1.105300, Tb = 674.1500, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.228110, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu175 = alphadatadb(eosid="PR", cid="NC25", ref="tcPR", coeff=(/5.↔ 71700000e-01, 7.80300000e-01, 2.46660000e+00/))
- type(alphadatadb), parameter twu176 = alphadatadb(eosid="SRK", cid="NC25", ref="tcRK", coeff=(/6.↔ 03400000e-01, 7.79000000e-01, 2.50350000e+00/))
- type(cidatadb), parameter c178 = cidatadb(eosid="SRK", cid="NC25", ref="tcRK", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=2.11001600e-04, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx102 = gendatadb(ident = "NC15", formula = "C15H32", name = "N-PENTADECANE", mw = 212.4200, Tc = 708.0000, Pc = 1480000.00, Zc = 0.243000, acf = 0.685000, Tb = 543.8300, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.238360, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter twu177 = alphadatadb(eosid="PR", cid="NC15", ref="tcPR", coeff=(/4.↔ 77000000e-01, 7.97000000e-01, 2.26360000e+00/))
- type(alphadatadb), parameter twu178 = alphadatadb(eosid="SRK", cid="NC15", ref="tcRK", coeff=(/4.↔ 93500000e-01, 8.08700000e-01, 2.55440000e+00/))
- type(cidatadb), parameter c180 = cidatadb(eosid="SRK", cid="NC15", ref="tcRK", bib_ref="10.1016/j.fluid.⇔ 2016.09.003", ciA=1.02313400e-04, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx103 = gendatadb(ident = "NC5", formula = "C5H12", name = "N-PENTAN", mw = 72.1510, Tc = 469.6000, Pc = 3374100.00, Zc = 0.262000, acf = 0.251000, Tb = 309.2000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.58333000e+01, 2.47707000e+03, -3.99400000e+01/), Tantmin = 220.0000, Tantmax = 330.0000, Zra = 0.268400, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp105 = cpdata(cid = "NC5", ref = "Default", bib_ref = "", cptype = 2, cp = (/6.32016770e+01,-1.17010000e-02,3.31649800e-03,-1.17051000e-06,1.99648000e-10, -8.66520000e-15,4.07527500e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter **mc62** = alphadatadb(eosid="PR", cid="NC5", ref="Default", coeff=(/9.↔ 8200000e-01, -1.16950000e+00, 2.75230000e+00/))
- type(alphadatadb), parameter mc63 = alphadatadb(eosid="PR", cid="NC5", ref="Chapoy2005", coeff=(/7.↔ 63000000e-01, -2.24000000e-01, 6.69000000e-01/))
- type(alphadatadb), parameter **mc64** = alphadatadb(eosid="SRK", cid="NC5", ref="Default", coeff=(/9.↔ 8200000e-01, -1.16950000e+00, 2.75230000e+00/))
- type(alphadatadb), parameter mc65 = alphadatadb(eosid="SRK", cid="NC5", ref="Chapoy2005", coeff=(/9.01000000e-01, -3.05000000e-01, 5.42000000e-01/))

- type(cpadata), parameter cpa21 = CPAdata(eosid="CPA-SRK", compName="NC5", ref="Default/Kontogeorgis-Folas2010", bib_reference="10.1002/9780470747537", a0=1.81980000e+06, b=9.10080000e-02, eps=0...
 00000000e+00, beta=0.00000000e+00, alphacorridx = cbAlphaClassicIdx, alphaParams = (/7.98580000e-01,0.00000000e+00/), assoc_scheme = no_assoc)
- type(gendatadb), parameter cx104 = gendatadb(ident = "NC14", formula = "C14H30", name = "N-TETRADECANE", mw = 198.3900, Tc = 693.0000, Pc = 1570000.00, Zc = 0.244000, acf = 0.644000, Tb = 526.7600, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.240060, mu_dipole = 0.00000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp106 = cpdata(cid = "NC14", ref = "Default", bib_ref = "", cptype = 8, cp = (/1.↔ 83750000e+01,6.58500000e-03,3.23070000e-04,-4.26630000e-07,1.65900000e-10, 0.0000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu179 = alphadatadb(eosid="PR", cid="NC14", ref="tcPR", coeff=(/4.↔ 90200000e-01, 7.97400000e-01, 2.13530000e+00/))
- type(cidatadb), parameter c181 = cidatadb(eosid="PR", cid="NC14", ref="tcPR", bib_ref="10.1016/j.fluid.... 2016.09.003", ciA=3.96525000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu180 = alphadatadb(eosid="SRK", cid="NC14", ref="tcRK", coeff=(/4.↔ 84100000e-01, 8.11800000e-01, 2.49950000e+00/))
- type(cidatadb), parameter c182 = cidatadb(eosid="SRK", cid="NC14", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=9.26542000e-05, ciB=0.0000000e+00, ciC=0.0000000e+00, c_type=1)
- type(gendatadb), parameter $cx105 = gendatadb(ident = "NC24", formula = "C24H50", name = "N-TETRACOSANE", mw = 338.6600, Tc = 804.0000, Pc = 980000.00, Zc = 0.239000, acf = 1.071000, Tb = 664.4500, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.0000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.228390, mu_dipole = 0.00000, q_quadrupole = 0.000000)$
- type(alphadatadb), parameter twu181 = alphadatadb(eosid="PR", cid="NC24", ref="tcPR", coeff=(/4.↔ 65600000e-01, 8.09700000e-01, 3.35130000e+00/))
- type(cidatadb), parameter c183 = cidatadb(eosid="PR", cid="NC24", ref="tcPR", bib_ref="10.1016/j.fluid.... 2016.09.003", ciA=8.96547000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu182 = alphadatadb(eosid="SRK", cid="NC24", ref="tcRK", coeff=(/5.↔ 37300000e-01, 8.09500000e-01, 3.35700000e+00/))
- type(cidatadb), parameter c184 = cidatadb(eosid="SRK", cid="NC24", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.83043000e-04, ciB=0.0000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx106 = gendatadb(ident = "NC23", formula = "C23H48", name = "N-TRICOSANE", mw = 324.6300, Tc = 796.0000, Pc = 1020000.00, Zc = 0.240000, acf = 1.026200, Tb = 653.3500, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.229280, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(alphadatadb), parameter **twu183** = alphadatadb(eosid="PR", cid="NC23", ref="tcPR", coeff=(/4.↔ 69700000e-01, 8.14200000e-01, 3.24260000e+00/))
- type(cidatadb), parameter c185 = cidatadb(eosid="PR", cid="NC23", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=8.45878000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu184 = alphadatadb(eosid="SRK", cid="NC23", ref="tcRK", coeff=(/5.↔ 44000000e-01, 8.14300000e-01, 3.24000000e+00/))
- type(cidatadb), parameter c186 = cidatadb(eosid="SRK", cid="NC23", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.73915900e-04, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)

- type(gendatadb), parameter cx107 = gendatadb(ident = "NC13", formula = "C13H28", name = "N-TRIDECANE", mw = 184.3700, Tc = 675.0000, Pc = 1680000.00, Zc = 0.246000, acf = 0.618000, Tb = 508.6300, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/0.00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.243240, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp109 = cpdata(cid = "NC13", ref = "Default", bib_ref = "", cptype = 8, cp = (/1.↔ 85460000e+01,-7.63600000e-03,3.46040000e-04,-4.59780000e-07,1.85090000e-10, 0.00000000e+00,0.↔ 00000000e+00,0.0000000e+00,0.0000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu185 = alphadatadb(eosid="PR", cid="NC13", ref="tcPR", coeff=(/4.↔ 48200000e-01, 8.03900000e-01, 2.23430000e+00/))
- type(cidatadb), parameter c187 = cidatadb(eosid="PR", cid="NC13", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=3.00534000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu186 = alphadatadb(eosid="SRK", cid="NC13", ref="tcRK", coeff=(/4.↔ 47100000e-01, 8.17500000e-01, 2.60970000e+00/))
- type(cidatadb), parameter c188 = cidatadb(eosid="SRK", cid="NC13", ref="tcRK", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=7.83925000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(gendatadb), parameter cx108 = gendatadb(ident = "NC11", formula = "C11H24", name = "N-UNDECANE", mw = 156.3120, Tc = 639.0000, Pc = 1980000.00, Zc = 0.257000, acf = 0.537000, Tb = 469.1000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.0000, psatcode = 1, ant = (/1.60541000e+01, 3.61407000e+03, -8.54500000e+01/), Tantmin = 348.0000, Tantmax = 498.0000, Zra = 0.249900, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- type(cpdata), parameter cp110 = cpdata(cid = "NC11", ref = "Default", bib_ref = "", cptype = 2, cp = (/6.52905640e+01,-9.98270000e-02,3.47249500e-03,-1.35433600e-06,2.64721000e-10, -1.45574000e-14,3.40795900e+00,0.00000000e+00,0.0000000e+00/), Tcpmin = -20.0000, Tcpmax = 1200.0000)
- type(alphadatadb), parameter twu187 = alphadatadb(eosid="PR", cid="NC11", ref="tcPR", coeff=(/4.↔ 1850000e-01, 8.0710000e-01, 2.12240000e+00/))
- type(cidatadb), parameter c189 = cidatadb(eosid="PR", cid="NC11", ref="tcPR", bib_ref="10.1016/j.fluid.↔ 2016.09.003", ciA=1.81817000e-05, ciB=0.00000000e+00, ciC=0.00000000e+00, c_type=1)
- type(alphadatadb), parameter twu188 = alphadatadb(eosid="SRK", cid="NC11", ref="tcRK", coeff=(/4. ← 01800000e-01, 8.24500000e-01, 2.58800000e+00/))
- type(gendatadb), parameter cx109 = gendatadb(ident = "PSEUDO", formula = "XXX", name = "PSEUDO", mw = 100.0000, Tc = 100.0000, Pc = 1000000.00, Zc = 0.300000, acf = 0.000000, Tb = 0.0000, Ttr = 0.0000, Ptr = 0.0000, sref = 0.0000, href = 0.0000, DfH = 0.0000, DfG = 0.00000, psatcode = 1, ant = (/0.↔ 00000000e+00, 0.0000000e+00, 0.0000000e+00/), Tantmin = 0.0000, Tantmax = 0.0000, Zra = 0.254400, mu_dipole = 0.000000, q_quadrupole = 0.000000)
- integer, parameter maxncdb =109
- type(gendatadb), dimension(maxncdb), parameter compdb = (/ cx1,cx2,cx3,cx4,cx5, cx6,cx7,cx8,cx9,cx10, cx11,cx12,cx13,cx14,cx15, cx16,cx17,cx18,cx19,cx20, cx21,cx22,cx23,cx24,cx25, cx26,cx27,cx28,cx29,cx30, cx31,cx32,cx33,cx34,cx35, cx36,cx37,cx38,cx39,cx40, cx41,cx42,cx43,cx44,cx45, cx46,cx47,cx48,cx49,cx50, cx51,cx52,cx53,cx54,cx55, cx56,cx57,cx58,cx59,cx60, cx61,cx62,cx63,cx64,cx65, cx66,cx67,cx68,cx69,cx70, cx71,cx72,cx73,cx74,cx75, cx76,cx77,cx78,cx79,cx80, cx81,cx82,cx83,cx84,cx85, cx86,cx87,cx88,cx89,cx90, cx91,cx92,cx93,cx94,cx95, cx96,cx97,cx98,cx99,cx100, cx101,cx102,cx103,cx104,cx105, cx106,cx107,cx108,cx109 /)
- integer, parameter maxcpdb =111
- type(cpdata), dimension(maxcpdb), parameter cpdb = (/ cp1,cp2,cp3,cp4,cp5, cp6,cp7,cp8,cp9,cp10, cp11,cp12,cp13,cp14,cp15, cp16,cp17,cp18,cp19,cp20, cp21,cp22,cp23,cp24,cp25, cp26,cp27,cp28,cp29,cp30, cp31,cp32,cp33,cp34,cp35, cp36,cp37,cp38,cp39,cp40, cp41,cp42,cp43,cp44,cp45, cp46,cp47,cp48,cp49,cp50, cp51,cp52,cp53,cp54,cp55, cp56,cp57,cp58,cp59,cp60, cp61,cp62,cp63,cp64,cp65, cp66,cp67,cp68,cp69,cp70, cp71,cp72,cp73,cp74,cp75, cp76,cp77,cp78,cp79,cp80, cp81,cp82,cp83,cp84,cp85, cp86,cp87,cp88,cp89,cp90,

cp91,cp92,cp93,cp94,cp95, cp96,cp97,cp98,cp99,cp100, cp101,cp102,cp103,cp104,cp105, cp106,cp107,cp108,cp109,cp110, cp111 /)

- integer, parameter maxtwudb =188
- type(alphadatadb), dimension(maxtwudb), parameter alphatwudb = (/ twu1,twu2,twu3,twu4,twu5, twu6,twu7,twu8,twu9,twu10, twu11,twu12,twu13,twu14,twu15, twu16,twu17,twu18,twu19,twu20, twu21,twu22,twu23,twu24,twu twu26,twu27,twu28,twu29,twu30, twu31,twu32,twu33,twu34,twu35, twu36,twu37,twu38,twu39,twu40, twu41,twu42,twu43,twu44,twu45, twu46,twu47,twu48,twu49,twu50, twu51,twu52,twu53,twu54,twu55, twu56,twu57,twu58,twu59,twu60, twu61.twu62.twu63.twu64.twu65. twu66.twu67.twu68.twu69.twu70. twu71,twu72,twu73,twu74,twu75, twu76,twu77,twu78,twu79,twu80, twu81,twu82,twu83,twu84,twu85, twu86,twu87,twu88,twu89,twu90, twu91,twu92,twu93,twu94,twu95, twu96,twu97,twu98,twu99,twu100, twu101,twu102,twu103,twu104,twu105, twu106,twu107,twu108,twu109,twu110, twu111,twu112,twu113,twu114,twu115, twu116,twu117,twu118,twu119,twu120, twu121,twu122,twu123,twu124,twu125, twu126,twu127,twu128,twu129,twu130, twu131,twu132,twu133,twu134,twu135, twu136,twu137,twu138,twu139,twu140, twu141,twu142,twu143,twu144,twu145, twu146,twu147,twu148,twu149,twu150, twu151,twu152,twu153,twu154,twu155, twu156,twu157,twu158,twu159,twu160, twu161,twu162,twu163,twu164,twu165, twu166,twu167,twu168,twu169,twu170, twu171,twu172,twu173,twu174,twu175, twu176,twu177,twu178,twu179,twu180, twu181,twu182,twu183,twu184,twu185, twu186,twu187,twu188 /)
- integer, parameter maxmcdb =65
- type(alphadatadb), dimension(maxmcdb), parameter alphamcdb = (/ mc1,mc2,mc3,mc4,mc5, mc6,mc7,mc8,mc9,mc10, mc11,mc12,mc13,mc14,mc15, mc16,mc17,mc18,mc19,mc20, mc21,mc22,mc23,mc24,mc25, mc26,mc27,mc28,mc29,mc30, mc31,mc32,mc33,mc34,mc35, mc36,mc37,mc38,mc39,mc40, mc41,mc42,mc43,mc44,mc45, mc46,mc47,mc48,mc49,mc50, mc51,mc52,mc53,mc54,mc55, mc56,mc57,mc58,mc59,mc60, mc61,mc62,mc63,mc64,mc65 /)
- integer, parameter maxcidb =190
- type(cidatadb), dimension(maxcidb), parameter cidb = (/ c1,c2,c3,c4,c5, c6,c7,c8,c9,c10, c11,c12,c13,c14,c15, c16,c17,c18,c19,c20, c21,c22,c23,c24,c25, c26,c27,c28,c29,c30, c31,c32,c33,c34,c35, c36,c37,c38,c39,c40, c41,c42,c43,c44,c45, c46,c47,c48,c49,c50, c51,c52,c53,c54,c55, c56,c57,c58,c59,c60, c61,c62,c63,c64,c65, c66,c67,c68,c69,c70, c71,c72,c73,c74,c75, c76,c77,c78,c79,c80, c81,c82,c83,c84,c85, c86,c87,c88,c89,c90, c91,c92,c93,c94,c95, c96,c97,c98,c99,c100, c101,c102,c103,c104,c105, c106,c107,c108,c109,c110, c111,c112,c113,c114,c115, c116,c117,c118,c119,c120, c121,c122,c123,c124,c125, c126,c127,c128,c129,c130, c131,c132,c133,c134,c135, c136,c137,c138,c139,c140, c141,c142,c143,c144,c145, c146,c147,c148,c149,c150, c151,c152,c153,c154,c155, c156,c157,c158,c159,c160, c161,c162,c163,c164,c165, c166,c167,c168,c169,c170, c171,c172,c173,c174,c175, c176,c177,c178,c179,c180, c181,c182,c183,c184,c185, c186,c187,c188,c189,c190 /)
- integer, parameter ncpamodels =21
- type(cpadata), dimension(ncpamodels), parameter cpaarray = (/ cpa1,cpa2,cpa3,cpa4,cpa5, cpa6,cpa7,cpa8,cpa9,cpa10, cpa11,cpa12,cpa13,cpa14,cpa15, cpa16,cpa17,cpa18,cpa19,cpa20, cpa21 /)

5.10.1 Detailed Description

Automatically generated to file compdatadb.f90 using utility python code pyUtils Time stamp: 2023-09-28T12:56 ↔ :50.126803.

5.11 complexmodelinit Module Reference

Initialization of complex models. These models are typically comprised of several specific sub-models, and when used together they define a known model.

Functions/Subroutines

- subroutine, public init_vtpr (ncomp, comp_string, nphases, kij_ref, alpha_ref)
 - Initialize VTPR unifac-pr based model See Schmid 2014 (10.1021/ie404118f) or later.
- subroutine, public init_umr (ncomp, comp_string, nphases, kij_ref, alpha_ref) Initialize UMR unifac-pr based model See: 10.1021/ie049580p.

5.11.1 Detailed Description

Initialization of complex models. These models are typically comprised of several specific sub-models, and when used together they define a known model.

Author

MH, 2016-12

5.11.2 Function/Subroutine Documentation

5.11.2.1 init_umr()

```
subroutine, public complexmodelinit::init_umr (
    integer, intent(in) ncomp,
    character(len=*), intent(in) comp_string,
    integer, intent(in) nphases,
    character(len=*), intent(in), optional kij_ref,
    character(len=*), intent(in), optional alpha_ref )
```

Initialize UMR unifac-pr based model See: 10.1021/ie049580p.

Author

MH, 2016-12

Parameters

in	псотр	Number of components
in	comp_string	String defining components. Comma or white-space separated.
in	nphases	Number of phases
in	alpha_ref	Data set numbers

5.11.2.2 init_vtpr()

```
subroutine, public complexmodelinit::init_vtpr (
    integer, intent(in) ncomp,
    character(len=*), intent(in) comp_string,
    integer, intent(in) nphases,
    character(len=*), intent(in), optional kij_ref,
    character(len=*), intent(in), optional alpha_ref )
```

Initialize VTPR unifac-pr based model See Schmid 2014 (10.1021/ie404118f) or later.

Author

MH, 2016-12

Parameters

in	псотр	Number of components
in	comp_string	String defining components. Comma or white-space separated.
in	nphases	Number of phases
in	alpha_ref	Data set numbers

5.12 cpa_parameters Module Reference

Module for CPA parameters.

Functions/Subroutines

• integer function getcpadataidx (eos, compname, param_ref)

Get the index in the CPAarray of the component having uid given by compName. idx=0 if component isn't in database. • logical function **mixhasselfassociatingcomp** (nc, eos, complist, ref)

- Get information on if it is safe to initialize CPA ie. are there any self-associating components in the mix.
- subroutine **getcpapureparams_allcomps** (nc, comp, eosidx, ref, found, a0, b, alphaparams, eps, beta, alphacorridx, scheme)
- subroutine **getcpapureparams_singlecomp** (compname, eos, ref, found, a0, b, alphaparams, eps, beta, alphacorridx, scheme)
- subroutine getcpakijandcombrules_allcomps (nc, comp, eosidx, aepsbeta_kij, epsbeta_combrules)
- subroutine getcpakij_epsbeta (eosidx, uid1, uid2, param_ref, found, epsbetacombrules, kijepsbeta)

Retrieve association binary interaction parameter for components uid1 and uid2. Found is true if and only if the parameters is in the database. As of now this function sets interaction parameters to 0.0 if epsBetaCombRules is not exactly what is inputted.

• real function **getcpakij_a** (eosidx, uid1, uid2, found)

Retrieve cubic binary interaction parameter for components uid1 and uid2, with set number setno. found is true if and only if the parameter is in the database.

• subroutine getcpageij (mge, eosid, ref, uid1, uid2, indxi, indxj, found)

5.12.1 Detailed Description

Module for CPA parameters.

5.13 critical Module Reference

Calculate critical point of a mixture. Good initial values assumed. Based on: M.L. Michelsen, Calculation of critical points and phase boundaries in the critical region. Fluid phase equilibria, 16, 1984, pp. 57-76.

Functions/Subroutines

- subroutine, public calccritical (t, p, z, phase, ierr, tol)
 - Calculate critical point for mixture given good inital guess.
- real function, public calcstabmineig (t, p, z, phase)
 - Calculate minimum eigenvalue for stability matrix.
- real function, public calcstabmineigtv (t, v, z)
 Calculate minimum eigenvalue for stability matrix.
- subroutine, public calcbmatrixtv (t, v, z, zs, b, u, lambdamin, lnfugz, lnfugtz, lnfugvz) *Calculate stability matrix (B) and minimum eigenvalue with eigenvector.*
- subroutine, public stabfuntv (fun, x, param)

Function value for calculating stability limit given v.

subroutine, public stabjactv (df, x, param)

Differentials of b wrpt. T.

• subroutine, public stabfun (fun, x, param)

Function value for calculating stability limit given pressure.

subroutine, public calcoriticaltv (t, v, z, ierr, tol, v_min, p)

Calculate critical point in variables T and V Method of Michelsen 1984 is implemented using temperature (T) and volume (V) as variables If the initial temperature T < 0.0, the pseudo-critical temperature is used as initial value. If the initial volume V < 0.0, the V = 4.0*b is used as initial value.

• subroutine, public calccriticalz (t, v, p, z, s, ierr, tol, free_comp, iter)

Calculate critical point specified z (s=1), T (s=2), V (s=3) or P (s=4) Good initial values are assumed.

subroutine, public critzsensitivity (z, ic, x, dxds, s, ierr)

Sensitivities of critical equation system.

• subroutine, public calccriticalendpoint (t, vc, zc, y, vy, ierr, tol, free_comp)

Calculate critical point in equilibrium with incipient phase Good initial values are assumed.

5.13.1 Detailed Description

Calculate critical point of a mixture. Good initial values assumed. Based on: M.L. Michelsen, Calculation of critical points and phase boundaries in the critical region. Fluid phase equilibria, 16, 1984, pp. 57-76.

5.13.2 Function/Subroutine Documentation

5.13.2.1 calcbmatrixtv()

```
subroutine, public critical::calcbmatrixtv (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(nc), intent(in) z,
    real, dimension(nc), intent(in) zs,
    real, dimension(nc,nc), intent(out) b,
    real, dimension(nc), intent(out) u,
    real, intent(out) lambdamin,
    real, dimension(nc), intent(out) lnfugz,
    real, dimension(nc), intent(out) lnfugzz,
    real, dimension(nc), intent(out) lnfugzz)
```

Calculate stability matrix (B) and minimum eigenvalue with eigenvector.

Author

MH, 2015-11

79

Overall composition in Ζ in zs z Temperature in t Specific volume (m3/mol) in v b Stability matrix out lambdamin Eigenvalue out out Eigenvector и

5.13.2.2 calccritical()

```
subroutine, public critical::calccritical (
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    integer, intent(out) ierr,
    real, intent(in), optional tol )
```

Calculate critical point for mixture given good inital guess.

Todo Add v=sqrt(z) to paramater vector

Author

MH, 2014-11

Parameters

in	Z	Trial composition (Overall compozition)
in,out	t	Temperature [K]
in,out	р	Pressure [Pa]
in	phase	Phase identifer
out	ierr	Error flag
in	tol	Toleranse

5.13.2.3 calccriticalendpoint()

```
subroutine, public critical::calccriticalendpoint (
    real, intent(inout) t,
    real, intent(inout) vc,
    real, dimension(nc), intent(inout) zc,
    real, dimension(nc), intent(inout) y,
    real, intent(inout) vy,
    integer, intent(out) ierr,
```

Parameters

```
real, intent(in), optional tol,
integer, intent(in), optional free_comp )
```

Calculate critical point in equilibrium with incipient phase Good initial values are assumed.

Author

MH, 2019-04

Parameters

in,out	ZC	Trial composition (Overall compozition)
in,out	t	Temperature [K]
in,out	VC	Volume [m3/mol]
in,out	vy	Volume [m3/mol]
in,out	У	Incipient phase
out	ierr	Error flag
in	tol	Toleranse
in	free_comp	Component variable

5.13.2.4 calccriticaltv()

```
subroutine, public critical::calccriticaltv (
    real, intent(inout) t,
    real, intent(inout) v,
    real, dimension(nc), intent(in) z,
    integer, intent(out) ierr,
    real, intent(in), optional tol,
    real, intent(in), optional v_min,
    real, intent(out), optional p)
```

Calculate critical point in variables T and V Method of Michelsen 1984 is implemented using temperature (T) and volume (V) as variables If the initial temperature T < 0.0, the pseudo-critical temperature is used as initial value. If the initial volume V < 0.0, the V = 4.0*b is used as initial value.

Author

MH, 2016-01

Parameters

in	Z	Trial composition (Overall compozition)
in,out	t	Temperature [K]
in,out	V	Pressure [m3/mol]
out	ierr	Error flag
in	tol	Toleranse
in	v_min	Override lower volume limit (m3/mol)
out	р	Pressure (Pa)

81

5.13.2.5 calccriticalz()

```
subroutine, public critical::calccriticalz (
    real, intent(inout) t,
    real, intent(inout) v,
    real, intent(inout) p,
    real, dimension(nc), intent(inout) z,
    integer, intent(in) s,
    integer, intent(out) ierr,
    real, intent(in), optional tol,
    integer, intent(in), optional free_comp,
    integer, intent(out), optional iter )
```

Calculate critical point specified z (s=1), T (s=2), V (s=3) or P (s=4) Good initial values are assumed.

Author

MH, 2019-04

Parameters

in,out	Ζ	Trial composition (Overall compozition)
in,out	t	Temperature [K]
in,out	V	Volume [m3/mol]
in,out	p	Pressure [Pa]
in	S	Specification
out	ierr	Error flag
in	tol	Toleranse
in	free_comp	Component variable
out	iter	Number of iterations

5.13.2.6 calcstabmineig()

```
real function, public critical::calcstabmineig (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase )
```

Calculate minimum eigenvalue for stability matrix.

Author

MH, 2013-10-10

Parameters

in	Ζ	Overall composition
in	t	Temperature
in	р	Pressure
in	phase	Phase identifer
Returns

Eigenvalue

5.13.2.7 calcstabmineigtv()

```
real function, public critical::calcstabmineigtv (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(nc), intent(in) z )
```

Calculate minimum eigenvalue for stability matrix.

Author

MH, 2015-11

Parameters

in	Z	Overall composition
in	t	Temperature (K)
in	v	Volume (m3/mol)

Returns

Eigenvalue

5.13.2.8 critzsensitivity()

```
subroutine, public critical::critzsensitivity (
    real, dimension(nc), intent(in) z,
    integer, intent(in) ic,
    real, dimension(4), intent(in) x,
    real, dimension(4), intent(out) dxds,
    integer, intent(in) s,
    integer, intent(out) ierr )
```

Sensitivities of critical equation system.

Author

MH, 2019-04

out	dxds	System sensitivities
in	x	Variables
in	Ζ	Composition
in	S	Specification
in	ic	Component specification
Out Generated b	<i>ierr</i> y Doxygen	Error flag

5.13.2.9 stabfun()

```
subroutine, public critical::stabfun (
    real, dimension(1), intent(out) fun,
    real, dimension(1), intent(in) x,
    real, dimension(nc+2), intent(in) param )
```

Function value for calculating stability limit given pressure.

Author

MH, 2015-11

Parameters

out	fun	Function value
in	x	Variables
in	param	Parameters

5.13.2.10 stabfuntv()

```
subroutine, public critical::stabfuntv (
    real, dimension(1), intent(out) fun,
    real, dimension(1), intent(in) x,
    real, dimension(nc+1), intent(in) param )
```

Function value for calculating stability limit given v.

Author

MH, 2015-11

Parameters

out	fun	Function value
in	x	Variables
in	param	Parameters

5.13.2.11 stabjactv()

```
subroutine, public critical::stabjactv (
    real, dimension(1,1), intent(out) df,
    real, dimension(1), intent(in) x,
    real, dimension(nc+1), intent(in) param )
```

Differentials of b wrpt. T.

Author

MH, 2015-11

out	df	Function differential
in	x	Variables
in	param	Parameters

5.14 cubic Module Reference

This module contains methods for various cubic equation of states The cubic eos's are formulated using the m1 and the m2. Suppoerted cubic EOS's SRK - Soave-Redlich-Kwong PR - Peng Robinson VdW - Van Der Waals RK - Redlich-Kwong SW - Schmidt and Wenzel PT - Patel-Teja.

Data Types

• type cbbig

Functions/Subroutines

- subroutine cbcalcderivatives (nc, cbeos, t, p, zfac)
- subroutine, public cbcalcderivatives_svol (nc, cbeos, t, v)
- subroutine, public **cbcalcpressure** (nc, cbeos, t, v, z, p, dpdv, dpdt, d2pdv2, dpdz, recalculate) *Explicit calculation of pressure including the volume and temperature derivative.*
- subroutine cb_solve_cubic_zfac (p2, p1, p0, z, lconverged)

Find a root z0 of the cubic polynomial.

- subroutine cb_cubic_second_zfac (p2, p1, z0, zl, zg, iflag)
 - Having found the compressibility factor z = z0, that satisfies f(z0) = 0 for the cubic polynomial.
- subroutine cbsolvecubiczfac (pp, qq, rr, z, ifail) This subroutine solves a cubic polynomial.
- subroutine cbsolvecubiczfacminimumgibb (cbeos, t, p, pp, qq, rr, big, zfac, ifail, phase)
- subroutine, public cbcalczfac (nc, cbeos, t, p, z, iphase, zfac, gflag_opt, dzdt, dzdp, dzdz, mingphase)
- subroutine **cbcalczfacdiff** (nc, cbeos, t, p, zfac, dzdt, dzdp, dzdz)
- subroutine, public cbgres (cbeos, t, p, zfac, gr, dgrdt, dgrdp)

The function to find the residual Gibbs free energy for the cubic equation of state.

subroutine, public cbcalcfug (nc, cbeos, t, p, zfac, res_fug, dlnfdt, dlnfdp, dlnfdz)

The subroutine finds the fugacity coefficients and derivatives.

- subroutine, public cbcalcentropy (nc, cbeos, t, p, z, phase, res_entropy, gflag_opt, dsdt, dsdp, dsdz) The subroutine finds the entropy residual of cubic Equations of State optionally the derivatives.
- subroutine, public cbcalcenthalpy (nc, cbeos, t, p, z, phase, res_enthalpy, gflag_opt, dhdt, dhdp, dhdz) The subroutine finds the enthalpy residual of cubic Equations of State optionally the derivatives.
- subroutine cbcalcinnerenergy (nc, cbeos, t, v, z, u, dudt, dudv, recalculate)

The subroutine finds the innerenergy residual of cubic Equations of State optionally the derivatives.

- subroutine, public cbcalcpseudo (nc, cbeos, z, tpc, ppc, zpc, vpc)
 - The subroutine calculates the pseudocritical temperature, pressure, acentric factor compressibility and volume as function of composition. The pseudo-critical point is the state where with constant Temperature: $(dP/dV)=(d2P/d \leftrightarrow V^2)=0$.
- subroutine, public cbdumpeosdata (nc, cbeos, t, p, zfac)
- subroutine, public cbcalcfreeenergy (nc, cbeos, t, v, z, y, dydt, dydv, recalculate)

Subroutine finds Helmholtz free energy residual of cubic EoS optionally the derivatives with respect to T, v.

- subroutine, public cbcalcfres (nc, cbeos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn, recalculate) *Calculate resudial reduced Helmholtz and differentials.*
- subroutine **calccbfder_res_si** (nc, cbeos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vv, f_nn, f_vvv, recalculate)

Calculates the contibution to the reduced residual Helmholtz energy F coming from the cubic eos, along with its derivatives. Note!!! Input and output in SI units.

5.14.1 Detailed Description

This module contains methods for various cubic equation of states The cubic eos's are formulated using the m1 and the m2. Suppoerted cubic EOS's SRK - Soave-Redlich-Kwong PR - Peng Robinson VdW - Van Der Waals RK - Redlich-Kwong SW - Schmidt and Wenzel PT - Patel-Teja.

5.14.2 Function/Subroutine Documentation

5.14.2.1 cb_cubic_second_zfac()

```
subroutine cubic::cb_cubic_second_zfac (
    real, intent(in) p2,
    real, intent(in) p1,
    real, intent(in) z0,
    real, intent(out) z1,
    real, intent(out) zg,
    integer, intent(out) iflag )
```

Having found the compressibility factor z = z0, that satisfies f(z0) = 0 for the cubic polynomial.

$$f(z) = z^3 + p2z^2 + p1z + p0,$$

we can find the others analytically by solving the quadratic equation

$$g(z) = z^{2} + (p2 + z0)z + (p2z0 + z0^{2} + p1)$$

= $z^{2} + q1z + q0$
= 0.

Author

MAG, 2013-09

Parameters

p2	- Polynomial coefficient
p1	- Polynomial coefficient
z0	- Root of polynomial

Returns

zl - Smallest real root found

zg - Largest real root found

iflag - Return code ifalg = 1 : Converged to a single, real root iflag = 2 : Converged to three, real though maybe degenerate, roots

5.14.2.2 cb_solve_cubic_zfac()

```
subroutine cubic::cb_solve_cubic_zfac (
    real, intent(in) p2,
    real, intent(in) p1,
    real, intent(in) p0,
    real, intent(inout) z,
    logical, intent(out) lconverged )
```

Find a root z0 of the cubic polynomial.

$$f(z) = z^3 + p2z^2 + p1z + p0,$$

to solve for for the compressibility factor.

Author

MAG, 2013-09

Parameters

p2	- Polynomial coefficient
p1	- Polynomial coefficient
<i>p0</i>	- Polynomial coefficient

Returns

z - Root found, initial guess as input lconverged - True if solver converged

5.14.2.3 cbcalcderivatives_svol()

For three param like Patel-Teja, m1 = m1(sumb,sumc) nad m2 = m2(sumb,sumc) For Schmidt and Wenzel, m1 = m1(sumc) and m2 = m2(sumc) - or m2(acfmix)

Define reduced Helmholz energy: as F = -g - (amix(T)/T) * f

```
\label{eq:n} \begin{array}{l} n = v \mbox{ - cbeossumb } n1 = v \mbox{ - cbeossumb } n2 = v \mbox{ - cbeossumb } den = n1*n2 \mbox{ Inn } = \log(n2/n1) \mbox{ or } log \mbox{ n2 - log } n1 \mbox{ h} = lnn \\ \hline \mbox{ Michelsen } \mbox{ Thermopack } \end{array}
```

5.14.2.4 p88-91

D | cbeossuma, Di | cbeosa(i) Dj | cbeosa(j) Dt | cbeosat Dtt | cbeosatt Dij | cbeosaij(i,j) Dit | cbeosait(i) B | cbeossumb, Bi | cbeosb(i),

5.14.2.5 Bij | cbeos%bij = 0

5.14.2.6 cbcalcenthalpy()

```
subroutine, public cubic::cbcalcenthalpy (
    integer, intent(in) nc,
    class(cb_eos), intent(inout) cbeos,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) res_enthalpy,
    integer, intent(in) gflag_opt,
    real, intent(out), optional dhdt,
    real, intent(out), optional dhdz )
```

The subroutine finds the enthalpy residual of cubic Equations of State optionally the derivatives.

Parameters

Т	- Temperature [K]
Р	- Pressure [Pa]
Ζ	- Composition [-]
phase	- Phase (1=liquid, 2=vapour)
gflag_opt	The TPlib "Gunder" flag 1: Normal 2: if the metastable maxima or minima of the z-factor are to be returned 3: If possibilities of having three roots, return the one having minimum Gibbs free energy is to be returned - calls cbGres
res_enthalpy	- Residual enthalpy
dhdt	- Residual enthalpy differential wrpt. temperature
dhdp	- Residual enthalpy differential wrpt. pressure
dhdz	- Residual enthalpy differential wrpt. mole numbers

Author

Oivind Wilhelmsen

Date

2012-06-14

5.14.2.7 cbcalcentropy()

```
subroutine, public cubic::cbcalcentropy (
    integer, intent(in) nc,
    class(cb_eos), intent(inout) cbeos,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) res_entropy,
    integer, intent(in) gflag_opt,
    real, intent(out), optional dsdt,
    real, intent(out), optional dsdp,
    real, dimension(nc), intent(out), optional dsdz )
```

The subroutine finds the entropy residual of cubic Equations of State optionally the derivatives.

Т	- Temperature [K]
Р	- Pressure [Pa]
Ζ	- Composition [-]
phase	- Phase (1=liquid, 2=vapour)
gflag_opt	The TPlib "Gunder" flag 1: Normal 2: if the metastable maxima or minima of the z-factor are to be returned 3: If possibilities of having three roots, return the one having minimum Gibbs free energy is to be returned - calls cbGres
res_entropy	- Residual entropy
dsdt	- Residual entropy differential wrpt. temperature
dsdp	- Residual entropy differential wrpt. pressure
dsdz	- Residual entropy differential wrpt. mole numbers

Author

Oivind Wilhelmsen

Date

2012-06-13

5.14.2.8 cbcalcfreeenergy()

```
subroutine, public cubic::cbcalcfreeenergy (
    integer, intent(in) nc,
    class(cb_eos), intent(inout) cbeos,
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(1:nc), intent(in) z,
    real, intent(out) y,
    real, intent(out), optional dydt,
    real, intent(out), optional dydv,
    logical, intent(in), optional recalculate )
```

Subroutine finds Helmholtz free energy residual of cubic EoS optionally the derivatives with respect to T, v.

Parameters

Т	Temperature [K]
v	Specific volume [m3/kmol]
Ζ	Mole fraction [-]
dYdt	Temperature derivative [J/kmolK]
dYdv	Pressure derivative [J/m3] 0: No derivatives 1: Analytical derivatives

Return values

Y Free energy with derivatives [-]

Author

GL, 2015-01-22

5.14.2.9 cbcalcfres()

```
subroutine, public cubic::cbcalcfres (
            integer, intent(in) nc,
             class(cb_eos), intent(inout) cbeos,
             real, intent(in) t,
             real, intent(in) v,
             real, dimension(nc), intent(in) n,
             real, intent(out), optional f,
             real, intent(out), optional f_t,
             real, intent(out), optional f_v,
             real, dimension(nc), intent(out), optional f_n,
             real, intent(out), optional f_tt,
             real, intent(out), optional f_tv,
             real, intent(out), optional f_vv,
             real, dimension(nc), intent(out), optional f_tn,
             real, dimension(nc), intent(out), optional f_vn,
             real, dimension(nc,nc), intent(out), optional f_nn,
             logical, intent(in), optional recalculate )
```

Calculate resudial reduced Helmholtz and differentials.

Parameters

Т	- Temperature [K]
V	- Specific volume [m3/kmol]
n	- Mole numbers [mol]
F	- Resudial reduced Helmholtz differentiuals

Author

Morten Hammer

Date

2015-09

5.14.2.10 cbcalcfug()

```
subroutine, public cubic::cbcalcfug (
    integer, intent(in) nc,
    class(cb_eos), intent(inout) cbeos,
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) zfac,
    real, dimension(nc), intent(out) res_fug,
    real, dimension(nc), intent(out), optional dlnfdt,
    real, dimension(nc), intent(out), optional dlnfdz,
    real, dimension(nc,nc), intent(out), optional dlnfdz
```

The subroutine finds the fugacity coefficients and derivatives.

Т	- Temperature [K]
Р	- Pressure [Pa]

Zfac	- Compressibility factor
dlnfdt	- Fugacity coefficients differential wrpt. temperature
dlnfdp	- Fugacity coefficients differential wrpt. pressure
dlnfdz	- Fugacity coefficients differential wrpt. mole numbers
res_fug	- Fugacity coefficients

Author

Oivind Wilhelmsen

Date

2012-06-13

5.14.2.11 cbcalcinnerenergy()

```
subroutine cubic::cbcalcinnerenergy (
```

```
integer, intent(in) nc,
class(cb_eos), intent(inout) cbeos,
real, intent(in) t,
real, intent(in) v,
real, dimension(1:nc), intent(in) z,
real, intent(out) u,
real, intent(out), optional dudt,
real, intent(out), optional dudv,
logical, intent(in), optional recalculate )
```

The subroutine finds the innerenergy residual of cubic Equations of State optionally the derivatives.

Parameters

Т	The temperature [K]
V	The specific volume [m3/kmole]
Ζ	The mole fraction [-]
dudt	Temperature derivative [J/kmoleK]
dudv	Pressure derivative [J/m3] 0: No derivatives 1: Analytical derivatives

Return values

energy The internal energy with derivatives [-]

Author

Morten Hammer

5.14.2.12 cbcalcpseudo()

```
real, intent(out) zpc,
real, intent(out) vpc )
```

The subroutine calculates the pseudocritical temperature, pressure, acentric factor compressibility and volume as function of composition. The pseudo-critical point is the state where with constant Temperature: $(dP/dV)=(d2P/d \leftrightarrow V^2)=0$.

Parameters

Z - Composition [-]

Returns

- Tpc Pseudo critical temperature [K]
- Ppc Pseudo critical pressure [Pa]
- Zpc Pseudo critical compressibility [-]
- Vpc Pseudo critical volume [m³/kmole]

Author

Oivind Wilhelmsen

Date

2012-06-14

For the Schmidt and Wenzel EOS

5.14.2.13 cbgres()

```
subroutine, public cubic::cbgres (
    class(cb_eos), intent(inout) cbeos,
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) zfac,
    real, intent(out) gr,
    real, intent(out), optional dgrdt,
    real, intent(out), optional dgrdp )
```

The function to find the residual Gibbs free energy for the cubic equation of state. This function is called if the "gflag" is set to 3 in the cbCalcZfac routine.

Parameters

Т	- Temperature [K]		
р	- Pressure [Pa]		
zfac	- Compressibility factor		
gr	- The residual Gibbs free energy		
dgrdt	- The residual Gibbs free energy temperature differential		

5.14.2.14 cbsolvecubiczfac()

```
subroutine cubic::cbsolvecubiczfac (
            real, intent(in) pp,
            real, intent(in) qq,
            real, intent(in) rr,
```

real, intent(inout) z, integer, intent(out) ifail) This subroutine solves a cubic polynomial.

f(z) = z * * 3 + pp * z * * 2 + qq * z + rr = 0

with a third order method

Relaxation is necessarry in the critical region because of both the first and second derivative approach zero Original TPlib routine converted to use new data structure

Parameters

рр	- 1'st polynmominal coefficient
qq	- 2'nd polynominal coefficient
rr	- 3'rd polynominal coefficient
Z	- Initial and return value for the compressibility factor

Returns

ifail - Return code ifail = 0 : Converged, the gradient toward the solution is positive ifail = 1 : Not converged after maximum number of iterations ifail = 2 : Converged, the gradient toward the solution is negative ifail = 3 : Not converged and the maximum number of relaxions has been reach wi

5.15 cubic_eos Module Reference

The module eosdata contains the definitions of the equation of state, mixing rule and the interaction parameters.

Data Types

- type alpha_label_mapping
- type cb_eos
- type cpa_eos
- type cpakijdata

Temperature-independent interaction parameters for.

- type fraction
- type intergedatadb
- type kijdatadb
- type lijdatadb
- type lk_eos
- type mix_label_mapping
- · type mixexcessgibbs
- · type mixwongsandler
- type singledata

Functions/Subroutines

- subroutine ws_deallocate (mixws)
- subroutine ws_allocate_and_init (mixws, nc)
- subroutine assign_ws_mix (mixws1, mixws2)
- subroutine excess_gibbs_deallocate (mixge)
- subroutine excess_gibbs_allocate_and_init (mixge, nc)
- subroutine assign_excess_gibbs_mix (mixge1, mixge2)
- type(cb_eos) function cubic_eos_constructor (nc, eos_label) Allocate memory for cubic eos.
- type(lk_eos) function lk_eos_constructor (nc, eos_label)
 - Allocate memory for LK eos.
- type(cpa_eos) function cpa_eos_constructor (nc, eos_label)

Allocate memory for CPA eos.

- subroutine assign_cubic_eos (this, other)
- subroutine allocate_and_init_cubic_eos (eos, nc, eos_label)
- subroutine cubic_eos_dealloc (eos)
- logical function ishvmixmodel (mix_idx)
- logical function isgemixmodel (mix_idx)
- integer function get_mix_db_idx (short_label)
- integer function get_alpha_db_idx (short_label)
- integer function get_alpha_db_idx_from_alpha_idx (alpha_idx)
- integer function eos_to_classic_alpha_db_idx (eosidx)
- logical function is_classic_alpha (alphaidx)
- subroutine get_covolumes (b)

Get covolumes.

• subroutine get_energy_constants (a)

Get energy constant.

• real function get_b_linear_mix (z) Get linear combination of b i.

Variables

- integer, parameter ndegreepoly =2
- integer, parameter cbmixclassicgroup = 1

Classic kij type mixing.

- integer, parameter cbmixvdw = 11
 - Classic vdW mixing rule for am and bm using $k_{ij} == k_{ji}$.
- integer, parameter cbmixvdwcpa = 12
 - CPA mixing rule (same as cbMixVdW, but kij from another db)
- integer, parameter **cbmixreid** = 13
 - Unsymmertic mixing rule where k_ij can be different than k_ji.
- integer, parameter cbmixgegroup = 2
- integer, parameter cbmixhuronvidal = 21

Huron vidal mixing rule.

• integer, parameter **cbmixhuronvidal2** = 22

Huron vidal mixing rule.

• integer, parameter cbmixnrtl = 23

NRTL mixing rule.

• integer, parameter cbmixunifac = 24

UNIFAC mixing rule.

- integer, parameter cbmixhvcpa = 25
 - Huron Vidal mixing rule (classic, but kij from another db)
- integer, parameter cbmixhvcpa2 = 26
 - Huron Vidal mixing rule (classic, but kij from another db)
- integer, parameter cbmixwongsandler = 3

Wong Sandler mixing rule.

• integer, parameter cbmixwscpa = 31

Wong-Sandler mixing rule for CPA.

integer, parameter cbmixhvwongsandler = 32

Wong-Sandler mixing rule with HV formulation of NRTL.

integer, parameter n_mix_rules = 12

- type(mix_label_mapping), dimension(n_mix_rules), parameter mix_label_db = (/ mix_label_mapping(mix ← _idx_group=cbMixClassicGroup, mix_idx=cbMixVdW, short_label="VDW", label="Classic", alias = "CLASSIC"), mix_label_mapping(mix_idx_group=cbMixClassicGroup, mix_idx=cbMixVdWCPA, short_ label="Classic(CPA)", label="Classic(CPA)", alias = ""), mix_label_mapping(mix_idx_group=cbMixClassic↔ Group, mix_idx=cbMixReid, short_label="Reid", label="Reid", alias = ""), mix_label_mapping(mix_↔ idx group=cbMixGEGroup, mix idx=cbMixHuronVidal, short label="HV", label="Huron-Vidal", alias = "HV1/HV0"), mix label mapping(mix idx group=cbMixGEGroup, mix idx=cbMixHuronVidal2, short↔ label="HV2", label="Huron-Vidal2", alias = ""), mix label mapping(mix idx group=cbMixWong↔ Sandler, mix idx=cbMixWongSandler, short label="WongSandler", label="Wong-Sandler", alias = "WS"), mix label mapping(mix idx group=cbMixGEGroup, mix idx=cbMixNRTL, short label="NRTL", label="NRTL", alias = ""), mix_label_mapping(mix_idx_group=cbMixGEGroup, mix_idx=cbMixUNIFAC, short_label="UNIFAC", label="UNIFAC", alias = "UMR/VTPR"), mix_label_mapping(mix_idx_group=cbMix↔ GEGroup, mix_idx=cbMixHVCPA, short_label="HVCPA", label="HVCPA", alias = ""), mix_label_mapping(mix↔ idx group=cbMixGEGroup, mix idx=cbMixHVCPA2, short label="HVCPA2", label="HVCPA2", alias = Sandler", label="WSCPA", alias = ""), mix_label_mapping(mix_idx_group=cbMixWongSandler, mix_idx=cb↔ MixHVWongSandler, short label="HVWongSandler", label="HVWongSandler", alias = "") /)
- integer, parameter **nhvcorrs** = 5
- integer, dimension(nhvcorrs), parameter hvcorrindices = (/ cbMixHuronVidal, cbMixHuronVidal2, cbMix↔ HVCPA, cbMixHVCPA2, cbMixHVWongSandler/)
- integer, parameter ngecorrs = 7
- integer, dimension(ngecorrs), parameter gecorrindices = (/ HVCorrIndices, cbMixNRTL, cbMixGEGroup/)
- integer, parameter cbalphaclassicidx = 1

Classic alpha-correlation VdW, RK, SRK and PR.

integer, parameter cbalphatwuidx = 2

Twu-Coon-Bluck-Cunninghan exponential formulation.

• integer, parameter cbalphamcidx = 3

Mathias-Copeman expression for polar substances.

integer, parameter cbalphagergidx = 4

Gerg-Water(PR) expression for polar substances Q1,Q2 and Q3.

integer, parameter cbalphaclassicfitidx = 5

Classic alpha-corr where with replaced by a fitted parameter. Used in CPA.

• integer, parameter cbalphaumridx = 6

Classic alpha-corr with another function m(acf)

integer, parameter cbalphagbidx = 7

Alpha-corr of Graboski and Daubert (10.1021/i260068a009)

• integer, parameter cbalpharkidx = 8

Alpha-corr of Redlich-Kwong (10.1021/cr60137a013)

integer, parameter cbalphasoaveidx = 9

Alpha-corr of Soave ()

• integer, parameter cbalphapridx = 10

Alpha-corr of Peng-Robinson.

• integer, parameter cbalphaptidx = 11

Alpha-corr of Patel-Teja.

• integer, parameter cbalphaswidx = 12

Alpha-corr of Schmidt-Wensel.

integer, parameter cbalphavdwidx = 13

Alpha-corr of van der Waals.

• integer, parameter cbalphapr78idx = 14

Peng-Robinson alpha-corr for w>0.491 (RR-28 GPA)

• integer, parameter n_alpha_corrs = 14

- type(alpha_label_mapping), dimension(n_alpha_corrs), parameter alpha_corr_db = (/ alpha_label_mapping(alpha ← _idx=cbAlphaClassicIdx, n_param=1, short_label="CLASSIC", description="Classic alpha-correlation VdW, SRK, PR, PT and SW", classic_for_eos_idx=-1), alpha_label_mapping(alpha_idx=cbAlphaTwu↔ ldx, n_param=3, short_label="TWU", description="Twu-Coon-Bluck-Cunninghan exponential formulation", classic_for_eos_idx=-1), alpha_label_mapping(alpha_idx=cbAlphaMcldx, n_param=3, short_↔ label="MC", description="Mathias-Copeman expression for polar substances", classic for eos idx=-1), alpha label mapping(alpha idx=cbAlphaGergIdx, n param=3, short label="GERG", description="Gerg-Water(PR) expression for polar substances", classic for eos idx=-1), alpha label mapping(alpha↔ _idx=cbAlphaClassicFitIdx, n_param=1, short_label="CLASSICFIT", description="Classic alpha-corr Used in CPA.", classic_for_eos_idx=-1), alpha_label_mapping(alpha idx=cb↔ with fitted parameter. AlphaUMRIdx, n_param=1, short_label="UMR", description="Classic alpha-corr with another function m(acf)", classic_for_eos_idx=-1), alpha_label_mapping(alpha_idx=cbAlphaGBldx, n_param=1, short_ label="GD", description="Alpha-corr of Graboski and Daubert (10.1021/i260068a009)", classic_for_eos_↔ idx=-1), alpha label mapping(alpha idx=cbAlphaRKIdx, n param=1, short label="RK", description="Alphacorr of Redlich-Kwong (10.1021/cr60137a013)", classic_for_eos_idx=-1), alpha_label_mapping(alpha ↔ _idx=cbAlphaSoaveIdx, n_param=1, short_label="SOAVE", description="Alpha-corr of Soave", classic↔ _for_eos_idx=cbSRK), alpha_label_mapping(alpha_idx=cbAlphaPRIdx, n_param=1, short label="PR", description="Alpha-corr of Peng-Robinson", classic_for_eos_idx=cbPR), alpha_label_mapping(alpha↔ _idx=cbAlphaPTIdx, n_param=1, short_label="PT", description="Alpha-corr of Patel-Teja", classic↩ _for_eos_idx=cbPT), alpha_label_mapping(alpha_idx=cbAlphaSWIdx, n_param=1, short_label="SW", description="Alpha-corr of cbAlphaSWIdx", classic for eos idx=cbSW), alpha label mapping(alpha↔ idx=cbAlphaVDWIdx, n param=1, short label="VDW", description="Alpha-corr of cbAlphaVDWIdx", classic_for_eos_idx=cbVDW), alpha_label_mapping(alpha_idx=cbAlphaPR78Idx, n_param=1, short_↔ label="PR78", description="Alpha-corr of cbAlphaPR78ldx", classic_for_eos_idx=-1) /)
- integer, parameter **nbetacorrs** = 2
- integer, parameter cbbetaclassicidx = 1

Classic beta-correlation yielding the classic, temperature-independent covolume.

• integer, parameter cbbetaquantumidx = 2

Beta-correlation for quantum fluids He, Ne, H2, D2.

- character(len=11), dimension(nbetacorrs), parameter betacorrnames = (/ "CLASSIC ", "QUANTUM " /)
- integer, dimension(nbetacorrs), parameter betacorrnumparams = (/0,2/)

5.15.1 Detailed Description

The module eosdata contains the definitions of the equation of state, mixing rule and the interaction parameters.

5.15.2 Function/Subroutine Documentation

5.15.2.1 allocate_and_init_cubic_eos()

Parameters

in eos_label EOS label

5.15.2.2 get_b_linear_mix()

Author

MH, 2020-07

Parameters

in	Ζ	Molar compozition [-1
	_		

Returns

m3/mol

5.16 eos Module Reference

Interface to thermodynamic models. Currently ThermoPack and TREND equations of state are supported.

Functions/Subroutines

- subroutine, public thermo (t, p, z, phase, Infug, Infugt, Infugp, Infugx, ophase, metaextremum, v)
 Calculate fugasity coefficient and differentials given composition, temperature and pressure.
- subroutine, public zfac (t, p, x, phase, z, dzdt, dzdp, dzdx)
 Calculate single-phase compressibility factor given composition, temperature and pressure.
- subroutine, public specificvolume (t, p, x, phase, v, dvdt, dvdp, dvdx)

Calculate single-phase specific volume given composition, temperature and pressure.

- real function, public twophasespecificvolume (t, p, z, x, y, beta, phase, betal)
- Calculate gas-liquid or single-phase specific volume given composition, temperature and pressure.
- subroutine, public enthalpy (t, p, x, phase, h, dhdt, dhdp, dhdx, residual) Calculate single-phase specific enthalpy given composition, temperature and pressure.
- real function, public twophaseenthalpy (t, p, z, x, y, beta, phase, betal) Calculate gas-liquid or single-phase specific enthalpy given composition, temperature and pressure.
- subroutine, public entropy (t, p, x, phase, s, dsdt, dsdp, dsdx, residual)
 - Calculate single-phase specific entropy given composition, temperature and pressure.
- real function, public twophaseentropy (t, p, z, x, y, beta, phase, betal)

Calculate gas-liquid or single-phase specific entropy given composition, temperature and pressure.

• real function, public twophaseinternalenergy (t, p, z, x, y, beta, phase, betal)

Calculate gas-liquid or single-phase internal energy given composition, temperature, pressure and a phase state given by phase/beta.

- subroutine, public pseudo (x, tpc, ppc, acfpc, zpc, vpc)
 - Calculate pseudo critical point.
- subroutine, public pseudo_safe (x, tpc, ppc, zpc, vpc)
 - Calculate pseudo critical point, or use estimate from alternative EoS if necessary.
- subroutine, public getcriticalparam (i, tci, pci, oi, vci, tnbi)
 - Get critical state (and more) of pure fluid.
- subroutine, public residualgibbs (t, p, z, phase, gr, dgrdt, dgrdp, dgrdn, metaextremum)
- Calculate residual Gibbs energy. Unit: J/mol.
- real function, public moleweight (z)
 - Get mole weight. Unit: g/mol.
- real function, public compmoleweight (j)
 - Get component mole weight. Unit: g/mol.

5.16.1 Detailed Description

Interface to thermodynamic models. Currently ThermoPack and TREND equations of state are supported.

Author

MH, 2012-01-25

5.16.2 Function/Subroutine Documentation

5.16.2.1 compmoleweight()

Author

MH, 2013-03-06

Parameters

in j Component index

Returns

g/mol - Mole weight

5.16.2.2 enthalpy()

```
subroutine, public eos::enthalpy (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) x,
    integer, intent(in) phase,
    real, intent(out) h,
    real, intent(out), optional dhdt,
    real, intent(out), optional dhdp,
    real, dimension(1:nc), intent(out), optional dhdx,
    logical, intent(in), optional residual )
```

Calculate single-phase specific enthalpy given composition, temperature and pressure.

Author

MH, 2012-03-20

in	phase	Phase identifyer
in	t	K - Temperature
in	p	Pa - Pressure
in	x	Compozition
out	h	J/mol - Specific enthalpy
out	dhdt	J/mol/K - Specific enthalpy differential wrpt. temperature
out	dhdp	J/mol/Pa - Specific enthalpy differential wrpt. pressure
out	dhdx	J/mol - Specific enthalpy differential wrpt. mole numbers
in	residual	Set to true if only residual entropy is required

5.16.2.3 entropy()

```
subroutine, public eos::entropy (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) x,
    integer, intent(in) phase,
    real, intent(out) s,
    real, intent(out), optional dsdt,
    real, intent(out), optional dsdp,
    real, dimension(1:nc), intent(out), optional dsdx,
    logical, intent(in), optional residual)
```

Calculate single-phase specific entropy given composition, temperature and pressure.

Author

MH, 2012-03-20

Parameters

in	phase	Phase identifyer
in	t	K - Temperature
in	р	Pa - Pressure
in	x	Compozition
out	S	J/mol/K - Specific entropy
out	dsdt	J/mol/K/K - Specific entropy differential wrpt. temperature
out	dsdp	J/mol/K/Pa - Specific entropy differential wrpt. pressure
out	dsdx	J/mol/K - Specific entropy differential wrpt. mole numbers
in	residual	Set to true if only residual entropy is required

5.16.2.4 getcriticalparam()

```
subroutine, public eos::getcriticalparam (
    integer, intent(in) i,
    real, intent(out) tci,
    real, intent(out) pci,
    real, intent(out) oi,
    real, intent(out), optional vci,
    real, intent(out), optional tnbi)
```

Get critical state (and more) of pure fluid.

Author

MH, 2013-03-06

in	i	Component index
out	tci	K - Critical temperature
out	pci	Pa - Critical pressure
out	oi	Acentric factor
out	vci	m3/mol - Critical volume
out	tnbi	Normal boiling point (gs)

5.16.2.5 moleweight()

Author

MH, 2013-03-06

Parameters

in z Composition

Returns

g/mol - Mole weight

5.16.2.6 pseudo()

```
subroutine, public eos::pseudo (
    real, dimension(1:nc), intent(in) x,
    real, intent(out) tpc,
    real, intent(out) ppc,
    real acfpc,
    real, intent(out) zpc,
    real, intent(out) vpc )
```

Calculate pseudo critical point.

Author

MH, 2012-03-15

Parameters

in	x	Compozition
out	tpc	K - Pseudo critical temperature
out	vpc	m3/mol - Pseudo critical specific volume
out	ррс	Pa - Pseudo critical pressure
out	zpc	Pseudo critical compressibillity

5.16.2.7 pseudo_safe()

```
subroutine, public eos::pseudo_safe (
    real, dimension(1:nc), intent(in) x,
    real, intent(out) tpc,
    real, intent(out) ppc,
    real, intent(out) zpc,
    real, intent(out) vpc )
```

Calculate pseudo critical point, or use estimate from alternative EoS if necessary.

Author

EA, 2015-01

in	x	Compozition
out	tpc	K - Pseudo critical temperature
out	vpc	m3/mol - Pseudo critical specific volume
out	ррс	Pa - Pseudo critical pressure
out	zpc	Pseudo critical compressibillity

5.16.2.8 residualgibbs()

```
subroutine, public eos::residualgibbs (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) gr,
    real, intent(out), optional dgrdt,
    real, intent(out), optional dgrdp,
    real, dimension(nc), intent(out), optional dgrdn,
    logical, intent(in), optional metaextremum )
```

Calculate residual Gibbs energy. Unit: J/mol.

Author

MH, 2013-10-17

Parameters

in	t	K - Temperature
in	p	Pa - Pressure
in	Ζ	Component fractions
in	phase	Phase identifyer
out	gr	J/mol - Residual Gibbs energy
out	dgrdt	J/mol/K - Temperature differential of ideal Gibbs energy
out	dgrdp	J/mol/Pa - Pressure differential of ideal Gibbs energy
out	dgrdn	$J/mol^{\wedge}2$ - Mole number differential of ideal Gibbs energy
in	metaextremum	Calculate phase properties at metastable extremum

5.16.2.9 specificvolume()

```
subroutine, public eos::specificvolume (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) x,
    integer, intent(in) phase,
    real, intent(out) v,
    real, intent(out), optional dvdt,
    real, intent(out), optional dvdp,
    real, dimension(1:nc), intent(out), optional dvdx )
```

Calculate single-phase specific volume given composition, temperature and pressure.

Author

MH, 2012-07-06

Parameters

in	phase	Phase identifyer
in	t	K - Temperature
in	р	Pa - Pressure
in	x	Compozition
out	V	m3/mol - Specific volume
out	dvdt	m3/mol/K - Specific volume differential wrpt. temperature
out	dvdp	m3/mol/Pa - Specific volume differential wrpt. pressure
out	dvdx	m3/mol - Specific volume differential wrpt. mole numbers

5.16.2.10 thermo()

```
subroutine, public eos::thermo (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    integer, intent(in) phase,
    real, dimension(1:nc), intent(out) lnfug,
    real, dimension(1:nc), intent(out), optional lnfugt,
    real, dimension(1:nc), intent(out), optional lnfugp,
    real, dimension(1:nc,1:nc), intent(out), optional lnfugx,
    integer, intent(out), optional ophase,
    logical, intent(in), optional metaextremum,
    real, intent(out), optional v)
```

Calculate fugasity coefficient and differentials given composition, temperature and pressure.

Author

MH, 2012-01-27

Parameters

in	phase	Phase identifyer	
out	ophase	Phase identifyer for MINGIBBSPH	
in	t	K - Temperature	
in	p	Pa - Pressure	
in	Ζ	Compozition	
out	Infug	Logarithm of fugasity coefficient	
out	Infugt	gt 1/K - Logarithm of fugasity coefficient differential wrpt. temperature	
out	Infugp	fugp 1/Pa - Logarithm of fugasity coefficient differential wrpt. pressure	
out	Infugx	Logarithm of fugasity coefficient differential wrpt. mole numbers	
out	V	Specific volume [mol/m3]	

5.16.2.11 twophaseenthalpy()

```
real function, public eos::twophaseenthalpy (
```

```
real, intent(in) t,
real, intent(in) p,
```

```
real, dimension(1:nc), intent(in) z,
real, dimension(1:nc), intent(in) x,
real, dimension(1:nc), intent(in) y,
real, intent(in) beta,
integer, intent(in) phase,
real, intent(in), optional betal)
```

Calculate gas-liquid or single-phase specific enthalpy given composition, temperature and pressure.

Author

MH, 2012-03-20

Parameters

in	phase	Phase identifyer
in	t	K - Temperature
in	р	Pa - Pressure
in	beta	Gas phase mole fraction
in	x	Liquid compozition
in	У	Gas compozition
in	Ζ	Overall compozition
in	betal	Liquid phase mole fraction

Returns

J/mol - Specific mixture enthalpy

5.16.2.12 twophaseentropy()

```
real function, public eos::twophaseentropy (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    real, dimension(1:nc), intent(in) x,
    real, dimension(1:nc), intent(in) y,
    real, intent(in) beta,
    integer, intent(in) phase,
    real, intent(in), optional betal )
```

Calculate gas-liquid or single-phase specific entropy given composition, temperature and pressure.

Author

MH, 2012-03-20

in	phase	Phase identifyer
in	t	K - Temperature
in	р	Pa - Pressure
in	beta	Gas phase mole fraction
in	x	Liquid compozition
in	У	Gas compozition
in	Ζ	Overall compozition
in	betal	Liquid phase mole fraction

Returns

J/mol/K - Specific mixture entropy

5.16.2.13 twophaseinternalenergy()

```
real function, public eos::twophaseinternalenergy (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    real, dimension(1:nc), intent(in) x,
    real, dimension(1:nc), intent(in) y,
    real, intent(in) beta,
    integer, intent(in) phase,
    real, intent(in), optional betal )
```

Calculate gas-liquid or single-phase internal energy given composition, temperature, pressure and a phase state given by phase/beta.

Author

EA, 2014-09

Parameters

in	t	K - Temperature
in	р	Pa - Pressure
in	Ζ	Overall compozition
in	x	Liquid compozition
in	У	Gas compozition
in	beta	Gas phase mole fraction
in	phase	Phase identifier
in	betal	Liquid phase mole fraction

Returns

J/mol - Specific internal energy

5.16.2.14 twophasespecificvolume()

```
real function, public eos::twophasespecificvolume (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    real, dimension(1:nc), intent(in) x,
    real, dimension(1:nc), intent(in) y,
    real, intent(in) beta,
    integer, intent(in) phase,
    real, intent(in), optional betal )
```

Calculate gas-liquid or single-phase specific volume given composition, temperature and pressure.

Author

MH, 2012-07-30

Parameters

in *phase* Phase identifyer

in	t	K - Temperature
in	р	Pa - Pressure
in	beta	Gas phase mole fraction
in	x	Liquid compozition
in	у	Gas compozition
in	Ζ	Overall compozition

Returns

m3/mol - Specific mixture volume

Parameters

in	betal	Liquid phase mole fraction

5.16.2.15 zfac()

```
subroutine, public eos::zfac (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) x,
    integer, intent(in) phase,
    real, intent(out) z,
    real, intent(out), optional dzdt,
    real, intent(out), optional dzdp,
    real, dimension(1:nc), intent(out), optional dzdx )
```

Calculate single-phase compressibility factor given composition, temperature and pressure.

Author

MH, 2012-03-20

Parameters

in	phase	Phase identifyer
in	t	K - Temperature
in	р	Pa - Pressure
in	x	Compozition
out	Ζ	Compressibillity factor
out	dzdt	1/K - Compressibillity factor differential wrpt. temperature
out	dzdp	1/Pa - Compressibillity factor differential wrpt. pressure
out	dzdx	Compressibillity factor differential wrpt. mole numbers

5.17 eos_container Module Reference

The module eosdata contains the definitions of the equation of state, mixing rule and the interaction parameters.

Functions/Subroutines

• subroutine allocate_eos (nc, eosstr)

Selection of equation of state and allocation of container classes.

- class(base_eos_param) function, pointer allocate_p_eos (nc, eos_index, eos_subindex, eosstr)
- subroutine assign_thermo_model (eos_c1, eos_c2)

5.17.1 Detailed Description

The module eosdata contains the definitions of the equation of state, mixing rule and the interaction parameters.

5.17.2 Function/Subroutine Documentation

5.17.2.1 allocate_eos()

Parameters

eosstr | The equation of state as a character string e.g 'SRK' og 'PR'

The character strings are case-insensitive

Author

Morten Hammer

5.18 eos_parameters Module Reference

The module eosdata contains the definitions of the equation of state, mixing rule and the interaction parameters.

Data Types

- type meos_idealmix
- type single_eos

Functions/Subroutines

- subroutine single_eos_allocate_and_init (eos, nc, eos_label)
- subroutine single_eos_alloc (comp, meos_ptr, eos_label)
- subroutine single_eos_dealloc (eos)
- type(single_eos) function single_eos_constructor (nc, eos_label)

Allocate memory for single eos.

- type(meos_idealmix) function meos_idealmix_constructor (nc, eos_label) Allocate memory for single eos.
- subroutine assign_single_eos_set (this, other)
- class(single_eos) function, pointer get_single_eos_pointer (eos)

5.18.1 Detailed Description

The module eosdata contains the definitions of the equation of state, mixing rule and the interaction parameters.

5.18.2 Function/Subroutine Documentation

5.18.2.1 single_eos_alloc()

```
class(meos), intent(inout), pointer meos_ptr,
character(len=*), intent(in) eos_label )
```

in eos_label EOS label

5.18.2.2 single_eos_allocate_and_init()

```
subroutine eos_parameters::single_eos_allocate_and_init (
    class(single_eos), intent(inout) eos,
    integer, intent(in) nc,
    character(len=*), intent(in) eos_label )
```

Parameters

in	nc	Number of components
in	eos_label	EOS label

5.19 eosdata Module Reference

The module eosdata contains the definitions of the equation of state, mixing rule and the interaction parameters.

Data Types

type eos_label_mapping

Functions/Subroutines

- logical function issrkeos (subeos_idx)
- logical function ispreos (subeos_idx)
- logical function issafteos (eos_idx)
- integer function get_eos_db_idx (short_label)
- subroutine **get_eos_index** (short_label, eos_index, eos_subindex)
- character(len=short_label_len) function get_eos_short_label_from_subidx (subidx)
- integer function get_eos_idx_from_subidx (subidx)

Variables

- integer, parameter **eoscubic** = 1
 - Cubic model.
- integer, parameter **cbsrk** = 11
 - Plain SRK, Soave Redlich Kwong.
- integer, parameter **cbpr** = 12 *Peng-Robinson.*
- integer, parameter cbvdw = 13
 - Van der Waals.
- integer, parameter cbsw = 14
 - Schmidt-Wensel.
- integer, parameter **cbpt** = 15
 - Patel-Teja.
- integer, parameter eoslk = 2
 Lee-Kesler.
- integer, parameter **eoscsp** = 3
 - Corrensponding State Principle (CSP)
- integer, parameter cspsrk = 31

CSP using SRK for scaling. • integer, parameter csppr = 32 CSP using PR for scaling. • integer, parameter **eoscpa** = 4 Cubic Plus Association (CPA) integer, parameter cpasrk = 41 SRK Plus Association. integer, parameter cpapr = 42 PR Plus Association. • integer, parameter eospc_saft = 5 PC-SAFT equation of state. integer, parameter eosspc_saft = 51 Simplefied PC-SAFT equation of state. • integer, parameter eosopc_saft = 52 Original PC-SAFT equation of state. integer, parameter eospcp_saft = 53 Original PC-SAFT formulation with polar contributions. • integer, parameter eosspcp_saft = 54 Simplefied PC-SAFT equation of state with polar contributions. • integer, parameter eos single = 6 Single component multiparamater eos. integer, parameter meosmbwr19 = 611 MBWR19 (Bender) multiparameter equation of state. • integer, parameter meosmbwr32 = 612 MBWR32 multiparameter equation of state. • integer, parameter meosnist = 62 Multiparameter EoS on NIST-like form. integer, parameter meoslj = 63 Multiparameter EoS. integer, parameter meoslits = 64 Multiparameter EoS. integer, parameter meosgerg = 65 Multiparameter EoS. integer, parameter eospt = 7 Perturbation theory model.

- integer, parameter eossaft_vr_mie = 71
 - SAFT-VR-MIE equation of state.
- integer, parameter eosljs_bh = 721

Lennard-Jones splined equation of state using Barker-Henderson perturbation theory.

• integer, parameter eosljs_wca = 722

Lennard-Jones splined equation of state using Weeks-Chandler-Andersen perturbation theory.

• integer, parameter **eosljs_uv** = 723

Lennard-Jones splined equation of state using Van Westen UV perturbation theory.

integer, parameter eosljs_uf = 724

Lennard-Jones equation of state using Van Westen UF perturbation theory.

integer, parameter eoslj_uf = 731

Lennard-Jones equation of state using Van Westen UF perturbation theory.

• integer, parameter eospets = 8

PeTS equation of state for LJTS at 2.5*sigma.

integer, parameter meosnist_mix = 9

Multiparameter EoS for fluids with ideal mixture.

- integer, parameter meosgerg_mix = 10 Multicomponent GERG.
- integer, parameter meos_helm_mix = 11
- Multicomponent multiparameter EoS with Helmholtz mixing.
- integer, parameter max_n_eos = 30

 type(eos_label_mapping), dimension(max_n_eos), parameter eos_label_db = (/ eos_label_mapping(eos ← _idx = eosCubic, eos_subidx = cbSRK, short_label = "SRK", label = "Soave Redlich Kwong", need_ \leftrightarrow alternative eos = .false.), eos label mapping(eos idx = eosCubic, eos subidx = cbPR, short label = "PR", label = "Peng-Robinson", need_alternative_eos = .false.), eos_label_mapping(eos_idx = eos↔ Cubic, eos subidx = cbVdW, short label = "VDW", label = "van der Waals", need alternative eos = .false.), eos label mapping(eos idx = eosCubic, eos subidx = cbSW, short label = "SW", label = "Schmidt-Wensel", need alternative eos = .false.), eos label mapping(eos idx = eosCubic, eos subidx = $cb \leftrightarrow$ PT, short_label = "PT", label = "Patel-Teja", need_alternative_eos = .false.), eos_label_mapping(eos_idx = eosLK, eos subidx = eosLK, short label = "LK", label = "Lee-Kesler", need alternative eos = .true.), eos label mapping(eos idx = eosCSP, eos subidx = cspSRK, short label = "CSP-SRK", label = "Corrensponding state priciple with SRK scaling", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eosCSP, eos_subidx = cspPR, short_label = "CSP-PR", label = "Corrensponding state priciple with PR scaling", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eosCPA, eos_subidx = cpaSRK, short_label = "CPA-SRK", label = "Cubic Pluss Association Soave Redlich Kwong", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eosCPA, eos_subidx = cpaPR, short_label = "CPA-PR", label = "Cubic Pluss Association Peng Robinson", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eosPC SAFT, eos subidx = eosSPC SAFT, short label = "sPC-SAFT", label = "Simplified Perturbed Chain SAFT", need alternative eos = .true.), eos label mapping(eos idx = eosPC SAFT, eos subidx = eos \leftrightarrow OPC_SAFT, short_label = "PC-SAFT", label = "Perturbed Chain SAFT", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eosPC_SAFT, eos_subidx = eosSPCP_SAFT, short_label = "sPCP-SAFT", label = "Simplified Perturbed Chain Polar SAFT", need alternative eos = .true.), eos label mapping($eos \leftrightarrow$ idx = eosPC SAFT, eos subidx = eosPCP SAFT, short label = "PCP-SAFT", label = "Perturbed Chain Polar SAFT", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eos_single, eos_subidx = meosMbwr19, short_label = "MBWR19", label = "Modified Benedict-Webb-Rubin. Bender 1970.", need↔ _alternative_eos = .true.), eos_label_mapping(eos_idx = eos_single, eos_subidx = meosMbwr32, short_↩ label = "MBWR32", label = "Modified Benedict-Webb-Rubin. Younglove and Ely 1987", need alternative eos = .true.), eos label mapping(eos idx = eos single, eos subidx = meosNist, short label = "NIST MEOS", label = "Multiparameter EoS on NIST-like form", need alternative eos = .true.), eos label mapping(eos idx = eos single, eos subidx = meosLJ, short label = "LJ MEOS", label = "Multiparameter EoS for LJ", need ↔ alternative eos = .true.), eos label mapping(eos idx = eos single, eos subidx = meosLJTS, short label = "LJTS_MEOS", label = "Multiparameter EoS for LJTS", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eos_single, eos_subidx = meosGERG, short_label = "GERG2008", label = "GERG EoS", need↔ _alternative_eos = .true.), eos_label_mapping(eos_idx = eosPT, eos_subidx = eosSAFT_VR_MIE, short↩ _label = "SAFT-VR-MIE", label = "SAFT for variable range Mie potentials", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eosPT, eos_subidx = eosLJS_BH, short_label = "LJS-BH", label = "LJs equation of state using BH perturbation theory", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eosPT, eos subidx = eosLJS WCA, short label = "LJS-WCA", label = "LJs equation of state using WCA perturbation theory", need alternative eos = .true.), eos label mapping(eos idx = eosPT, eos subidx = eosLJS_UV, short_label = "LJS-UV", label = "LJs equation of state using UV perturbation theory", need↔ _alternative_eos = .true.), eos_label_mapping(eos_idx = eosPT, eos_subidx = eosLJS UF, short label = "LJS-UF", label = "LJs equation of state using UF perturbation theory", need alternative eos = .true.), eos_label_mapping(eos_idx = eosPT, eos_subidx = eosLJ_UF, short_label = "LJ-UF", label = "LJ equation of state using UF perturbation theory", need_alternative_eos = .true.), eos_label_mapping(eos_idx = eos↔ PeTS, eos subidx = eosPeTS, short label = "PETS", label = "PeTS equation of state for LJTS at 2.5*sigma", need alternative eos = .true.), eos label mapping(eos idx = meosNist mix, eos subidx = meosNist mix, short_label = "NIST_MEOS_MIX", label = "Ideal mixture of NIST multiparameter EOS", need_alternative_↔ eos = .true.), eos_label_mapping(eos_idx = meosGERG_mix, eos_subidx = meosGERG_mix, short_label = "GERG2008 MIX", label = "GERG2008 mixture model", need alternative eos = .true.), eos label mapping(eos idx = meos helm mix, eos subidx = meos helm mix, short label = "MEOS", label = "MEOS mixture model", need_alternative_eos = .true.) /)

- integer, parameter nsrk = 3
- integer, dimension(nsrk), parameter srkindices = (/ cbSRK, cspSRK, cpaSRK/)
- integer, parameter **npr** = 3

- integer, dimension(npr), parameter **prindices** = (/ cbPR, cspPR, cpaPR/)
- integer, parameter **nsaft** = 4
- integer, dimension(nsaft), parameter saftindices = (/ eosCPA, eosPC_SAFT, eosPT, eosPeTS/)

5.19.1 Detailed Description

The module eosdata contains the definitions of the equation of state, mixing rule and the interaction parameters.

5.20 eoslibinit Module Reference

Initialize thermodynamic models.

Functions/Subroutines

- subroutine, public init_volume_translation (volume_trans_model, param_ref)
 Initialize volume translation.
- subroutine, public init_thermo (eos, mixing, alpha, comp_string, nphases, liq_vap_discr_method_in, csp_eos, csp_ref_comp, kij_ref, alpha_ref, saft_ref, b_exponent, trendeosforcp, cptype, silent)
 - Initialize thermodynamics library (legacy interface)
- subroutine, public init_cubic (comps, eos, mixing, alpha, parameter_reference, vol_shift) *Initialize cubic EoS. Use: call init_cubic('CO2,N2','PR', alpha='TWU')*
- subroutine, public init_cubic_pseudo (comps, tclist, pclist, acflist, mwlist, mixing, alpha)
 - Initialize pseudo components of a cubic EoS. Use: call init_cubic("CO2,PSEUDO,PSEUDO") call init_cubic_↔ pseudo(names=(/"", "C20", "C25"/), Tclist=(\0,300,400), & Pclist=(\0,100e5,200e5), acflist=(\0,0.3,0.5))
- subroutine, public init_tcpr (comps, mixing, parameter_ref)
- Initialize translated and consistent cubic EoS by le Guennec et al.
- subroutine, public init_quantum_cubic (comps, mixing)
 - Initialize Quantum Cubic Peng-Robinson equation of state by Aasen et al. (10.1016/j.fluid.2020.112790)
- subroutine, public init_extcsp (comps, sh_eos, sh_mixing, sh_alpha, ref_eos, ref_comp, ref_alpha, parameter_ref)

Initialize extended corresponding state EoS. Use: call init_extcsp.

- subroutine, public redefine_critical_parameters (silent_init, tc_in, vc_in)
 - Set critical parameters to represent actual model.
- subroutine, public init_saftvrmie (comps, parameter_reference)

Initialize SAFT-VR-MIE EoS. Use: call init_saftvrmie('CO2,N2')

subroutine, public init_quantum_saftvrmie (comps, feynman_hibbs_order, additive_hs_ref, parameter_
 reference)

Initialize SAFT-VR-MIE with quantum corrections EoS. Use: call init_quantum_saftvrmie('He,Ne',feynman_hibbs_← order=1)

- subroutine, public init_pcsaft (comps, parameter_reference, simplified, polar) *Initialize PC-SAFT EoS. Use: call init_pcsaft('CO2,N2')*
- subroutine, public init_cpa (comps, eos, mixing, alpha, parameter_reference)

Initialize CPA EoS. Use: call init_cpa('CO2,N2','PR', alpha='TWU')

- subroutine, public init_lee_kesler (comps, parameter_reference) Initialize Lee-Kesler EoS.
- subroutine, public init_multiparameter (comps, meos, ref_state)
 - Initialize multiparamaters eos.
- subroutine, public init_pets (parameter_reference)
 - Initialize Pets EoS.
- subroutine, public init_ljs (model, parameter_reference)

Initialize Lennard-Jones splined equation of state using perturbation theory.

subroutine, public init_lj (model, parameter_reference)
 Initialize Lennard-Jones equation of state using perturbation theory.

Variables

• logical, public silent_init = .false.

5.20.1 Detailed Description

Initialize thermodynamic models.

Author

MH, 2014-02

5.20.2 Function/Subroutine Documentation

5.20.2.1 init_cpa()

Initialize CPA EoS. Use: call init_cpa('CO2,N2','PR', alpha='TWU')

Parameters

in	comps	Components. Comma or white-space separated
in	eos	Equation of state
in	mixing	Mixing rule
in	alpha	Alpha correlation
in	parameter_reference	Data set reference

5.20.2.2 init_cubic()

```
subroutine, public eoslibinit::init_cubic (
    character(len=*), intent(in) comps,
    character(len=*), intent(in) eos,
    character(len=*), intent(in), optional mixing,
    character(len=*), intent(in), optional alpha,
    character(len=*), intent(in), optional parameter_reference,
    logical, intent(in), optional vol_shift )
```

Initialize cubic EoS. Use: call init_cubic('CO2,N2','PR', alpha='TWU')

Parameters

in	comps	Components. Comma or white-space separated
in	eos	Equation of state
in	mixing	Mixing rule
in	alpha	Alpha correlation
in	parameter_reference	Parameter reference
in	vol_shift	Volume shift

5.20.2.3 init_cubic_pseudo()

```
real, dimension(nc), intent(in) tclist,
real, dimension(nc), intent(in) pclist,
real, dimension(nc), intent(in) acflist,
real, dimension(nc), intent(in), optional mwlist,
character(len=*), intent(in), optional mixing,
character(len=*), intent(in), optional alpha)
```

Initialize pseudo components of a cubic EoS. Use: call init_cubic("CO2,PSEUDO,PSEUDO") call init_cubic_↔ pseudo(names=(/"", "C20", "C25"/), Tclist=(\0,300,400), & Pclist=(\0,100e5,200e5), acflist=(\0,0.3,0.5))

Parameters

in	comps	Components. Comma or white-space separated
in	tclist	List of critical temperatures (K)
in	pclist	List of critical pressures (Pa)
in	acflist	List of acentric factors (-)
in	mwlist	List of molar masses (kg/mol)
in	mixing	Mixing rule
in	alpha	Alpha correlation

5.20.2.4 init_extcsp()

```
subroutine, public eoslibinit::init_extcsp (
    character(len=*), intent(in) comps,
    character(len=*), intent(in) sh_eos,
    character(len=*), intent(in) sh_mixing,
    character(len=*), intent(in) sh_alpha,
    character(len=*), intent(in) ref_eos,
    character(len=*), intent(in) ref_comp,
    character(len=*), intent(in), optional ref_alpha,
    character(len=*), intent(in), optional parameter_ref )
```

Initialize extended corresponding state EoS. Use: call init_extcsp.

Parameters

in	comps	Components. Comma or white-space	
in	sh_eos	Shape factor equation of state	
in	sh_alpha	Shape factor alpha	
in	sh_mixing	Shape factor mixing rules	
in	ref_eos	Reference equation of state	
in	ref_comp	Reference component	
in	ref_alpha	Needed if refEos is a cubic eos. Should not be present if one want to use an mbwr	
		reference eos.	
in	parameter_ref	Parameter set reference	

5.20.2.5 init_lee_kesler()

in	comps	Components. Comma or white-space separated
----	-------	--

5.20.2.6 init_lj()

```
subroutine, public eoslibinit::init_lj (
            character(len=*), intent(in), optional model,
             character(len=*), intent(in), optional parameter_reference )
```

Initialize Lennard-Jones equation of state using perturbation theory.

Parameters

in	model	Model selection: "UV" (Default), "UF"
in	parameter_reference	Data set reference

5.20.2.7 init_ljs()

```
subroutine, public eoslibinit::init_ljs (
             character(len=*), intent(in), optional model,
             character(len=*), intent(in), optional parameter_reference )
```

Initialize Lennard-Jones splined equation of state using perturbation theory.

Parameters

in	model	Model selection: "UV" (Default), "BH", "WCA"
in	parameter_reference	Data set reference

5.20.2.8 init_multiparameter()

```
subroutine, public eoslibinit::init_multiparameter (
            character(len=*), intent(in) comps,
            character(len=*), intent(in) meos,
            character(len=*), intent(in) ref_state )
```

Initialize multiparamaters eos.

Parameters

in	comps	Components. Comma or white-space separated
in	meos	Equation of state
in	ref_state	Reference state ("DEFAULT", "IIR", "NBP", "ASHRAE", "IDGAS", "TRIPLE_POINT")

5.20.2.9 init_pcsaft()

```
subroutine, public eoslibinit::init_pcsaft (
             character(len=*), intent(in) comps,
             character(len=*), intent(in), optional parameter_reference,
             logical, intent(in), optional simplified,
             logical, intent(in), optional polar )
Initialize PC-SAFT EoS. Use: call init_pcsaft('CO2,N2')
```

in	comps	Components. Comma or white-space separated
in	parameter_reference	Data set reference
in	simplified	Use simplified PC-SAFT (Von Solms et al. 2003: 10.1021/ie020753p)
in	polar	Use PCP-SAFT:

5.20.2.10 init_pets()

```
subroutine, public eoslibinit::init_pets (
```

character(len=*), intent(in), optional parameter_reference)
Initialize Pets EoS.

Parameters

in	parameter reference	Data set reference
		Bala ool i oloi olioo

5.20.2.11 init_quantum_cubic()

Initialize Quantum Cubic Peng-Robinson equation of state by Aasen et al. (10.1016/j.fluid.2020.112790)

Parameters

in	comps	Components. Comma or white-space separated
in	mixing	Mixing rule

5.20.2.12 init_quantum_saftvrmie()

Initialize SAFT-VR-MIE with quantum corrections EoS. Use: call init_quantum_saftvrmie('He,Ne',feynman_hibbs, order=1)

Parameters

in	comps	Components. Comma or white-space separated
in	parameter_reference	Data set reference

5.20.2.13 init_saftvrmie()

in	comps	Components. Comma or white-space separated
in	parameter_reference	Data set reference

5.20.2.14 init_tcpr()

Parameters

in	comps	Components. Comma or white-space separated
in	mixing	Mixing rule
in	parameter_ref	Parameter set reference

5.20.2.15 init_thermo()

```
subroutine, public eoslibinit::init_thermo (
            character(len=*), intent(in) eos,
             character(len=*), intent(in) mixing,
             character(len=*), intent(in) alpha,
             character(len=*), intent(in) comp_string,
             integer, intent(in) nphases,
             integer, intent(in), optional liq_vap_discr_method_in,
             character(len=*), intent(in), optional csp_eos,
             character(len=*), intent(in), optional csp_ref_comp,
             character(len=*), intent(in), optional kij_ref,
             character(len=*), intent(in), optional alpha_ref,
             character(len=*), intent(in), optional saft_ref,
             real, intent(in), optional b_exponent,
             character(len=*), intent(in), optional trendeosforcp,
             integer, intent(in), optional cptype,
             logical, intent(in), optional silent )
```

```
Initialize thermodynamics library (legacy interface)
```

Author

MH, 2014-02

in	eos	String defining equation of state
in	mixing	String defining mixing rules
in	alpha	String defining alpha correlation
in	comp_string	String defining components. Comma or white-space separated.
in	nphases	Number of phases
in	liq_vap_discr_method⇔	Method to discriminate between liquid and vapor in case of an undefined
	_in	single phase. Will be set to none if absent.
in	csp_eos	Corrensponding state equation
in	csp_ref_comp	CSP component

in	saft_ref	Data set identifiers
in	b_exponent	Inverse exponent $(1/s)$ in mixing of covolume $(s>1.0)$
in	trendeosforcp	Option to init trend for ideal gas properties.
in	cptype	Type numbers for Cp
in	silent	Option to disable init messages.

5.20.2.16 init_volume_translation()

Initialize volume translation.

Author

MH, 2020

Parameters

in	volume_trans_model	String model for volume translation
in	param_ref	String defining parameter set

5.20.2.17 redefine_critical_parameters()

Set critical parameters to represent actual model.

Author

MH, 2019-03

5.21 eostv Module Reference

Interface to thermodynamic models. Using Helmholtz formulation in temperature and volume.

Functions/Subroutines

- real function, public pressure (t, v, n, dpdv, dpdt, d2pdv2, dpdn, contribution) Calculate pressure given composition, temperature and density.
- subroutine, public internal_energy_tv (t, v, n, u, dudt, dudv, dudn, contribution) Calculate internal energy given composition, temperature and density.
- subroutine, public free_energy_tv (t, v, n, y, dydt, dydv, dydn, contribution)
 Calculate Helmholtz free energy given composition, temperature and density.
- subroutine, public entropy_tv (t, v, n, s, dsdt, dsdv, dsdn, contribution) Calculate entropy given composition, temperature and density.
- subroutine, public enthalpy_tv (t, v, n, h, dhdt, dhdv, dhdn, contribution) Calculate enthalpy given composition, temperature and density.
- subroutine, public thermo_tv (t, v, n, Inphi, Inphit, Inphiv, Inphin) Calculate fugacity and differentials given composition, temperature and specific volume.

- subroutine, public fres (t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn, f_vvv, recalculate) Calculate residual reduced Helmholtz energy.
- subroutine, public fres_ne (t, v, ne, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn, f_vvv, recalculate) Calculate residual reduced Helmholtz energy for real (not apparent) mol numbers.
- subroutine, public fideal (t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn) *Calculate ideal reduced Helmholtz energy.*
- subroutine, public fideal_ne (t, v, ne, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn) *Calculate ideal reduced Helmholtz energy for real (not apparent) components.*
- subroutine, public virial_coefficients (t, n, b, c)

Calculate (composition-dependent) virial coefficients B and C, defined as P/RT = rho + B*rho**2 + C*rho**3 + O(rho**4) as rho > 0.

• subroutine, public secondvirialcoeffmatrix (t, bmat)

Calculate composition-independent virial coefficients B, defined as P = RT*rho + B*rho**2 + C*rho**3 + O(rho**4) as rho->0. Including cross coefficients.

• subroutine, public binarythirdvirialcoeffmatrix (t, cmat)

Calculate composition-independent virial coefficients C, defined as P = RT*rho + B*rho**2 + C*rho**3 + O(rho**4) as rho->0. Including cross coefficients Currently the code only support binary mixtures.

subroutine, public chemical_potential_tv (t, v, n, mu, dmudt, dmudv, dmudn, contribution)
 Calculate chemical potential and derivatives.

• subroutine, public thermo_tvp (t, v, n, Infug, dInfugdt, dInfugdp, dInfugdn)

- Calculate the logarithmic fugacity coefficient and its differentials. Evaluate using (T,v,n) but output differentials for (T, P, n)
- subroutine, public enthalpy_tvp (t, v, n, h, dhdt, dhdp, dhdn, contribution)

Calculate enthalpy given composition, temperature and density. Differentials at constant pressure.

subroutine, public entropy_tvp (t, v, n, s, dsdt, dsdp, dsdn, contribution)
 Calculate entropy given composition, temperature and density. Differentials at constant pressure.

5.21.1 Detailed Description

Interface to thermodynamic models. Using Helmholtz formulation in temperature and volume.

Author

MH, 2015-02

5.21.2 Function/Subroutine Documentation

5.21.2.1 binarythirdvirialcoeffmatrix()

```
subroutine, public eostv::binarythirdvirialcoeffmatrix (
            real, intent(in) t,
            real, dimension(nc,nc), intent(out) cmat )
```

Calculate composition-independent virial coefficients C, defined as P = RT*rho + B*rho**2 + C*rho**3 + O(rho**4) as rho->0. Including cross coefficients Currently the code only support binary mixtures.

Parameters

in	t	Temperature [K]
out	cmat	Third virial coefficients [m6/mol2]

5.21.2.2 chemical_potential_tv()
```
real, dimension(nc), intent(in) n,
real, dimension(nc), intent(out) mu,
real, dimension(nc), intent(out), optional dmudt,
real, dimension(nc), intent(out), optional dmudv,
real, dimension(nc,nc), intent(out), optional dmudn,
integer, intent(in), optional contribution )
```

Calculate chemical potential and derivatives.

Author

MAG, 2018-10-31

Parameters

in	t	K - Temperature
in	V	m3 - Molar volume
in	n	mol - Mol numbers
out	ти	J/mol
out	dmudv	J/m^3
out	dmudt	J/mol K
out	dmudn	J/mol^2
in	contribution	Contribution from ideal (PROP_IDEAL), residual (PROP_RESIDUAL) or both (PROP_OVERALL)

5.21.2.3 enthalpy_tv()

```
subroutine, public eostv::enthalpy_tv (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(1:nc), intent(in) n,
    real, intent(out) h,
    real, intent(out), optional dhdt,
    real, intent(out), optional dhdv,
    real, dimension(nc), intent(out), optional dhdn,
    integer, intent(in), optional contribution )
```

Calculate enthalpy given composition, temperature and density.

Author

MH, 2019-06

in	t	K - Temperature
in	V	m3 - Volume
in	n	Mol numbers
out	h	J - Enthalpy
out	dhdt	J/K - Enthalpy differential wrpt. temperature
out	dhdv	J/m3 - Enthalpy differential wrpt. volume
out	dhdn	J/m3 - Enthalpy differential wrpt. mol numbers
in	contribution	Contribution from ideal (PROP_IDEAL), residual (PROP_RESIDUAL) or both

5.21.2.4 enthalpy_tvp()

```
subroutine, public eostv::enthalpy_tvp (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(1:nc), intent(in) n,
    real, intent(out) h,
    real, intent(out), optional dhdt,
    real, intent(out), optional dhdp,
    real, dimension(nc), intent(out), optional dhdn,
    integer, intent(in), optional contribution )
```

Calculate enthalpy given composition, temperature and density. Differentials at constant pressure.

Author

MH, 2019-06

Parameters

in	t	K - Temperature
in	V	m3 - Volume
in	n	Mol numbers
out	h	J - Enthalpy
out	dhdt	J/K - Enthalpy differential wrpt. temperature (const pressure)
out	dhdp	J/Pa - Enthalpy differential wrpt. pressure
out	dhdn	J/m3 - Enthalpy differential wrpt. mol numbers
in	contribution	Contribution from ideal (PROP_IDEAL), residual (PROP_RESIDUAL) or both
		(PROP_OVERALL)

5.21.2.5 entropy_tv()

```
subroutine, public eostv::entropy_tv (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(l:nc), intent(in) n,
    real, intent(out) s,
    real, intent(out), optional dsdt,
    real, intent(out), optional dsdv,
    real, dimension(nc), intent(out), optional dsdn,
    integer, intent(in), optional contribution )
```

Calculate entropy given composition, temperature and density.

Author

MH, 2015-02

Parameters

in	t	K - Temperature
in	V	m3 - Volume
in	n	Mol numbers
out	s	J/K - Entropy
out	dsdt	J/K2 - Entropy differential wrpt. temperature
out	dsdv	J/K/m3 - Entropy differential wrpt. specific volume
out	dsdn	J/K/mol - Entropy differential wrpt. mol numbers
in	contribution	Contribution from ideal (PROP_IDEAL), residual (PROP_RESIDUAL) or both (PROP_OVERALL)

Generated by Doxygen

5.21.2.6 entropy_tvp()

```
subroutine, public eostv::entropy_tvp (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(1:nc), intent(in) n,
    real, intent(out) s,
    real, intent(out), optional dsdt,
    real, intent(out), optional dsdp,
    real, dimension(nc), intent(out), optional dsdn,
    integer, intent(in), optional contribution )
```

Calculate entropy given composition, temperature and density. Differentials at constant pressure.

Author

MH, 2022-02

Parameters

in	t	K - Temperature
in	V	m3 - Volume
in	n	Mol numbers
out	s	J/K - Entropy
out	dsdt	J/K2 - Entropy differential wrpt. temperature (const pressure)
out	dsdp	J/K/Pa - Entropy differential wrpt. specific pressure
out	dsdn	J/K/mol - Entropy differential wrpt. mol numbers
in	contribution	Contribution from ideal (PROP_IDEAL), residual (PROP_RESIDUAL) or both
		(PROP_OVERALL)

5.21.2.7 fideal()

```
subroutine, public eostv::fideal (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(1:nc), intent(in) n,
    real, intent(out), optional f,
    real, intent(out), optional f_t,
    real, intent(out), optional f_v,
    real, dimension(1:nc), intent(out), optional f_n,
    real, intent(out), optional f_tt,
    real, intent(out), optional f_tv,
    real, intent(out), optional f_v,
    real, intent(out), optional f_v,
    real, intent(out), optional f_tv,
    real, intent(out), optional f_v,
    real, intent(out), optional f_v,
    real, intent(out), optional f_v,
    real, intent(out), intent(out), optional f_v,
    real, dimension(1:nc), intent(out), optional f_v,
    real, dimension(1:nc), intent(out), optional f_v,
    real, dimension(1:nc), intent(out), optional f_nn )
```

Calculate ideal reduced Helmholtz energy.

Author

MH, 2012-01-27

in	t	K - Temperature
in	V	m3/mol - Volume
in	n	Compozition

5.21.2.8 fideal_ne()

```
subroutine, public eostv::fideal_ne (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(1:nce), intent(in) ne,
    real, intent(out), optional f,
    real, intent(out), optional f_t,
    real, intent(out), optional f_v,
    real, dimension(1:nce), intent(out), optional f_n,
    real, intent(out), optional f_tt,
    real, intent(out), optional f_tv,
    real, intent(out), optional f_vv,
    real, intent(out), optional f_vv,
    real, intent(out), optional f_vv,
    real, intent(out), optional f_vv,
    real, dimension(1:nce), intent(out), optional f_tn,
    real, dimension(1:nce), intent(out), optional f_vn,
    real, dimension(1:nce), intent(out), optional f_vn,
    real, dimension(1:nce), intent(out), optional f_nn)
```

Calculate ideal reduced Helmholtz energy for real (not apparent) components.

Author

MH, 2022-02

Parameters

in	t	K - Temperature
in	V	m3/mol - Volume
in	ne	Compozition

5.21.2.9 free_energy_tv()

```
subroutine, public eostv::free_energy_tv (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(1:nc), intent(in) n,
    real, intent(out) y,
    real, intent(out), optional dydt,
    real, intent(out), optional dydv,
    real, dimension(nc), intent(out), optional dydn,
    integer, intent(in), optional contribution )
```

Calculate Helmholtz free energy given composition, temperature and density.

Author

GL, 2015-01-23

in	t	K - Temperature
in	V	m3 - Volume
in	n	Mol numbers
out	У	J - Free energy
out	dydt	J/K - Differential wrt. temperature
out	dydv	J/m3 - Differential wrt. specific volume
out	dydn	J/mol - Helmholtz differential wrpt. mol numbers
in	contribution	Contribution from ideal (PROP_IDEAL), residual (PROP_RESIDUAL) or both (PROP_OVERALL)

5.21.2.10 fres()

```
subroutine, public eostv::fres (
            real, intent(in) t,
             real, intent(in) v,
             real, dimension(1:nc), intent(in) n,
             real, intent(out), optional f,
             real, intent(out), optional f_t,
             real, intent(out), optional f_v,
             real, dimension(1:nc), intent(out), optional f_n,
             real, intent(out), optional f_tt,
             real, intent(out), optional f_tv,
             real, intent(out), optional f_vv,
             real, dimension(1:nc), intent(out), optional f_tn,
             real, dimension(1:nc), intent(out), optional f_vn,
             real, dimension(1:nc,1:nc), intent(out), optional f_nn,
             real, intent(out), optional f_vvv,
             logical, intent(in), optional recalculate )
```

Calculate residual reduced Helmholtz energy.

Author

MH, 2012-01-27

Parameters

in	t	K - Temperature
in	V	m3 - Volume
in	n	mol numbers

5.21.2.11 fres_ne()

```
subroutine, public eostv::fres_ne (
            real, intent(in) t,
             real, intent(in) v,
             real, dimension(1:nce), intent(in) ne,
             real, intent(out), optional f,
             real, intent(out), optional f_t,
             real, intent(out), optional f_v,
             real, dimension(1:nce), intent(out), optional f_n,
             real, intent(out), optional f_tt,
             real, intent(out), optional f_tv,
             real, intent(out), optional f_vv,
             real, dimension(1:nce), intent(out), optional f_tn,
             real, dimension(1:nce), intent(out), optional f_vn,
             real, dimension(1:nce,1:nce), intent(out), optional f_nn,
             real, intent(out), optional f_vvv,
             logical, intent(in), optional recalculate )
```

Calculate residual reduced Helmholtz energy for real (not apparent) mol numbers.

Author

MH, 2022-02

Parameters

in	t	K - Temperature
in	V	m3 - Volume
in	ne	mol numbers

Generated by Doxygen

5.21.2.12 internal_energy_tv()

```
subroutine, public eostv::internal_energy_tv (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(l:nc), intent(in) n,
    real, intent(out) u,
    real, intent(out), optional dudt,
    real, intent(out), optional dudv,
    real, dimension(nc), intent(out), optional dudn,
    integer, intent(in), optional contribution )
```

Calculate internal energy given composition, temperature and density.

Author

MH, 2012-03-14

Parameters

in	t	K - Temperature
in	V	m3 - Specific volume
in	n	Mol numbers
out	u	J - Specific internal energy
out	dudt	J/K - Energy differential wrpt. temperature
out	dudv	J/m3 - Energy differential wrpt. volume
out	dudn	J/mol - Energy differential wrpt. mol numbers
in	contribution	Contribution from ideal (PROP_IDEAL), residual (PROP_RESIDUAL) or both (PROP_OVERALL)

5.21.2.13 pressure()

```
real function, public eostv::pressure (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(1:nc), intent(in) n,
    real, intent(out), optional dpdv,
    real, intent(out), optional dpdt,
    real, intent(out), optional d2pdv2,
    real, dimension(nc), intent(out), optional dpdn,
    integer, intent(in), optional contribution )
```

Calculate pressure given composition, temperature and density.

Author

MH, 2012-03-14

Parameters

in	t	K - Temperature
in	V	m3 - Volume
in	n	Mol numbers
out	dpdt	Pa/K - Pressure differential wrpt. temperature
out	dpdv	Pa/m3 - Pressure differential wrpt. specific volume
out	d2pdv2	Pa/m6 - Second pressure differential wrpt. specific volume
out	dpdn	Pa/mol - Second pressure differential wrpt. specific mole numbers
in	contribution	Contribution from ideal (PROP_IDEAL), residual (PROP_RESIDUAL) or both
		(PROP_OVERALL)

Generated by Doxygen

Returns

Pa - Pressure

5.21.2.14 secondvirialcoeffmatrix()

```
subroutine, public eostv::secondvirialcoeffmatrix (
```

real, intent(in) t,

real, dimension(nc,nc), intent(out) bmat)

Calculate composition-independent virial coefficients B, defined as P = RT*rho + B*rho**2 + C*rho**3 + O(rho**4) as rho->0. Including cross coefficients.

Parameters

in	t	Temperature [K]
out	bmat	Second virial coefficients [m3/mol]

5.21.2.15 thermo_tv()

```
subroutine, public eostv::thermo_tv (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(1:nc), intent(in) n,
    real, dimension(1:nc), intent(out) lnphi,
    real, dimension(1:nc), intent(out), optional lnphit,
    real, dimension(1:nc), intent(out), optional lnphiv,
    real, dimension(1:nc), intent(out), optional lnphin)
```

Calculate fugacity and differentials given composition, temperature and specific volume.

Author

MH, 2015-10

Parameters

in	t	K - Temperature
in	V	m3 - Volume
in	n	Mole numbers [mol]
out	Inphi	Logarithm of fugasity
out	Inphit	1/K - Logarithm of fugasity differential wrpt. temperature
out	Inphiv	mol/m3 - Logarithm of fugasity differential wrpt. volume
out	Inphin	Logarithm of fugasity differential wrpt. mole numbers

5.21.2.16 thermo_tvp()

```
subroutine, public eostv::thermo_tvp (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(nc), intent(in) n,
    real, dimension(nc), intent(out) lnfug,
    real, dimension(nc), intent(out), optional dlnfugdt,
    real, dimension(nc), intent(out), optional dlnfugdp,
    real, dimension(nc,nc), intent(out), optional dlnfugdn )
Calculate the logarithmic function coefficient and its differentials. Evaluate using (Tvn) but output differentials.
```

Calculate the logarithmic fugacity coefficient and its differentials. Evaluate using (T,v,n) but output differentials for (T, P, n)

Author

Morten Hammer, 2022-02

Parameters

in	t	Temperature [K]
in	v	Volume [m3]
in	n	Mole numbers [mols]

5.21.2.17 virial_coefficients()

```
subroutine, public eostv::virial_coefficients (
    real, intent(in) t,
    real, dimension(1:nc), intent(in) n,
    real, intent(out) b,
    real, intent(out) c )
```

Calculate (composition-dependent) virial coefficients B and C, defined as P/RT = rho + B*rho**2 + C*rho**3 + O(rho**4) as rho->0.

Parameters

in	t	Temperature [K]
in	n	Composition [-]
out	b	Second virial coefficients [m3/mol]
out	С	Third virial coefficient [m6/mol2]

5.22 excess_gibbs Module Reference

Excess Gibbs Energy Models.

Functions/Subroutines

- · real function, public getinfinitlimitc (cbeos)
- real function getzerolimitc (cbeos)
- subroutine getgeparam (cbeos, t, tau, dtaudt, d2taudt2, cij, alpha)
- subroutine gethvnrtlparam (cbeos, t, tau, dtaudt, d2taudt2, cij, alpha)
- subroutine, public getpoly (p, n, x, y, yd, ydd)
- subroutine, public getfraction (frac, x, y, yd, ydd)
- subroutine getwsparam (cbeos, t, tau, dtaudt, d2taudt2, cij, alpha)
- subroutine gexcess (cbeos, t, n, gexinf, dgexinfdt, d2gexinfdt2, dgexinfdni, d2gexinfdnidt, d2gexinfdnidnj)
- subroutine, public **geinf** (cbeos, t, zcomp, gexinf, dgexinfdt, d2gexinfdt2, dgexinfdni, d2gexinfdnidt, d2gexinfdnidnj)
- subroutine, public excessgibbsmix (cbeos, t, n)

5.22.1 Detailed Description

Excess Gibbs Energy Models.

Currently support Huron-Vidal and NRTL

Based on Geir Skaugens implementation of Huron-Vidal, and Anders Austegards implementation of Wong-Sandler

Author

Morten Hammer

Date

2015-03

5.22.2 Function/Subroutine Documentation

5.22.2.1 getfraction()

```
subroutine, public excess_gibbs::getfraction (
    type(fraction), intent(in) frac,
    real, intent(in) x,
    real, intent(out) y,
    real, intent(out) yd,
    real, intent(out) ydd )
```

Parameters

out | ydd | y and its derived

5.23 extcsp Module Reference

Calulate shape factors for corresponding state method, using either a cubic or a multiparameter EoS for the reference EoS, and a cubic EoS for the shape factor EoS.

Data Types

- type extcsp_eos
- type shape_diff

Functions/Subroutines

 subroutine, public csp_init (eos, nce, comps, refcomp_str, sheos, shmixrule, shalpha, refeos, refalpha, parameter_ref)

Init calculation for shape factors, by setting index of reference component.

subroutine, public csp_zfac (eos, t, p, n, phase, zfac, dzdt, dzdp, dzdz)

Calculate Z-factor of the mixture.

subroutine, public csp_refpressure (eos, t0, v0, n, p0, dp0dv0, dp0dt0)

Solve reference equation for p0 for given real temperature and pressure.

- subroutine, public csp_maintestroutine ()
- subroutine, public csp_testpressure (t, v, n)
- subroutine, public csp_calcfres (nce, eos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn)
 Calculates the reduced residual Helmholtz energy F, along with its derivatives.

5.23.1 Detailed Description

Calulate shape factors for corresponding state method, using either a cubic or a multiparameter EoS for the reference EoS, and a cubic EoS for the shape factor EoS.

Todo Need trace-component functionality.

This module uses the convention that all quantities are measured in base SI units, with the exception of density [mol/L] and molar volume [L/mol].

Derivatives. Uses the notation on pages 115-120 in Michelsen & Mollerup.

5.23.2 Function/Subroutine Documentation

5.23.2.1 csp_init()

Init calculation for shape factors, by setting index of reference component.

Author

MHA, 2013-11-27

Ailo

Parameters

in	refcomp_str	Reference component
in	refeos	shEos is any two-parameter (a,b) cubic equation of state
in	refalpha	Needed if refEos is a cubic eos. Should not be present if one want to use an mbwr
		reference eos.
in	parameter_ref	Parameter set reference

5.23.2.2 csp_refpressure()

```
subroutine, public extcsp::csp_refpressure (
    class(extcsp_eos), intent(inout) eos,
    real, intent(in) t0,
    real, intent(in) v0,
    real, dimension(nce), intent(in) n,
    real, intent(out) p0,
    real, intent(out), optional dp0dv0,
    real, intent(out), optional dp0dt0 )
```

Solve reference equation for p0 for given real temperature and pressure.

Author

MH, 2013-11-27

in,out	eos	CSP eos	
in	t0	Reference fluid temperature [K]	
in	v0	Reference fluid molar volume [L/mol]	
in	n	Mole composition of mixture [mol]	
out	<i>р0</i>	Pressure [Pa]	
out	dp0dt0	Pressure differentials [Pa*mol/L], [Pa/K]	

5.23.2.3 csp_testpressure()

```
subroutine, public extcsp::csp_testpressure (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(nce), intent(in) n)
```

Parameters

in	t	Mixture temperature [K]
in	v	Mixture molar volume [L/mol]
in	n	Mole composition of mixture [mol]

5.23.2.4 csp_zfac()

Calculate Z-factor of the mixture.

Author

MH, 2013-11-27

Parameters

in,out	eos	CSP eos
in	р	Volume shape factor [mol]
in	t	Temperature [K]
in	n	Molar values [mol]
out	zfac	[-]

5.24 gergdatadb Module Reference

Automatically generated file gergdatadb.f90 Time stamp: 2021-07-25T15:05:48.938109.

Data Types

· type gergdata

Variables

type(gergdata), parameter gerg_1 = gergdata(ident = "AR", name = "ARGON", mw = 39.948, tc = 150.↔
 687, pc = 4879.8, rhoc = 13.407429659, ttr = 83.8058, ptr = 69.03, tr = 150.687, rhor = 13.407429659,
 Rgas = 8.314472, acf = -0.0006, t_max = 700.0, p_max = 1000000.0, n_eos = 12, a_eos = (/ 0.↔
 85095714803969,-0.24003222943480d1,0.54127841476466, 0.16919770692538d-1,0.68825965019035d 1,0.21428032815338d-3, 0.17429895321992,-0.33654495604194d-1,-0.13526799857691, -0.16387350791552d 1,-0.24987666851475d-1,0.88769204815709d-2, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,

 $\begin{array}{l} 0.0d0, 0.0d0, 0.0d0 \ /), \ \underline{t}_eos = (/ \ 0.250, 1.125, 1.500, \ 1.375, 0.250, 0.875, \ 0.625, 1.750, 3.625, \ 3.625, 14.5, 12. \leftrightarrow 0, \ 0.0d0, 0.0d0$

- type(gergdata), parameter gerg_2 = gergdata(ident = "CO", name = "CO", mw = 28.0101, tc = 132.86, pc = 3494.0, rhoc = 10.85, ttr = 68.16, ptr = 15.45, tr = 132.86, rhor = 10.85, Rgas = 8.314472, acf = 0. \leftrightarrow 0497, t_max = 500.0, p_max = 100000.0, n_eos = 12, a_eos = (/ 0.90554, -2.4515, 0.53149, 0.024173, 0. \leftrightarrow 072156, 0.00018818, 0.19405, -0.043268, -0.12778, -0.027896, -0.034154, 0.016329, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0/), t_eos = (/ 0.25, 1.125, 1.5, 1.375, 0.25, 0.875, 0. \leftrightarrow 0d0, 0.0d0, 0.0d0
- type(gergdata), parameter gerg_3 = gergdata(ident = "H2O", name = "WATER", mw = 18.01528, tc = 647.096, pc = 22064.0, rhoc = 17.87371609, ttr = 273.16, ptr = 0.61248, tr = 647.096, rhor = 17.↔ 87371609, Rgas = 8.314472, acf = 0.345, t_max = 1350.0, p_max = 1000000.0, n_eos = 16, a↔ _eos = (/ 0.82728408749586,-0.18602220416584d1,-0.11199009613744d1, 0.15635753976056,0.↔ 87375844859025,-0.36674403715731, 0.53987893432436d-1,0.10957690214499d1,0.53213037828563d- 1,0.13050533930825d-1,-0.41079520434476,0.14637443344120, -0.55726838623719d-1,-0.11201774143800d-1,-0.66062758068099d-2, 0.46918522004538d-2,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d
 t_eos = (/ 0.5,1.25,1.875, 0.125,1.5,1.0, 0.75,1.5,0.625, 2.625,5.0,4.0, 4.5,3.0,4.0, 6.0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), d_eos = (/ 1,1,1,2,2,3, 4,1,5,5,1,2, 4,4,1,1,0,0, 0,0,0,0,0 /), l_eos = (/ 0,0,0,0,0,0, 0,1,1,1,2,2, 2,3,5,5,0,0, 0,0,0,0,0,0 /), n_cosh = 1, n_sinh = 2, n_id = (/ 8.20352069,-11.↔ 996306443,3.00392, -0.98763,0.01059,3.06904, 0.0d0 /), t_id = (/ 0.,1.,1.,1.763895929,0.415386589,3.↔ 874803739,0.0d0 /))
- type(gergdata), parameter gerg_4 = gergdata(ident = "CO2", name = "CO2", mw = 44.0095, tc = 304.1282, pc = 7377.3, rhoc = 10.624978698, ttr = 216.592, ptr = 517.94, tr = 304.1282, rhor = 10.624978698, Rgas = 8.314472, acf = 0.225, t_max = 1100.0, p_max = 800000.0, n_eos = 22, a_eos = (/ 0.52646564804653,-0.14995725042592d1,0.27329786733782, 0.12949500022786,0.↔ 15404088341841,-0.58186950946814, -0.18022494838296,-0.95389904072812d-1,-0.80486819317679d-2, -0.35547751273090d-1,-0.28079014882405,-0.82435890081677d-1, 0.10832427979006d-1,-0.↔ 67073993161097d-2,-0.46827907600524d-2, -0.28359911832177d-1,0.19500174744098d-1,-0.21609137507166, 0.43772794926972,-0.22130790113593,0.15190189957331d-1, -0.15380948953300d-1,0.0d0,0.0d0 /), t↔ _eos = (/ 0.00,1.25,1.625, 0.375,0.375,1.375, 1.125,1.375,0.125, 1.625,3.75,3.5, 7.5,8.0,6.0, 16.0,11.0,24.0, 26.0,28.0,24.0, 26.0,0.0d0,0.0d0 /), d_eos = (/ 1,1,2,3,3,3, 4,5,6,6,1,4, 1,1,3,3,4,5, 5,5,5,5,0,0 /), l_eos = (/ 0,0,0,1,1, 1,1,1,2,2, 3,3,3,3,5, 5,5,6,6,0,0 /), n_cosh = 2, n_sinh = 2, n_id = (/ 11.925152758,-16.↔ 118762264,2.50002, 1.06044,-0.01393,2.04452, 2.03366 /), t_id = (/ 0.,1.,1.,-2.844425476,1.12159609,3.↔ 022758166,1.589964364 /))
- type(gergdata), parameter gerg_5 = gergdata(ident = "NC10", name = "DECANE", mw = 142.28168, tc = 617.7, pc = 2103.0, rhoc = 1.64, ttr = 243.5, ptr = 0.0014, tr = 617.7, rhor = 1.64, Rgas = 8.314472, acf = 0.4884, t_max = 675.0, p_max = 800000.0, n_eos = 12, a_eos = (/ 1.0461, -2.4807, 0.74372, -0. ↔ 52579, 0.15315, 0.00032865, 0.84178, 0.055424, -0.73555, -0.18507, -0.020775, 0.012335, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), t_eos = (/ 0.25, 1.125, 1.5, 1.375, 0.25, 0.875, 0.. ↔ 625, 1.75, 3.625, 3.625, 14.5, 12.0, 0.0d0, 0.0d
- type(gergdata), parameter gerg_6 = gergdata(ident = "O2", name = "OXYGEN", mw = 31.9988, tc = 154.595, pc = 5061.6, rhoc = 13.63, ttr = 54.361, ptr = 0.1460, tr = 154.595, rhor = 13.63, Rgas = 8.314472, acf = 0.0236, t_max = 1000.0, p_max = 82000.0, n_eos = 12, a_eos = (/ 0.↔ 88878286369701,-0.24879433312148d1,0.59750190775886, 0.96501817061881d-2,0.71970428712770d-1,0.22337443000195d-3, 0.18558686391474,-0.38129368035760d-1,-0.15352245383006, -0.26726814910919d-1,-0.25675298677127d-1,0.95714302123668d-2, 0.0d0,0

0.,1.,1.,7.223325463,14.461722565,0.0d0,0.0d0 /))

- type(gergdata), parameter gerg_7 = gergdata(ident = "NC8", name = "OCTANE", mw = 114.22852, tc = 569.32, pc = 2506.7, rhoc = 2.056404127, ttr = 216.37, ptr = 0.001989, tr = 569.32, rhor = 2.056404127, Rgas = 8.314472, acf = 0.3964, t_max = 600.0, p_max = 100000.0, n_eos = 12, a_eos = (/ 0.10722544875633d1,-0.24632951172003d1,0.65386674054928, -0.36324974085628,0.12713269626764,0.30713572777930d-3, 0.52656856987540,0.19362862857653d-1,-0.58939426849155, -0.14069963991934,-0.78966330500036d-2,0.33036597968109d-2, 0.0d0,0.0
- type(gergdata), parameter gerg_8 = gergdata(ident = "IC4", name = "ISOBUTAN", mw = 58. \leftrightarrow 1222, tc = 407.817, pc = 3633.1, rhoc = 3.86014294, ttr = 113.73, ptr = 0.00002177, tr = 407. \leftrightarrow 817, rhor = 3.86014294, Rgas = 8.314472, acf = 0.1841, t_max = 575.0, p_max = 35000. \leftrightarrow 0, n_eos = 12, a_eos = (/ 0.10429331589100d1,-0.28184272548892d1,0.86176232397850, -0. \leftrightarrow 10613619452487,0.98615749302134d-1,0.23948208682322d-3, 0.30330004856950,-0.41598156135099d-1,-0.29991937470058, -0.80369342764109d-1,-0.29761373251151d-1,0.13059630303140d-1, 0.0d0,0. \leftrightarrow 0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,
- type(gergdata), parameter gerg_10 = gergdata(ident = "H2", name = "HYDROGEN", mw = 2. \leftrightarrow 01588, tc = 33.19, pc = 1315.0, rhoc = 14.94, ttr = 13.957, ptr = 6.669, tr = 33.19, rhor = 14. \leftrightarrow 94, Rgas = 8.314472, acf = -0.2187, t_max = 400.0, p_max = 121000.0, n_eos = 14, a_ \leftrightarrow eos = (/ 0.53579928451252d1,-0.62050252530595d1,0.13830241327086, -0.71397954896129d-1,0. \leftrightarrow 15474053959733d-1,-0.14976806405771, -0.26368723988451d-1,0.56681303156066d-1,-0.60063958030436d-1, -0.45043942027132,0.42478840244500,-0.21997640827139d-1, -0.10499521374530d-1,-0.28955902866816d-2,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d
- type(gergdata), parameter gerg_11 = gergdata(ident = "NC5", name = "PENTANE", mw = 72.14878, tc = 469.7, pc = 3368.8, rhoc = 3.215577588, ttr = 143.47, ptr = 0.00007632, tr = 469.7, rhor = 3.↔ 215577588, Rgas = 8.314472, acf = 0.2513, t_max = 600.0, p_max = 100000.0, n_eos = 12, a.↔ _eos = (/ 0.10968643098001d1,-0.29988888298061d1,0.99516886799212, -0.16170708558539,0.↔ 11334460072775,0.26760595150748d-3, 0.40979881986931,-0.40876423083075d-1,-0.38169482469447, -0.10931956843993,-0.32073223327990d-1,0.16877016216975d-1, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0

- type(gergdata), parameter gerg_12 = gergdata(ident = "NC4", name = "BUTANE", mw = 58.1222, tc = 425.125, pc = 3830.3, rhoc = 3.920016792, ttr = 134.895, ptr = 0.0006507, tr = 425.125, rhor = 3.920016792, Rgas = 8.314472, acf = 0.2038, t_max = 575.0, p_max = 69000.0, n_eos = 12, a⇔ _eos = (/ 0.10626277411455d1,-0.28620951828350d1,0.88738233403777, -0.12570581155345,0.⇔ 10286308708106,0.25358040602654d-3, 0.32325200233982,-0.37950761057432d-1,-0.32534802014452, -0.79050969051011d-1,-0.20636720547775d-1,0.57053809334750d-2, 0.0d0,0.0d0,0.0d0, 0.0d0,0..⇔ 0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), t_eos = (/ 0.250,1.125,1.500, 1.375,0.250,0.875, 0.625,1.750,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0, 0.0d0,0.
- type(gergdata), parameter gerg_13 = gergdata(ident = "N2", name = "NITROGEN", mw = 28... 0134, tc = 126.192, pc = 3395.8, rhoc = 11.1839, ttr = 63.151, ptr = 12.523, tr = 126.192, rhor = 11.1839, Rgas = 8.314472, acf = 0.0373, t_max = 2000.0, p_max = 2200000.0, n_eos = 24, a eos = (/ 0.59889711801201,-0.16941557480731d1,0.24579736191718, -0.23722456755175,0.↔ 17954918715141d-1.0.14592875720215d-1, 0.10008065936206.0.73157115385532.-0.88372272336366. -0.60690817018557d-1,0.12797548292871d-1,0.58743664107299d-2, 0.33066712095307d-1, **-0**.⇔ 18451951971969d-1,0.47226622042472d-2,-0.52024079680599d-2, 0.43563505956635d-1,-0.36251690750939d-1,-0.28974026866543d-2 /), t_eos = (/ 0.125,1.125,0.375, 1.125,0.625,1.5, 0.625,2.625,2.75, 2.125,2.0,1.75, 4.50,4.75,5.0, 4.0,4.5,7.5, 14.0,11.5,26.0, 28.0,30.0,16.0 /), d_eos = (/ 1,1,2,2,4,4, 1,1,1,2,3,6, 2,3,3,4,4,2, 3,4,5,6,6,7 /), I_eos = (/ 0,0,0,0,0,0, 1,1,1,1,1, 2,2,2,2,2,3, 3,3,6,6,6,6 /), n_cosh = 1, n_sinh = 2, n↔ _id = (/ 11.083407489,-22.202102428,2.50031, 0.1466,0.13732,0.90066, 0.0d0 /), t_id = (/ 0.,1.,1.,-5. 393067706,5.25182262,13.788988208,0.0d0 /))
- type(gergdata), parameter gerg_14 = gergdata(ident = "NC7", name = "HEPTANE", mw = 100.20194, tc = 540.13, pc = 2773.8, rhoc = 2.315324434, ttr = 182.55, ptr = 0.0001755, tr = 540.13, rhor = 2.315324434, Rgas = 8.314472, acf = 0.3554, t_max = 600.0, p_max = 100000.0, n_eos = 12, a ← _eos = (/ 0.10543747645262d1,-0.26500681506144d1,0.81730047827543, -0.30451391253428,0. ← 12253868710800,0.27266472743928d-3, 0.49865825681670,-0.71432815084176d-3,-0.54236895525450, -0.13801821610756,-0.61595287380011d-2,0.48602510393022d-3, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0
- type(gergdata), parameter gerg_15 = gergdata(ident = "C2", name = "ETHANE", mw = 30.06904, tc = 305.↔ 322, pc = 4871.8, rhoc = 6.87085454, ttr = 90.368, ptr = 0.001113, tr = 305.322, rhor = 6.87085454, Rgas = 8.314472, acf = 0.0995, t_max = 675.0, p_max = 900000.0, n_eos = 24, a_eos = (/ 0.63596780450714,-0.↔ 17377981785459d1,0.28914060926272, -0.33714276845694,0.22405964699561d-1,0.15715424886913d-1,0.11450634253745,0.10612049379745d1,-0.12855224439423d1, 0.39414630777652,0.31390924682041,-0.21592277117247d-1, -0.21723666564905,-0.28999574439489,0.42321173025732, 0.46434100259260d-1,-0.13138398329741,0.11492850364368d-1, -0.33387688429909d-1,0.15183171583644d-1,-0.47610805647657d-2, 0.46917166277885d-1,-0.39401755804649d-1,-0.32569956247611d-2 /), t_eos = (/ 0.125,1.125,0.375, 1.125,0.625,1.5, 0.625,2.625,2.75, 2.125,2.0,1.75, 4.5,4.75,5.0, 4.0,4.5,7.5, 14.0,11.5,26.0, 28.0,30.0,16.0
 /), d_eos = (/ 1,1,2,2,4,4, 1,1,1,2,3,6, 2,3,3,4,4,2, 3,4,5,6,6,7 /), I_eos = (/ 0,0,0,0,0,0, 1,1,1,1,1,1, 2,2,2,2,2,3, 3,3,6,6,6,6 /), n_cosh = 2, n_sinh = 2, n_id = (/ 24.675437527,-77.42531376,3.00263, -1.23722,6.01989,4.↔ 33939, 13.1974 /), t_id = (/ 0.,1,1,0.731306621,3.508721939,1.831882406,3.378007481 /))
- type(gergdata), parameter gerg_16 = gergdata(ident = "H2S", name = "H2S", mw = 34.08088, tc = 373.1, pc = 9000.0, rhoc = 10.19, ttr = 187.7, ptr = 23.3, tr = 373.1, rhor = 10.19, Rgas = 8.314472, acf = 0.1005, t_max = 760.0, p_max = 170000.0, n_eos = 12, a_eos = (/ 0.87641,-2.0367,0.21634, -0.050199,0.066994,0.↔ 00019076, 0.20227,-0.0045348,-0.22230, -0.034714,-0.014885,0.0074154, 0.0d0,0.0d0,0.0d0, 0.0d0,0..↔ 0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0 /), t_eos = (/ 0.25,1.125,1.5, 1.375,0.25,0.875, 0.625,1.↔ 75,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0
- type(gergdata), parameter gerg_17 = gergdata(ident = "IC5", name = "IPENTANE", mw = 72.14878, tc =

460.35, pc = 3378.0, rhoc = 3.271, ttr = 112.65, ptr = 0.83D-7, tr = 460.35, rhor = 3.271, Rgas = 8. \leftrightarrow 314472, acf = 0.2274, t_max = 500.0, p_max = 1000000.0, n_eos = 12, a_eos = (/ 1.0963, -3.0402, 1.0317, -0.15410, 0.11535, 0.00029809, 0.39571, -0.045881, -0.35804, -0.10107, -0.035484, 0.018156, 0.0d0, 0.

- type(gergdata), parameter gerg_18 = gergdata(ident = "C1", name = "METHANE", mw = 16.04246, tc = 190.564, pc = 4599.2, rhoc = 10.139342719, ttr = 90.6941, ptr = 11.698, tr = 190.564, rhor = 10.↔ 139342719, Rgas = 8.314472, acf = 0.0114, t_max = 625.0, p_max = 1000000.0, n_eos = 24, a_eos = (/ 0.57335704239162,-0.16760687523730d1,0.23405291834916, -0.21947376343441,0.16369201404128d-1,0.15004406389280d-1, 0.98990489492918d-1,0.58382770929055,-0.74786867560390, 0.30033302857974,0.↔ 20985543806568,-0.18590151133061d-1, -0.15782558339049,0.12716735220791,-0.32019743894346d-1, -0.68049729364536d-1,0.24291412853736d-1,0.51440451639444d-2, -0.19084949733532d-1,0.↔ 55229677241291d-2,-0.44197392976085d-2, 0.40061416708429d-1,-0.33752085907575d-1,-0.25127658213357d-2 /), t_eos = (/ 0.125,1.125,0.375, 1.125,0.625,1.5, 0.625,2.625,2.75, 2.125,2.0,1.75, 4.50,4.75,5.00, 4.↔ 00,4.50,7.50, 14.0,11.5,26.0, 28.0,30.0,16.0 /), d_eos = (/ 1,1,2,2,4,4, 1,1,1,2,3,6, 2,3,3,4,4,2, 3,4,5,6,6,7 /), I_eos = (/ 0,0,0,0,0, 1,1,1,1,1,1, 2,2,2,2,2,3, 3,3,6,6,6,6 /), n_cosh = 2, n_sinh = 2, n_id = (/ 19.↔ 597508817,-83.959667892,3.00088, -0.0046,4.46921,0.76315, 8.74432 /), t_id = (/ 0.,1.,1.,0.936220902,5.↔ 722644361,4.306474465,5.577233895 /))
- type(gergdata), parameter gerg_20 = gergdata(ident = "C3", name = "PROPANE", mw = 44.09562, tc = 369.825, pc = 4255.5, rhoc = 5.000043088, ttr = 85.48, ptr = 0.0000017, tr = 369.825, rhor = 5.↔ 000043088, Rgas = 8.314472, acf = 0.1538, t_max = 500.0, p_max = 100000.0, n_eos = 12, a_↔ eos = (/ 0.10403973107358d1,-0.28318404081403d1,0.84393809606294, -0.76559591850023d-1,0.↔ 94697373057280d-1,0.24796475497006d-3, 0.27743760422870,-0.43846000648377d-1,-0.26991064784350, -0.69313413089860d-1,-0.29632145981653d-1,0.14040126751380d-1, 0.0d0,0.0d0,0.0d0, 0.0d0,0..↔ 0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, /), t_eos = (/ 0.250,1.125,1.500, 1.375,0.250,0.875, 0.625,1.750,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0
- type(gergdata), parameter gerg_21 = gergdata(ident = "NC9", name = "NONANE", mw = 128.2551, tc = 594.55, pc = 2281.0, rhoc = 1.81, ttr = 219.7, ptr = 0.00044, tr = 594.55, rhor = 1.81, Rgas = 8.314472, acf = 0.4433, t_max = 600.0, p_max = 800000.0, n_eos = 12, a_eos = (/ 1.1151, -2.7020, 0.83416, -0.38828, 0.
 13760,0.00028185, 0.62037,0.015847, -0.61726, -0.15043, -0.012982,0.0044325, 0.0d0,0.0d0,0.0d0, 0.
 0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 0.25,1.125,1.5, 1.375,0.25,0.875, 0.
 625,1.75,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0
- integer, parameter maxgerg = 21
- type(gergdata), dimension(maxgerg), parameter gergdb = (/ gerg_1,gerg_2,gerg_3,gerg_4,gerg_5,gerg ← _6, gerg_7,gerg_8,gerg_9,gerg_10,gerg_12, gerg_13,gerg_14,gerg_15,gerg_16,gerg_17,gerg_18, gerg_19,gerg_20,gerg_21 /)

5.24.1 Detailed Description

Automatically generated file gergdatadb.f90 Time stamp: 2021-07-25T15:05:48.938109.

5.25 gergmixdb Module Reference

Automatically generated file gergmixdb.f90 Time stamp: 2022-10-03T21:42:11.071422.

Data Types

- type gerg_mix_data
- type gerg_mix_reducing

Variables

- type(gerg_mix_reducing), parameter gerg_red_1 = gerg_mix_reducing(ident1 = "CO2", ident2 = "H2", beta ← _ _ v = 0.904142159, gamma_v = 1.15279255, beta_T = 0.942320195, gamma_T = 1.782924792)
- type(gerg_mix_reducing), parameter gerg_red_2 = gerg_mix_reducing(ident1 = "NC10", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_3 = gerg_mix_reducing(ident1 = "C1", ident2 = "H2S", beta → _v = 1.012599087, gamma_v = 1.040161207, beta_T = 1.011090031, gamma_T = 0.961155729)
- type(gerg_mix_reducing), parameter gerg_red_4 = gerg_mix_reducing(ident1 = "N2", ident2 = "NC6", beta → _v = 1., gamma_v = 1.195952177, beta_T = 1., gamma_T = 1.472607971)
- type(gerg_mix_reducing), parameter gerg_red_5 = gerg_mix_reducing(ident1 = "C2", ident2 = "C3", beta_v = 0.997607277, gamma_v = 1.00303472, beta_T = 0.996199694, gamma_T = 1.01473019)
- type(gerg_mix_reducing), parameter gerg_red_6 = gerg_mix_reducing(ident1 = "CO2", ident2 = "NC9", beta_v = 1., gamma_v = 0.973386152, beta_T = 1.00768862, gamma_T = 1.140671202)
- type(gerg_mix_reducing), parameter gerg_red_7 = gerg_mix_reducing(ident1 = "NC7", ident2 = "NC8", beta_v = 1., gamma_v = 1.006767176, beta_T = 1., gamma_T = 0.998793111)
- type(gerg_mix_reducing), parameter gerg_red_8 = gerg_mix_reducing(ident1 = "NC6", ident2 = "NC10", beta_v = 1.001516371, gamma_v = 1.013511439, beta_T = 0.99764101, gamma_T = 1.028939539)
- type(gerg_mix_reducing), parameter gerg_red_9 = gerg_mix_reducing(ident1 = "NC4", ident2 = "NC7", beta_v = 1., gamma_v = 1.019174227, beta_T = 1., gamma_T = 1.021283378)
- type(gerg_mix_reducing), parameter gerg_red_10 = gerg_mix_reducing(ident1 = "CO2", ident2 = "NC10", beta_v = 1.000151132, gamma_v = 1.183394668, beta_T = 1.02002879, gamma_T = 1.145512213)
- type(gerg_mix_reducing), parameter gerg_red_11 = gerg_mix_reducing(ident1 = "C2", ident2 = "IC4", beta ← v = 1., gamma_v = 1.006616886, beta_T = 1., gamma_T = 1.033283811)
- type(gerg_mix_reducing), parameter gerg_red_12 = gerg_mix_reducing(ident1 = "C2", ident2 = "NC6", beta v = 1., gamma v = 1.169701102, beta T = 1., gamma T = 1.092177796)
- type(gerg_mix_reducing), parameter gerg_red_13 = gerg_mix_reducing(ident1 = "IC4", ident2 = "IC5", beta_v = 1., gamma_v = 1.002284353, beta_T = 1., gamma_T = 1.001835788)
- type(gerg_mix_reducing), parameter gerg_red_14 = gerg_mix_reducing(ident1 = "C3", ident2 = "NC10", beta_v = 0.984104227, gamma_v = 1.053040574, beta_T = 0.985331233, gamma_T = 1.140905252)
- type(gerg_mix_reducing), parameter gerg_red_15 = gerg_mix_reducing(ident1 = "H2", ident2 = "H2S", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_16 = gerg_mix_reducing(ident1 = "C1", ident2 = "O2", beta → _v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.95)
- type(gerg_mix_reducing), parameter gerg_red_17 = gerg_mix_reducing(ident1 = "H2", ident2 = "CO", beta → _v = 1., gamma_v = 1.121416201, beta_T = 1., gamma_T = 1.377504607)
- type(gerg_mix_reducing), parameter gerg_red_18 = gerg_mix_reducing(ident1 = "C1", ident2 = "NC4", beta_v = 0.979105972, gamma_v = 1.045375122, beta_T = 0.99417491, gamma_T = 1.171607691)
- type(gerg_mix_reducing), parameter gerg_red_19 = gerg_mix_reducing(ident1 = "CO", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_20 = gerg_mix_reducing(ident1 = "IC4", ident2 = "NC10", beta_v = 1., gamma_v = 1.060243344, beta_T = 1., gamma_T = 1.021624748)
- type(gerg_mix_reducing), parameter gerg_red_21 = gerg_mix_reducing(ident1 = "C1", ident2 = "N2", beta → _v = 0.998721377, gamma_v = 1.013950311, beta_T = 0.99809883, gamma_T = 0.979273013)

- type(gerg_mix_reducing), parameter gerg_red_22 = gerg_mix_reducing(ident1 = "CO2", ident2 = "NC6", beta_v = 1., gamma_v = 0.851343711, beta_T = 1., gamma_T = 1.038675574)
- type(gerg_mix_reducing), parameter gerg_red_23 = gerg_mix_reducing(ident1 = "NC4", ident2 = "IC4", beta_v = 1.000880464, gamma_v = 1.00041444, beta_T = 1.000077547, gamma_T = 1.001432824)
- type(gerg_mix_reducing), parameter gerg_red_24 = gerg_mix_reducing(ident1 = "NC6", ident2 = "NC8", beta_v = 1., gamma_v = 1.006268954, beta_T = 1., gamma_T = 1.001633952)
- type(gerg_mix_reducing), parameter gerg_red_25 = gerg_mix_reducing(ident1 = "C2", ident2 = "NC7", beta_v = 1., gamma_v = 1.057666085, beta_T = 1., gamma_T = 1.134532014)
- type(gerg_mix_reducing), parameter gerg_red_26 = gerg_mix_reducing(ident1 = "C3", ident2 = "AR", beta → _v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_27 = gerg_mix_reducing(ident1 = "NC10", ident2 = "H2S", beta_v = 0.975187766, gamma_v = 1.171714677, beta_T = 0.973091413, gamma_T = 1.103693489)
- type(gerg_mix_reducing), parameter gerg_red_28 = gerg_mix_reducing(ident1 = "NC5", ident2 = "NC6", beta_v = 1., gamma_v = 1.002480637, beta_T = 1., gamma_T = 1.000761237)
- type(gerg_mix_reducing), parameter gerg_red_29 = gerg_mix_reducing(ident1 = "C3", ident2 = "H2O", beta_v = 1., gamma_v = 1.011759763, beta_T = 1., gamma_T = 0.600340961)
- type(gerg_mix_reducing), parameter gerg_red_30 = gerg_mix_reducing(ident1 = "NC6", ident2 = "H2O", beta_v = 1., gamma_v = 1.170217596, beta_T = 1., gamma_T = 0.569681333)
- type(gerg_mix_reducing), parameter gerg_red_31 = gerg_mix_reducing(ident1 = "NC4", ident2 = "IC5", beta_v = 1., gamma_v = 1.002728434, beta_T = 1., gamma_T = 1.000792201)
- type(gerg_mix_reducing), parameter gerg_red_32 = gerg_mix_reducing(ident1 = "NC4", ident2 = "H2O", beta_v = 1., gamma_v = 1.223638763, beta_T = 1., gamma_T = 0.615512682)
- type(gerg_mix_reducing), parameter gerg_red_33 = gerg_mix_reducing(ident1 = "N2", ident2 = "C2", beta ← _v = 0.978880168, gamma_v = 1.042352891, beta_T = 1.007671428, gamma_T = 1.098650964)
- type(gerg_mix_reducing), parameter gerg_red_34 = gerg_mix_reducing(ident1 = "IC5", ident2 = "H2S", beta_v = 1., gamma_v = 0.835763343, beta_T = 1., gamma_T = 0.982651529)
- type(gerg_mix_reducing), parameter gerg_red_35 = gerg_mix_reducing(ident1 = "NC10", ident2 = "H2O", beta_v = 1., gamma_v = 0.551405318, beta_T = 0.897162268, gamma_T = 0.740416402)
- type(gerg_mix_reducing), parameter gerg_red_36 = gerg_mix_reducing(ident1 = "NC6", ident2 = "NC7", beta_v = 1., gamma_v = 1.001508227, beta_T = 1., gamma_T = 0.999762786)
- type(gerg_mix_reducing), parameter gerg_red_37 = gerg_mix_reducing(ident1 = "IC4", ident2 = "NC7", beta_v = 1., gamma_v = 1.021668316, beta_T = 1., gamma_T = 1.00988576)
- type(gerg_mix_reducing), parameter gerg_red_38 = gerg_mix_reducing(ident1 = "NC9", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_39 = gerg_mix_reducing(ident1 = "C1", ident2 = "NC8", beta_v = 0.994740603, gamma_v = 1.116549372, beta_T = 0.957473785, gamma_T = 1.449245409)
- type(gerg_mix_reducing), parameter gerg_red_40 = gerg_mix_reducing(ident1 = "NC9", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_41 = gerg_mix_reducing(ident1 = "NC9", ident2 = "H2", beta_v = 1., gamma_v = 1.342647661, beta_T = 1., gamma_T = 2.23435404)
- type(gerg_mix_reducing), parameter gerg_red_42 = gerg_mix_reducing(ident1 = "NC4", ident2 = "CO", beta_v = 1., gamma_v = 1.084740904, beta_T = 1., gamma_T = 1.173916162)
- type(gerg_mix_reducing), parameter gerg_red_43 = gerg_mix_reducing(ident1 = "NC9", ident2 = "H2O", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_44 = gerg_mix_reducing(ident1 = "NC4", ident2 = "NC8", beta_v = 1., gamma_v = 1.046905515, beta_T = 1., gamma_T = 1.033180106)
- type(gerg_mix_reducing), parameter gerg_red_45 = gerg_mix_reducing(ident1 = "C2", ident2 = "NC4", beta_v = 0.999157205, gamma_v = 1.006179146, beta_T = 0.999130554, gamma_T = 1.034832749)
- type(gerg_mix_reducing), parameter gerg_red_46 = gerg_mix_reducing(ident1 = "NC10", ident2 = "H2", beta v = 1.695358382, gamma v = 1.120233729, beta T = 1.064818089, gamma T = 3.786003724)
- type(gerg_mix_reducing), parameter gerg_red_47 = gerg_mix_reducing(ident1 = "NC7", ident2 = "H2S", beta v = 0.828967164, gamma v = 1.087956749, beta T = 0.988937417, gamma T = 1.013453092)
- type(gerg_mix_reducing), parameter gerg_red_48 = gerg_mix_reducing(ident1 = "IC4", ident2 = "H2S", beta_v = 1.012994431, gamma_v = 0.988591117, beta_T = 0.974550548, gamma_T = 0.937130844)
- type(gerg_mix_reducing), parameter gerg_red_49 = gerg_mix_reducing(ident1 = "NC7", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)

- type(gerg_mix_reducing), parameter gerg_red_50 = gerg_mix_reducing(ident1 = "N2", ident2 = "NC5", beta_v = 1., gamma_v = 1.078877166, beta_T = 1., gamma_T = 1.419029041)
- type(gerg_mix_reducing), parameter gerg_red_51 = gerg_mix_reducing(ident1 = "NC5", ident2 = "NC7", beta_v = 1., gamma_v = 1.008972412, beta_T = 1., gamma_T = 1.002441051)
- type(gerg_mix_reducing), parameter gerg_red_52 = gerg_mix_reducing(ident1 = "CO2", ident2 = "H2S", beta_v = 0.906630564, gamma_v = 1.024085837, beta_T = 1.016034583, gamma_T = 0.92601888)
- type(gerg_mix_reducing), parameter gerg_red_53 = gerg_mix_reducing(ident1 = "NC6", ident2 = "H2", beta_v = 1., gamma_v = 1.243461678, beta_T = 1., gamma_T = 3.021197546)
- type(gerg_mix_reducing), parameter gerg_red_54 = gerg_mix_reducing(ident1 = "C2", ident2 = "HE", beta → _v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_55 = gerg_mix_reducing(ident1 = "NC8", ident2 = "NC9", beta_v = 1., gamma_v = 1.001357085, beta_T = 1., gamma_T = 1.000235044)
- type(gerg_mix_reducing), parameter gerg_red_56 = gerg_mix_reducing(ident1 = "HE", ident2 = "AR", beta → _v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_57 = gerg_mix_reducing(ident1 = "CO", ident2 = "H2O", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_58 = gerg_mix_reducing(ident1 = "NC9", ident2 = "CO", beta_v = 1., gamma_v = 1.252151449, beta_T = 1., gamma_T = 1.294070556)
- type(gerg_mix_reducing), parameter gerg_red_59 = gerg_mix_reducing(ident1 = "O2", ident2 = "HE", beta → _v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_60 = gerg_mix_reducing(ident1 = "CO2", ident2 = "AR", beta_v = 1.008392428, gamma_v = 1.029205465, beta_T = 0.996512863, gamma_T = 1.050971635)
- type(gerg_mix_reducing), parameter gerg_red_61 = gerg_mix_reducing(ident1 = "N2", ident2 = "NC10", beta_v = 1., gamma_v = 1., beta_T = 0.957934447, gamma_T = 1.822157123)
- type(gerg_mix_reducing), parameter gerg_red_62 = gerg_mix_reducing(ident1 = "N2", ident2 = "CO2", beta_v = 0.977794634, gamma_v = 1.047578256, beta_T = 1.005894529, gamma_T = 1.107654104)
- type(gerg_mix_reducing), parameter gerg_red_63 = gerg_mix_reducing(ident1 = "C2", ident2 = "NC5", beta_v = 0.993851009, gamma_v = 1.026085655, beta_T = 0.998688946, gamma_T = 1.066665676)
- type(gerg_mix_reducing), parameter gerg_red_64 = gerg_mix_reducing(ident1 = "C1", ident2 = "NC7", beta_v = 0.962050831, gamma_v = 1.156655935, beta_T = 0.977431529, gamma_T = 1.379850328)
- type(gerg_mix_reducing), parameter gerg_red_66 = gerg_mix_reducing(ident1 = "H2O", ident2 = "AR", beta_v = 1., gamma_v = 1.038993495, beta_T = 1., gamma_T = 1.070941866)
- type(gerg_mix_reducing), parameter gerg_red_67 = gerg_mix_reducing(ident1 = "C3", ident2 = "H2", beta → _v = 1., gamma_v = 1.07400611, beta_T = 1., gamma_T = 2.308215191)
- type(gerg_mix_reducing), parameter gerg_red_68 = gerg_mix_reducing(ident1 = "NC8", ident2 = "CO", beta_v = 1., gamma_v = 1.219206702, beta_T = 1., gamma_T = 1.276565536)
- type(gerg_mix_reducing), parameter gerg_red_69 = gerg_mix_reducing(ident1 = "NC10", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_70 = gerg_mix_reducing(ident1 = "CO2", ident2 = "NC5", beta_v = 1.024311498, gamma_v = 1.068406078, beta_T = 1.027000795, gamma_T = 0.979217302)
- type(gerg_mix_reducing), parameter gerg_red_71 = gerg_mix_reducing(ident1 = "NC5", ident2 = "H2", beta_v = 1., gamma_v = 1.188334783, beta_T = 1., gamma_T = 2.013859174)
- type(gerg_mix_reducing), parameter gerg_red_72 = gerg_mix_reducing(ident1 = "IC5", ident2 = "NC9", beta_v = 1., gamma_v = 1.028994325, beta_T = 1., gamma_T = 1.008191499)
- type(gerg_mix_reducing), parameter gerg_red_73 = gerg_mix_reducing(ident1 = "NC7", ident2 = "NC10", beta_v = 1., gamma_v = 1.002972346, beta_T = 1., gamma_T = 1.002229938)
- type(gerg_mix_reducing), parameter gerg_red_74 = gerg_mix_reducing(ident1 = "NC5", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_75 = gerg_mix_reducing(ident1 = "C3", ident2 = "H2S", beta_v = 0.936811219, gamma_v = 1.010593999, beta_T = 0.992573556, gamma_T = 0.905829247)
- type(gerg_mix_reducing), parameter gerg_red_76 = gerg_mix_reducing(ident1 = "NC7", ident2 = "CO", beta_v = 1., gamma_v = 1.190354273, beta_T = 1., gamma_T = 1.256123503)
- type(gerg_mix_reducing), parameter gerg_red_77 = gerg_mix_reducing(ident1 = "NC4", ident2 = "NC5", beta_v = 1., gamma_v = 1.01815965, beta_T = 1., gamma_T = 1.00214364)

- type(gerg_mix_reducing), parameter gerg_red_79 = gerg_mix_reducing(ident1 = "C3", ident2 = "NC9", beta_v = 1., gamma_v = 1.199769134, beta_T = 1., gamma_T = 1.109973833)
- type(gerg_mix_reducing), parameter gerg_red_80 = gerg_mix_reducing(ident1 = "N2", ident2 = "IC4", beta → _v = 0.98641583, gamma_v = 1.100576129, beta_T = 0.99286813, gamma_T = 1.284462634)
- type(gerg_mix_reducing), parameter gerg_red_81 = gerg_mix_reducing(ident1 = "H2O", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_82 = gerg_mix_reducing(ident1 = "NC4", ident2 = "H2", beta_v = 1., gamma_v = 1.232939523, beta_T = 1., gamma_T = 2.509259945)
- type(gerg_mix_reducing), parameter gerg_red_83 = gerg_mix_reducing(ident1 = "N2", ident2 = "H2S", beta_v = 0.910394249, gamma_v = 1.256844157, beta_T = 1.004692366, gamma_T = 0.9601742)
- type(gerg_mix_reducing), parameter gerg_red_84 = gerg_mix_reducing(ident1 = "C2", ident2 = "IC5", beta → _v = 1., gamma_v = 1.045439935, beta_T = 1., gamma_T = 1.021150247)
- type(gerg_mix_reducing), parameter gerg_red_85 = gerg_mix_reducing(ident1 = "C1", ident2 = "H2O", beta_v = 1.012783169, gamma_v = 1.585018334, beta_T = 1.063333913, gamma_T = 0.775810513)
- type(gerg_mix_reducing), parameter gerg_red_86 = gerg_mix_reducing(ident1 = "NC5", ident2 = "NC10", beta_v = 1., gamma_v = 1.016370338, beta_T = 1., gamma_T = 1.049035838)
- type(gerg_mix_reducing), parameter gerg_red_87 = gerg_mix_reducing(ident1 = "O2", ident2 = "AR", beta → _v = 0.9999746847, gamma_v = 0.993907223, beta_T = 1.000023103, gamma_T = 0.990430423)
- type(gerg_mix_reducing), parameter gerg_red_88 = gerg_mix_reducing(ident1 = "C3", ident2 = "NC5", beta_v = 1.044919431, gamma_v = 1.019921513, beta_T = 0.996484021, gamma_T = 1.008344412)
- type(gerg_mix_reducing), parameter gerg_red_89 = gerg_mix_reducing(ident1 = "N2", ident2 = "NC7", beta_v = 1., gamma_v = 1.40455409, beta_T = 1., gamma_T = 1.520975334)
- type(gerg_mix_reducing), parameter gerg_red_90 = gerg_mix_reducing(ident1 = "IC5", ident2 = "H2", beta → _v = 1., gamma_v = 1.184340443, beta_T = 1., gamma_T = 1.996386669)
- type(gerg_mix_reducing), parameter gerg_red_91 = gerg_mix_reducing(ident1 = "N2", ident2 = "NC8", beta_v = 1., gamma_v = 1.186067025, beta_T = 1., gamma_T = 1.733280051)
- type(gerg_mix_reducing), parameter gerg_red_92 = gerg_mix_reducing(ident1 = "C1", ident2 = "IC5", beta → _v = 1., gamma_v = 1.343685343, beta_T = 1., gamma_T = 1.188899743)
- type(gerg_mix_reducing), parameter gerg_red_93 = gerg_mix_reducing(ident1 = "NC10", ident2 = "CO", beta_v = 1., gamma_v = 0.87018496, beta_T = 1.049594632, gamma_T = 1.803567587)
- type(gerg_mix_reducing), parameter gerg_red_94 = gerg_mix_reducing(ident1 = "NC5", ident2 = "IC5", beta_v = 1., gamma_v = 1.000024335, beta_T = 1., gamma_T = 1.000050537)
- type(gerg_mix_reducing), parameter gerg_red_95 = gerg_mix_reducing(ident1 = "C1", ident2 = "C3", beta → _v = 1.00482707, gamma_v = 1.038470657, beta_T = 0.989680305, gamma_T = 1.098655531)
- type(gerg_mix_reducing), parameter gerg_red_96 = gerg_mix_reducing(ident1 = "NC7", ident2 = "H2", beta_v = 1., gamma_v = 1.159131722, beta_T = 1., gamma_T = 3.169143057)
- type(gerg_mix_reducing), parameter gerg_red_97 = gerg_mix_reducing(ident1 = "NC6", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_98 = gerg_mix_reducing(ident1 = "NC6", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_99 = gerg_mix_reducing(ident1 = "CO2", ident2 = "NC8", beta_v = 1.026169373, gamma_v = 1.104043935, beta_T = 1.02969078, gamma_T = 1.074455386)
- type(gerg_mix_reducing), parameter gerg_red_100 = gerg_mix_reducing(ident1 = "CO2", ident2 = "NC7", beta_v = 1.205469976, gamma_v = 1.164585914, beta_T = 1.011806317, gamma_T = 1.046169823)
- type(gerg_mix_reducing), parameter gerg_red_101 = gerg_mix_reducing(ident1 = "N2", ident2 = "AR", beta_v = 1.004166412, gamma_v = 1.002212182, beta_T = 0.999069843, gamma_T = 0.990034831)
- type(gerg_mix_reducing), parameter gerg_red_102 = gerg_mix_reducing(ident1 = "C2", ident2 = "H2", beta_v = 0.925367171, gamma_v = 1.10607204, beta_T = 0.932969831, gamma_T = 1.902008495)
- type(gerg_mix_reducing), parameter gerg_red_103 = gerg_mix_reducing(ident1 = "C1", ident2 = "NC5", beta v = 0.94833012, gamma v = 1.124508039, beta T = 0.992127525, gamma T = 1.249173968)
- type(gerg_mix_reducing), parameter gerg_red_104 = gerg_mix_reducing(ident1 = "IC4", ident2 = "NC8", beta_v = 1., gamma_v = 1.032807063, beta_T = 1., gamma_T = 1.013945424)
- type(gerg_mix_reducing), parameter gerg_red_105 = gerg_mix_reducing(ident1 = "IC4", ident2 = "NC9", beta_v = 1., gamma_v = 1.047298475, beta_T = 1., gamma_T = 1.017817492)

- type(gerg_mix_reducing), parameter gerg_red_106 = gerg_mix_reducing(ident1 = "H2O", ident2 = "H2S", beta_v = 1., gamma_v = 1.014832832, beta_T = 1., gamma_T = 0.940587083)
- type(gerg_mix_reducing), parameter gerg_red_107 = gerg_mix_reducing(ident1 = "N2", ident2 = "CO", beta_v = 1., gamma_v = 1.008690943, beta_T = 1., gamma_T = 0.993425388)
- type(gerg_mix_reducing), parameter gerg_red_108 = gerg_mix_reducing(ident1 = "C2", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_109 = gerg_mix_reducing(ident1 = "IC5", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_110 = gerg_mix_reducing(ident1 = "IC5", ident2 = "H2O", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_111 = gerg_mix_reducing(ident1 = "NC4", ident2 = "AR", beta_v = 1., gamma_v = 1.214638734, beta_T = 1., gamma_T = 1.245039498)
- type(gerg_mix_reducing), parameter gerg_red_112 = gerg_mix_reducing(ident1 = "C1", ident2 = "NC10", beta_v = 1.033086292, gamma_v = 1.146089637, beta_T = 0.937777823, gamma_T = 1.568231489)
- type(gerg_mix_reducing), parameter gerg_red_113 = gerg_mix_reducing(ident1 = "IC5", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_114 = gerg_mix_reducing(ident1 = "C1", ident2 = "HE", beta_v = 1., gamma_v = 0.881405683, beta_T = 1., gamma_T = 3.159776855)
- type(gerg_mix_reducing), parameter gerg_red_115 = gerg_mix_reducing(ident1 = "C3", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_116 = gerg_mix_reducing(ident1 = "IC4", ident2 = "H2", beta_v = 1., gamma_v = 1.147595688, beta_T = 1., gamma_T = 1.895305393)
- type(gerg_mix_reducing), parameter gerg_red_117 = gerg_mix_reducing(ident1 = "IC5", ident2 = "NC10", beta_v = 1., gamma_v = 1.039372957, beta_T = 1., gamma_T = 1.010825138)
- type(gerg_mix_reducing), parameter gerg_red_118 = gerg_mix_reducing(ident1 = "O2", ident2 = "H2O", beta_v = 1., gamma_v = 1.143174289, beta_T = 1., gamma_T = 0.964767932)
- type(gerg_mix_reducing), parameter gerg_red_119 = gerg_mix_reducing(ident1 = "C2", ident2 = "NC9", beta_v = 1., gamma_v = 1.14353473, beta_T = 1., gamma_T = 1.05603303)
- type(gerg_mix_reducing), parameter gerg_red_120 = gerg_mix_reducing(ident1 = "NC4", ident2 = "NC10", beta_v = 0.976951968, gamma_v = 1.027845529, beta_T = 0.993688386, gamma_T = 1.076466918)
- type(gerg_mix_reducing), parameter gerg_red_121 = gerg_mix_reducing(ident1 = "NC5", ident2 = "H2O", beta_v = 1., gamma_v = 0.95667731, beta_T = 1., gamma_T = 0.447666011)
- type(gerg_mix_reducing), parameter gerg_red_122 = gerg_mix_reducing(ident1 = "O2", ident2 = "CO", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_123 = gerg_mix_reducing(ident1 = "H2", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_124 = gerg_mix_reducing(ident1 = "NC4", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_125 = gerg_mix_reducing(ident1 = "C2", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_126 = gerg_mix_reducing(ident1 = "NC9", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_127 = gerg_mix_reducing(ident1 = "NC5", ident2 = "CO", beta_v = 1., gamma_v = 1.119954454, beta_T = 1., gamma_T = 1.206043295)
- type(gerg_mix_reducing), parameter gerg_red_128 = gerg_mix_reducing(ident1 = "C3", ident2 = "NC8", beta_v = 1., gamma_v = 1.102764612, beta_T = 1., gamma_T = 1.063694129)
- type(gerg_mix_reducing), parameter gerg_red_129 = gerg_mix_reducing(ident1 = "NC5", ident2 = "NC9", beta_v = 1., gamma_v = 1.034910633, beta_T = 1., gamma_T = 1.103421755)
- type(gerg_mix_reducing), parameter gerg_red_130 = gerg_mix_reducing(ident1 = "NC4", ident2 = "NC6", beta_v = 1., gamma_v = 1.034995284, beta_T = 1., gamma_T = 1.00915706)
- type(gerg_mix_reducing), parameter gerg_red_131 = gerg_mix_reducing(ident1 = "IC4", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_132 = gerg_mix_reducing(ident1 = "NC10", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_133 = gerg_mix_reducing(ident1 = "H2", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)

- type(gerg_mix_reducing), parameter gerg_red_134 = gerg_mix_reducing(ident1 = "IC5", ident2 = "NC8", beta_v = 1., gamma_v = 1.017880545, beta_T = 1., gamma_T = 1.00564748)
- type(gerg_mix_reducing), parameter gerg_red_135 = gerg_mix_reducing(ident1 = "H2", ident2 = "H2O", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_136 = gerg_mix_reducing(ident1 = "H2S", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_137 = gerg_mix_reducing(ident1 = "C2", ident2 = "H2S", beta_v = 1.010817909, gamma_v = 1.030988277, beta_T = 0.990197354, gamma_T = 0.90273666)
- type(gerg_mix_reducing), parameter gerg_red_138 = gerg_mix_reducing(ident1 = "IC4", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_139 = gerg_mix_reducing(ident1 = "NC6", ident2 = "CO", beta_v = 1., gamma_v = 1.155145836, beta_T = 1., gamma_T = 1.233272781)
- type(gerg_mix_reducing), parameter gerg_red_140 = gerg_mix_reducing(ident1 = "NC6", ident2 = "NC9", beta_v = 1., gamma_v = 1.02076168, beta_T = 1., gamma_T = 1.055369591)
- type(gerg_mix_reducing), parameter gerg_red_141 = gerg_mix_reducing(ident1 = "C1", ident2 = "C2", beta_v = 0.997547866, gamma_v = 1.006617867, beta_T = 0.996336508, gamma_T = 1.049707697)
- type(gerg_mix_reducing), parameter gerg_red_142 = gerg_mix_reducing(ident1 = "NC4", ident2 = "NC9", beta_v = 1., gamma_v = 1.049219137, beta_T = 1., gamma_T = 1.014096448)
- type(gerg_mix_reducing), parameter gerg_red_143 = gerg_mix_reducing(ident1 = "C1", ident2 = "NC9", beta_v = 1.002852287, gamma_v = 1.141895355, beta_T = 0.947716769, gamma_T = 1.528532478)
- type(gerg_mix_reducing), parameter gerg_red_144 = gerg_mix_reducing(ident1 = "C1", ident2 = "NC6", beta_v = 0.958015294, gamma_v = 1.052643846, beta_T = 0.981844797, gamma_T = 1.330570181)
- type(gerg_mix_reducing), parameter gerg_red_145 = gerg_mix_reducing(ident1 = "NC9", ident2 = "NC10", beta_v = 1., gamma_v = 1.00081052, beta_T = 1., gamma_T = 1.000182392)
- type(gerg_mix_reducing), parameter gerg_red_146 = gerg_mix_reducing(ident1 = "NC4", ident2 = "H2S", beta_v = 0.908113163, gamma_v = 1.033366041, beta_T = 0.985962886, gamma_T = 0.926156602)
- type(gerg_mix_reducing), parameter gerg_red_147 = gerg_mix_reducing(ident1 = "O2", ident2 = "H2S", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_148 = gerg_mix_reducing(ident1 = "NC5", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_149 = gerg_mix_reducing(ident1 = "NC8", ident2 = "H2S", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_150 = gerg_mix_reducing(ident1 = "CO2", ident2 = "CO", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_151 = gerg_mix_reducing(ident1 = "IC4", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_152 = gerg_mix_reducing(ident1 = "N2", ident2 = "H2O", beta_v = 1., gamma_v = 1.094749685, beta_T = 1., gamma_T = 0.968808467)
- type(gerg_mix_reducing), parameter gerg_red_153 = gerg_mix_reducing(ident1 = "C2", ident2 = "NC10", beta_v = 0.995676258, gamma_v = 1.098361281, beta_T = 0.970918061, gamma_T = 1.237191558)
- type(gerg_mix_reducing), parameter gerg_red_154 = gerg_mix_reducing(ident1 = "NC6", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_155 = gerg_mix_reducing(ident1 = "NC9", ident2 = "H2S", beta_v = 1., gamma_v = 1.082905109, beta_T = 1., gamma_T = 1.086557826)
- type(gerg_mix_reducing), parameter gerg_red_156 = gerg_mix_reducing(ident1 = "C3", ident2 = "IC5", beta_v = 1.040459289, gamma_v = 0.999432118, beta_T = 0.994364425, gamma_T = 1.0032695)
- type(gerg_mix_reducing), parameter gerg_red_157 = gerg_mix_reducing(ident1 = "CO", ident2 = "AR", beta_v = 1., gamma_v = 1.159720623, beta_T = 1., gamma_T = 0.954215746)
- type(gerg_mix_reducing), parameter gerg_red_158 = gerg_mix_reducing(ident1 = "NC6", ident2 = "H2S", beta_v = 0.754473958, gamma_v = 1.339283552, beta_T = 0.985891113, gamma_T = 0.956075596)
- type(gerg_mix_reducing), parameter gerg_red_159 = gerg_mix_reducing(ident1 = "C2", ident2 = "NC8", beta_v = 1.007469726, gamma_v = 1.071917985, beta_T = 0.984068272, gamma_T = 1.168636194)
- type(gerg_mix_reducing), parameter gerg_red_160 = gerg_mix_reducing(ident1 = "C3", ident2 = "NC7", beta_v = 1., gamma_v = 1.079648053, beta_T = 1., gamma_T = 1.050044169)
- type(gerg_mix_reducing), parameter gerg_red_161 = gerg_mix_reducing(ident1 = "IC4", ident2 = "NC6", beta_v = 1., gamma_v = 1.010493989, beta_T = 1., gamma_T = 1.006018054)

- type(gerg_mix_reducing), parameter gerg_red_162 = gerg_mix_reducing(ident1 = "CO2", ident2 = "HE", beta_v = 0.846647561, gamma_v = 0.864141549, beta_T = 0.76837763, gamma_T = 3.207456948)
- type(gerg_mix_reducing), parameter gerg_red_163 = gerg_mix_reducing(ident1 = "IC4", ident2 = "CO", beta_v = 1., gamma_v = 1.087272232, beta_T = 1., gamma_T = 1.161390082)
- type(gerg_mix_reducing), parameter gerg_red_164 = gerg_mix_reducing(ident1 = "N2", ident2 = "NC9", beta_v = 1., gamma_v = 1.100405929, beta_T = 0.95637945, gamma_T = 1.749119996)
- type(gerg_mix_reducing), parameter gerg_red_165 = gerg_mix_reducing(ident1 = "C3", ident2 = "IC4", beta_v = 0.999243146, gamma_v = 1.001156119, beta_T = 0.998012298, gamma_T = 1.005250774)
- type(gerg_mix_reducing), parameter gerg_red_166 = gerg_mix_reducing(ident1 = "IC5", ident2 = "CO", beta_v = 1., gamma_v = 1.116694577, beta_T = 1., gamma_T = 1.199326059)
- type(gerg_mix_reducing), parameter gerg_red_167 = gerg_mix_reducing(ident1 = "NC7", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_168 = gerg_mix_reducing(ident1 = "C3", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_169 = gerg_mix_reducing(ident1 = "C3", ident2 = "NC6", beta_v = 1., gamma_v = 1.057872566, beta_T = 1., gamma_T = 1.025657518)
- type(gerg_mix_reducing), parameter gerg_red_170 = gerg_mix_reducing(ident1 = "N2", ident2 = "HE", beta_v = 0.969501055, gamma_v = 0.932629867, beta_T = 0.692868765, gamma_T = 1.47183158)
- type(gerg_mix_reducing), parameter gerg_red_171 = gerg_mix_reducing(ident1 = "NC8", ident2 = "H2O", beta_v = 1., gamma_v = 0.599484191, beta_T = 1., gamma_T = 0.662072469)
- type(gerg_mix_reducing), parameter gerg_red_172 = gerg_mix_reducing(ident1 = "IC4", ident2 = "NC5", beta_v = 1., gamma_v = 1.002779804, beta_T = 1., gamma_T = 1.002495889)
- type(gerg_mix_reducing), parameter gerg_red_173 = gerg_mix_reducing(ident1 = "C1", ident2 = "H2", beta_v = 1., gamma_v = 1.018702573, beta_T = 1., gamma_T = 1.352643115)
- type(gerg_mix_reducing), parameter gerg_red_174 = gerg_mix_reducing(ident1 = "NC4", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_175 = gerg_mix_reducing(ident1 = "H2", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_176 = gerg_mix_reducing(ident1 = "N2", ident2 = "C3", beta_v = 0.974424681, gamma_v = 1.081025408, beta_T = 1.002677329, gamma_T = 1.201264026)
- type(gerg_mix_reducing), parameter gerg_red_177 = gerg_mix_reducing(ident1 = "CO2", ident2 = "IC4", beta_v = 1.076551882, gamma_v = 1.081909003, beta_T = 1.023339824, gamma_T = 0.929982936)
- type(gerg_mix_reducing), parameter gerg_red_178 = gerg_mix_reducing(ident1 = "NC8", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_179 = gerg_mix_reducing(ident1 = "C3", ident2 = "CO", beta_v = 1., gamma_v = 1.108143673, beta_T = 1., gamma_T = 1.197564208)
- type(gerg_mix_reducing), parameter gerg_red_180 = gerg_mix_reducing(ident1 = "NC7", ident2 = "NC9", beta_v = 1., gamma_v = 1.001370076, beta_T = 1., gamma_T = 1.001150096)
- type(gerg_mix_reducing), parameter gerg_red_181 = gerg_mix_reducing(ident1 = "CO2", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_182 = gerg_mix_reducing(ident1 = "IC5", ident2 = "NC6", beta_v = 1., gamma_v = 1.002995876, beta_T = 1., gamma_T = 1.001204174)
- type(gerg_mix_reducing), parameter gerg_red_183 = gerg_mix_reducing(ident1 = "C3", ident2 = "NC4", beta_v = 0.999795868, gamma_v = 1.003264179, beta_T = 1.000310289, gamma_T = 1.007392782)
- type(gerg_mix_reducing), parameter gerg_red_184 = gerg_mix_reducing(ident1 = "N2", ident2 = "NC4", beta_v = 0.99608261, gamma_v = 1.146949309, beta_T = 0.994515234, gamma_T = 1.304886838)
- type(gerg_mix_reducing), parameter gerg_red_185 = gerg_mix_reducing(ident1 = "N2", ident2 = "H2", beta_v = 0.972532065, gamma_v = 0.970115357, beta_T = 0.946134337, gamma_T = 1.175696583)
- type(gerg_mix_reducing), parameter gerg_red_186 = gerg_mix_reducing(ident1 = "C1", ident2 = "IC4", beta_v = 1.011240388, gamma_v = 1.054319053, beta_T = 0.980315756, gamma_T = 1.161117729)
- type(gerg_mix_reducing), parameter gerg_red_187 = gerg_mix_reducing(ident1 = "CO2", ident2 = "C3", beta_v = 0.996898004, gamma_v = 1.047596298, beta_T = 1.033620538, gamma_T = 0.908772477)
- type(gerg_mix_reducing), parameter gerg_red_188 = gerg_mix_reducing(ident1 = "C2", ident2 = "H2O", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_189 = gerg_mix_reducing(ident1 = "NC8", ident2 = "AR", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)

- type(gerg_mix_reducing), parameter gerg_red_190 = gerg_mix_reducing(ident1 = "NC7", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_191 = gerg_mix_reducing(ident1 = "IC5", ident2 = "O2", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_192 = gerg_mix_reducing(ident1 = "C1", ident2 = "CO2", beta_v = 0.999518072, gamma_v = 1.002806594, beta_T = 1.02262449, gamma_T = 0.975665369)
- type(gerg_mix_reducing), parameter gerg_red_193 = gerg_mix_reducing(ident1 = "NC7", ident2 = "H2O", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_194 = gerg_mix_reducing(ident1 = "NC8", ident2 = "NC10", beta_v = 1., gamma_v = 1.002553544, beta_T = 1., gamma_T = 1.007186267)
- type(gerg_mix_reducing), parameter gerg_red_195 = gerg_mix_reducing(ident1 = "H2S", ident2 = "HE", beta v = 1., gamma v = 1., beta T = 1., gamma T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_196 = gerg_mix_reducing(ident1 = "NC8", ident2 = "H2", beta_v = 1., gamma_v = 1.305249405, beta_T = 1., gamma_T = 2.191555216)
- type(gerg_mix_reducing), parameter gerg_red_197 = gerg_mix_reducing(ident1 = "CO2", ident2 = "C2", beta_v = 1.002525718, gamma_v = 1.032876701, beta_T = 1.013871147, gamma_T = 0.90094953)
- type(gerg_mix_reducing), parameter gerg_red_198 = gerg_mix_reducing(ident1 = "NC5", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_199 = gerg_mix_reducing(ident1 = "IC5", ident2 = "NC7", beta_v = 1., gamma_v = 1.009928206, beta_T = 1., gamma_T = 1.003194615)
- type(gerg_mix_reducing), parameter gerg_red_200 = gerg_mix_reducing(ident1 = "N2", ident2 = "IC5", beta_v = 1., gamma_v = 1.154135439, beta_T = 1., gamma_T = 1.38177077)
- type(gerg_mix_reducing), parameter gerg_red_201 = gerg_mix_reducing(ident1 = "NC5", ident2 = "NC8", beta_v = 1., gamma_v = 1.069223964, beta_T = 1., gamma_T = 1.016422347)
- type(gerg_mix_reducing), parameter gerg_red_202 = gerg_mix_reducing(ident1 = "C1", ident2 = "CO", beta_v = 0.997340772, gamma_v = 1.006102927, beta_T = 0.987411732, gamma_T = 0.987473033)
- type(gerg_mix_reducing), parameter gerg_red_203 = gerg_mix_reducing(ident1 = "CO2", ident2 = "H2O", beta_v = 0.949055959, gamma_v = 1.542328793, beta_T = 0.997372205, gamma_T = 0.775453996)
- type(gerg_mix_reducing), parameter gerg_red_204 = gerg_mix_reducing(ident1 = "CO2", ident2 = "IC5", beta_v = 1.060793104, gamma_v = 1.116793198, beta_T = 1.019180957, gamma_T = 0.961218039)
- type(gerg_mix_reducing), parameter gerg_red_205 = gerg_mix_reducing(ident1 = "NC5", ident2 = "H2S", beta_v = 0.984613203, gamma_v = 1.076539234, beta_T = 0.962006651, gamma_T = 0.959065662)
- type(gerg_mix_reducing), parameter gerg_red_206 = gerg_mix_reducing(ident1 = "CO", ident2 = "H2S", beta_v = 0.795660392, gamma_v = 1.101731308, beta_T = 1.025536736, gamma_T = 1.022749748)
- type(gerg_mix_reducing), parameter gerg_red_207 = gerg_mix_reducing(ident1 = "CO2", ident2 = "NC4", beta v = 1.174760923, gamma v = 1.222437324, beta T = 1.018171004, gamma T = 0.911498231)
- type(gerg_mix_reducing), parameter gerg_red_208 = gerg_mix_reducing(ident1 = "IC4", ident2 = "H2O", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(gerg_mix_reducing), parameter gerg_red_209 = gerg_mix_reducing(ident1 = "C2", ident2 = "CO", beta_v = 1., gamma_v = 1.201417898, beta_T = 1., gamma_T = 1.069224728)
- type(gerg_mix_reducing), parameter gerg_red_210 = gerg_mix_reducing(ident1 = "NC8", ident2 = "HE", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- integer, parameter max_gerg_mix_reducing = 210
- type(gerg_mix_reducing), dimension(max_gerg_mix_reducing), parameter gerg_mix_reducingdb = (/ gerg_red_1,gerg_red_2,gerg_red_3,gerg_red_4,gerg_red_5,gerg_red_6, gerg_red_7,gerg_red_8,gerg_↔ red_9,gerg_red_10,gerg_red_11,gerg_red_12, gerg_red_13,gerg_red_14,gerg_red_15,gerg_red_16,gerg ↔ red 17, gerg red 18, gerg_red_19,gerg_red_20,gerg_red_21,gerg_red_22,gerg_red_23,gerg_red_24, $gerg_red_25, gerg_red_26, gerg_red_27, gerg_red_28, gerg_red_29, gerg_red_30, gerg_red_31, gerg_red_4, gerg_red_25, gerg_red_31, gerg_rad_31, gerg$ 32,gerg_red_33,gerg_red_34,gerg_red_35,gerg_red_36, gerg_red_37,gerg_red_38,gerg_red_39,gerg_ _red_40,gerg_red_41,gerg_red_42, gerg red 43,gerg red 44,gerg red 45,gerg red 46,gerg red ↔ 47,gerg red 48, gerg red 49,gerg red 50,gerg red 51,gerg red 52,gerg red 53,gerg red 54, gerg ↔ _red_55,gerg_red_56,gerg_red_57,gerg_red_58,gerg_red_59,gerg_red_60, gerg_red_61,gerg_red_↔ 62,gerg red 63,gerg red 64,gerg red 65,gerg red 66, gerg red 67,gerg red 68,gerg red 69,gerg red 70,gerg red 71,gerg red 72, gerg red 73,gerg red 74,gerg red 75,gerg red 76,gerg red ↔ 77,gerg red 78, gerg red 79,gerg red 80,gerg red 81,gerg red 82,gerg red 83,gerg red 84, gerg ↔ _red_85,gerg_red_86,gerg_red_87,gerg_red_88,gerg_red_89,gerg_red_90, gerg_red_91,gerg_red_↔ 92,gerg_red_93,gerg_red_94,gerg_red_95,gerg_red_96, gerg_red_97,gerg_red_98,gerg_red_99,gerg_↔

red_100,gerg_red_101,gerg_red_102, gerg_red_103,gerg_red_104,gerg_red_105,gerg_red_106,gerg_↔ red_107,gerg_red_108, gerg_red_109,gerg_red_110,gerg_red_111,gerg_red_112,gerg_red_113,gerg_↔ $red_114, \ gerg_red_115, gerg_red_116, gerg_red_117, gerg_red_118, gerg_red_119, gerg_red_120, \ gerg_\leftrightarrow$ red_121,gerg_red_122,gerg_red_123,gerg_red_124,gerg_red_125,gerg_red_126, gerg_red_127,gerg_↔ $red_{128,gerg_red_{129,gerg_red_{130,gerg_red_{131,gerg_red_{132}, gerg_red_{133,gerg_red_{134,gerg_ed_{134,gerd_{134,ge$ red 135,gerg red 136,gerg red 137,gerg red 138, gerg red 139,gerg red 140,gerg red 141,gerg \leftrightarrow $red_142, gerg_red_143, gerg_red_144, gerg_red_145, gerg_red_146, gerg_red_147, gerg_red_148, gerg_ed_145, gerg_red_146, gerg_red_147, gerg_red_148, gerg_ed_146, gerg_red_147, gerg_red_148, gerg_ed_145, gerg_red_146, gerg_red_147, gerg_red_148, gerg_ed_146, gerg_red_147, gerg_red_148, gerg_ed_146, gerg_red_147, gerg_red_148, gerg_ed_148, gerg_red_148, gerg_rad_red_148, gerg_rad_raa, gerg_rad_raa, gerg_raa, ger$ $red_{149,gerg_red_150}, \quad gerg_red_{151,gerg_red_152,gerg_red_153,gerg_red_154,gerg_red_155,gerg_\leftrightarrow 152,gerg_red_154,gerg_red_155,gerg_\leftrightarrow 152,gerg_red_154,gerg_red_155,gerg_\leftrightarrow 152,gerg_red_154,gerg_red_154,gerg_red_155,gerg_\leftrightarrow 152,gerg_red_154,gerg_red_154,gerg_red_154,gerg_red_155,gerg_\leftrightarrow 152,gerg_red_154,gerg_154,gerg_red_154,gerg_red_154,gerg_red_154,gerg_red_154,gerg_red_154,gerg_red_154,gerg_rad_154,gerg_rad_154,gerg_154,gerg_rad_154,gerg_rad_154,gerg_rad_154,gerg_rad_154,gerg_rad_154,gerg_rad_154,gerg_rad_154,gerg_rad_154,gerg_154,gerg_rad_154,gerg_rad_154,gerg_rad_154,gerg_rad_154,gerg_154,gerg_154,gerg_154,gerg_154,gerg_154,gerg_154,gerg_154,$ red 156, gerg red 157, gerg red 158, gerg red 159, gerg red 160, gerg red 161, gerg red 162, gerg \leftrightarrow red 163,gerg red 164,gerg red 165,gerg red 166,gerg red 167,gerg red 168, gerg red 169,gerg \leftrightarrow red_170,gerg_red_171,gerg_red_172,gerg_red_173,gerg_red_174, gerg_red_175,gerg_red_176,gerg_↔ red_177,gerg_red_178,gerg_red_179,gerg_red_180, gerg_red_181,gerg_red_182,gerg_red_183,gerg_↔ red_184,gerg_red_185,gerg_red_186, gerg_red_187,gerg_red_188,gerg_red_189,gerg_red_190,gerg_↔ red_191,gerg_red_192, gerg_red_193,gerg_red_194,gerg_red_195,gerg_red_196,gerg_red_197,gerg_↔ $red_198, \ gerg_red_199, gerg_red_200, gerg_red_201, gerg_red_202, gerg_red_203, gerg_red_204, \ gerg_ed_204, \ gerg_ed_204,$ red_205,gerg_red_206,gerg_red_207,gerg_red_208,gerg_red_209,gerg_red_210 /)

- type(gerg_mix_data), parameter gerg_mix4 = gerg_mix_data(ident1 = "C1", ident2 = "N2", Fij = 1., num_mix = 9, n_mix = (/ -0.98038985517335d-2,0.42487270143005d-3,-0.34800214576142d-1, -0.↔ 13333813013896,-0.11993694974627d-1,0.69243379775168d-1, -0.31022508148249,0.24495491753226,0.↔ 22369816716981, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 0.0,1.85,7.85, 5.4,0.0,0.75, 2.8,4.45,4.25, 0.0d0,0.0d0,0..↔ 0d0 /), d_mix = (/ 1,4,1,2,2,2, 2,2,3,0,0,0 /), eta_mix = (/ 0.0,0.0,1., 1.,0.25,0., 0.,0.,0., 0.0d0,0.0d0,0.0d0
 /), gamma_mix = (/ 0.0,0.0,0.5, 0.5,0.5,0.5, 0.5,0.5, 0.5,0.5, 0.0d0,0.0d0 /), epsilon_mix = (/ 0.0,0.0,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5, 0.0d0,0.0d0 /), eta_mix = (/ 0.0,0.0,1., 1.,2.5,3., 3.,3., 0.0d0,0.0d0 /), num exp = 7)
- type(gerg_mix_data), parameter gerg_mix6 = gerg_mix_data(ident1 = "N2", ident2 = "C2", Fij = 1., num_← mix = 6, n_mix = (/ -0.47376518126608,0.48961193461001,-0.57011062090535d-2, -0.19966820041320,-

- type(gerg_mix_data), parameter gerg_mix8 = gerg_mix_data(ident1 = "N2", ident2 = "CO2", Fij = 1., num_↔ mix = 6, n_mix = (/ 0.28661625028399, -0.10919833861247, -0.11374032082270d1, 0.76580544237358, 0.↔ 42638000926819d-2, 0.17673538204534, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), t_mix = (/ 1.85, 1.4, 3.↔ 2, 2.5, 8.0, 3.75, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), d_mix = (/ 2, 3, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0/), eta_mix = (/ 0.0, 0.0, 0.25, 0.25, 0.0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), gamma_mix = (/ 0.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.0d0, 0.0d0, 0.0d0 /), epsilon_mix = (/ 0.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.0d0, 0.0d0, 0.0d0 /), eta_mix = (/ 0.0, 0.0, 0.0, 0.0, 0.0d0, 0.0d0, 0.0d0 /), num_exp = 4)

- type(gerg_mix_data), parameter gerg_mix12 = gerg_mix_data(ident1 = "C1", ident2 = "H2", Fij = 1., num_mix = 4, n_mix = (/ -0.25157134971934, -0.62203841111983d-2, 0.88850315184396d-1, -0.↔ 35592212573239d-1, 0.0d0, 0
- type(gerg_mix_data), parameter gerg_mix13 = gerg_mix_data(ident1 = "C3", ident2 = "NC4", Fij = 0.0312572600489, num_mix = 10, n_mix = (/ 0.25574776844118d1,-0.79846357136353d1,0.↔ 47859131465806d1, -0.73265392369587,0.13805471345312d1,0.28349603476365, -0.49087385940425,-0.10291888921447,0.11836314681968, 0.55527385721943d-4,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7,

- type(gerg_mix_data), parameter gerg_mix15 = gerg_mix_data(ident1 = "C1", ident2 = "CO2", Fij = 1., num_mix = 6, n_mix = (/ -0.10859387354942,0.80228576727389d-1,-0.93303985115717d-2, 0.↔ 40989274005848d-1,-0.24338019772494,0.23855347281124, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 2.6,1.95,0.0, 3.95,7.95,8.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), d_mix = (/ 1,2,3,1,2,3, 0,0,0,0,0,0 /), eta_mix = (/ 0.0,0.0,0.0, 1.,0.5,0., 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_mix = (/ 0.0,0.0,0.0, 0.5,0.5,0.5, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon_mix = (/ 0.0,0.0,0.0, 0.5,0.5,0.5, 0.0d0,0.0d0 /), beta_mix = (/ 0.0,0.0,0.0, 1.,2.,3., 0.0d0,0.0d0,0.0d0, 0.0d0,
- integer, parameter max_gerg_mix_data = 15
- type(gerg_mix_data), dimension(max_gerg_mix_data), parameter gerg_mix_datadb = (/ gerg_mix1,gerg_ _mix2,gerg_mix3,gerg_mix4,gerg_mix5,gerg_mix6, gerg_mix7,gerg_mix8,gerg_mix9,gerg_mix10,gerg_ _mix11,gerg_mix12, gerg_mix13,gerg_mix14,gerg_mix15 /)

5.25.1 Detailed Description

Automatically generated file gergmixdb.f90 Time stamp: 2022-10-03T21:42:11.071422.

5.26 h2o_gibbs Module Reference

Module calculating thermodynamic potentials and differentials for solid H2O.

Functions/Subroutines

- subroutine, public sho2_init (sl, gl)
- Set reference potentials (H2O) Input: Liquid entropy and Gibbs energy evaluated at (T0_H2O,P0_H2O) • real function, public sh2o_gibbs (t, p)
 - Gibbs free energy for ice (H2O) (J/mol)
- real function, public sh2o_dgdt (t, p)
 - Gibbs free energy for ice (H2O) Differential wrpt. temperature at constant pressure (J/mol/K)
- real function, public sh2o_d2gdt2 (t, p)
 - Gibbs free energy for ice (H2O) Second differential wrpt. temperature at constant pressure (J/mol/K)
- real function, public sh2o_d2gdtdp (t, p)

Gibbs free energy for ice (H2O) - Second differential wrpt. temperature and pressure (m3/mol/K)

real function, public sh2o_dgdp (t, p)

Gibbs free energy for ice (H2O) - Differential wrpt. pressure at constant temperature (m3/mol)

- real function, public sh2o_d2gdp2 (t, p)
 - Gibbs free energy for ice (H2O) Second differential wrpt. pressure at constant temperature (m3/mol/Pa)
- real function, public sh2o_specvol (t, p)
 - Specific volume for ice (H2O) (m3/mol)
- real function, public sh2o_entropy (t, p)
 - lce (H2O) entropy (J/mol/K)
- real function, public sh2o_enthalpy (t, p)

Ice (H2O) enthalpy (J/mol)

- real function, public sh2o_energy (t, p)
 - Ice (H2O) energy (J/mol)
- real function, public sh2o_helmholtz (t, p)
 - Ice (H2O) helmholtz energy (J/mol)
- real function, public sh2o_heat_capacity (t, p)
 Ice (H2O) heat capacity at constant pressure (J/mol/K)

Variables

- real, parameter, public p0_h2o = 101325.0
 - Pa.
- real, parameter, public **t0_h2o** = 273.152519 *K*.
- real, parameter, public dsmelt = mw_H2O*333.426516*1.0e3/T0_H2O
 J/mol/K (Sliq Ssolid)

5.26.1 Detailed Description

Module calculating thermodynamic potentials and differentials for solid H2O.

Ref: A New Equation of State for H\$_2\$O Ice Ih Rainer Feistel and Wolfgang Wagner Journal of Physical and Chemical Reference Data (J. Phys. Chem. Ref. Data) Pages: 1021-1047 January 2006 Volume(Number): 35(2) doi: http://dx.doi.org/10.1063/1.2183324

5.26.2 Function/Subroutine Documentation

5.26.2.1 sh2o_d2gdp2()

```
real function, public h2o_gibbs::sh2o_d2gdp2 (
```

```
real, intent(in) t,
real, intent(in) p )
```

Gibbs free energy for ice (H2O) - Second differential wrpt. pressure at constant temperature (m3/mol/Pa)

Parameters

in	t	К
in	р	Pa

Returns

m3/mol/Pa

5.26.2.2 sh2o_d2gdt2()

real function, public h2o_gibbs::sh2o_d2gdt2 (

```
real, intent(in) t,
```

```
real, intent(in) p )
```

Gibbs free energy for ice (H2O) - Second differential wrpt. temperature at constant pressure (J/mol/K)

in	t	К
in	р	Pa

Returns

J/mol/K2

5.26.2.3 sh2o_d2gdtdp()

```
real function, public h2o_gibbs::sh2o_d2gdtdp (
```

```
real, intent(in) t,
real, intent(in) p )
```

Gibbs free energy for ice (H2O) - Second differential wrpt. temperature and pressure (m3/mol/K)

Parameters

in	t	К
in	р	Pa

Returns

m3/mol/K

5.26.2.4 sh2o_dgdp()

```
real function, public h2o_gibbs::sh2o_dgdp (
```

```
real, intent(in) t,
```

real, intent(in) p)

Gibbs free energy for ice (H2O) - Differential wrpt. pressure at constant temperature (m3/mol)

Parameters

in	t	К
in	р	Pa

Returns

m3/mol

5.26.2.5 sh2o_dgdt()

Gibbs free energy for ice (H2O) - Differential wrpt. temperature at constant pressure (J/mol/K)

Parameters

in	t	К
in	р	Pa

Returns

J/mol/K

5.26.2.6 sh2o_energy()

real function, public h2o_gibbs::sh2o_energy (

real, intent(in) t, real, intent(in) p) Ice (H2O) energy (J/mol)

Parameters

in	t	К
in	р	Ра

Returns

J/mol

5.26.2.7 sh2o_enthalpy()

```
real function, public h2o_gibbs::sh2o_enthalpy (
```

```
real, intent(in) t,
real, intent(in) p)
```

Ice (H2O) enthalpy (J/mol)

Parameters

in	t	К
in	р	Ра

5.26.2.8 sh2o_entropy()

Parameters

in	t	К
in	р	Pa

Returns

J/mol/K

5.26.2.9 sh2o_gibbs()

in	t	К
in	р	Ра

Returns

J/mol

5.26.2.10 sh2o_heat_capacity()

real function, public h2o_gibbs::sh2o_heat_capacity (
 real, intent(in) t,
 real, intent(in) p)
Ice (H2O) heat capacity at constant pressure (J/mol/K)

Parameters

in	t	К
in	р	Pa

5.26.2.11 sh2o_helmholtz()

Ice (H2O) helmholtz energy (J/mol)

Parameters

in	t	К
in	р	Pa

Returns

J/mol

5.26.2.12 sh2o_specvol()

Parameters

in	t	К
in	р	Pa

Returns

m3/mol

5.26.2.13 sho2_init()

```
subroutine, public h2o_gibbs::sho2_init (
    real, intent(in) sl,
    real, intent(in) gl )
Set reference potentials (H2O) Input: Liquid entropy and Gibbs energy evaluated at (T0_H2O,P0_H2O)
```

Parameters

in	sl	Entropy - J/mol/K
in	gl	Gibbs energy - J/mol

5.27 hyperdual_mod Module Reference

Hyperdual number definition & type declaration.

Data Types

- interface abs
- interface acos
- interface asin
- interface assignment(=)
- interface atan
- interface atan2
- interface cos
- interface cosh
- interface exp
- type hyperdual
 - Derived type for hyperdual numbers.
- interface int
- interface log
- interface log10
- interface max
- interface min
- interface nint
- interface operator(*)
- interface operator(**)
- interface operator(+)
- interface operator(-)
- interface operator(.eq.)
- interface operator(.ge.)
- interface operator(.gt.)
- interface operator(.le.)
- interface operator(.lt.)
- interface operator(.ne.)
- interface operator(/)
- interface real
- interface sign
- interface sin
- interface sinh
- interface sqrt
- interface sum
- interface tan
- interface tanh

Functions/Subroutines

- · elemental subroutine equalhyperdualhyperdual (res, inp)
- · elemental subroutine equalhyperdualreal (res, inp)
- elemental type(hyperdual) function plushyperdualhyperdual (v1)
- elemental type(hyperdual) function addhyperdual (v1, v2)
- elemental type(hyperdual) function addhyperdualreal (v1, v2)
- elemental type(hyperdual) function addrealhyperdual (v1, v2)
- elemental type(hyperdual) function minushyperdual (v1)
- elemental type(hyperdual) function subtracthyperdualhyperdual (v1, v2)
- elemental type(hyperdual) function subtracthyperdualreal (v1, v2)
- elemental type(hyperdual) function subtractrealhyperdual (v1, v2)
- elemental type(hyperdual) function multiplyhyperdualhyperdual (v1, v2)
- elemental type(hyperdual) function multiplyhyperdualreal (v1, v2)
- elemental type(hyperdual) function multiplyrealhyperdual (v1, v2)
- elemental type(hyperdual) function multiplyhyperdualint (v1, v2)
- elemental type(hyperdual) function multiplyinthyperdual (v1, v2)
- elemental type(hyperdual) function dividehyperdualhyperdual (v1, v2)
- elemental type(hyperdual) function dividehyperdualreal (v1, v2)
- elemental type(hyperdual) function dividerealhyperdual (v1, v2)
- elemental type(hyperdual) function powerhyperdualint (v1, v2)
- elemental type(hyperdual) function powerhyperdualhyperdual (v1, v2)
- elemental type(hyperdual) function **powerhyperdualreal** (v1, v2)
- pure type(hyperdual) function sumhyperdual (v1, mask)
- pure type(hyperdual) function, dimension(:), allocatable sumhyperdual2 (v1, dim)
- logical function eq_dd (lhs, rhs)
- logical function eq_dr (lhs, rhs)
- logical function eq_rd (lhs, rhs)
- logical function eq_di (lhs, rhs)
- logical function eq_id (lhs, rhs)
- logical function ne_dd (lhs, rhs)
- logical function ne dr (lhs, rhs)
- · logical function ne_rd (lhs, rhs)
- · logical function ne di (lhs, rhs)
- · logical function ne id (lhs, rhs)
- logical function **It dd** (lhs, rhs)
- logical function It_dr (lhs, rhs)
- logical function It rd (lhs, rhs)
- logical function It di (lhs, rhs)
- logical function It_id (lhs, rhs)
- logical function le dd (lhs, rhs)
- logical function **le_dr** (lhs, rhs)
- logical function le_rd (lhs, rhs)
- logical function le di (lhs, rhs)
- logical function le_id (lhs, rhs)
- logical function gt_dd (lhs, rhs)
- logical function gt_dr (lhs, rhs)
- logical function gt_rd (lhs, rhs)
- logical function gt di (lhs, rhs)
- logical function gt_id (lhs, rhs)
- logical function ge_dd (lhs, rhs)
- logical function ge_dr (lhs, rhs)
- logical function ge_rd (lhs, rhs)
- logical function ge_di (lhs, rhs)
- logical function ge_id (lhs, rhs)

- elemental type(hyperdual) function abshyperdual (v1)
- elemental integer function inthyperdual (v1)
- elemental integer function ninthyperdual (v1)
- elemental real(dp) function realhyperdual (v1)
- elemental type(hyperdual) function sign_dd (v1, v2)
- elemental type(hyperdual) function sign_dr (v1, v2)
- elemental type(hyperdual) function $\textbf{sign_rd}~(v1,\,v2)$
- elemental type(hyperdual) function sinhyperdual (v1)
- elemental type(hyperdual) function coshyperdual (v1)
- elemental type(hyperdual) function tanhyperdual (v1)
- elemental type(hyperdual) function sqrthyperdual (v1)
- elemental type(hyperdual) function loghyperdual (v1)
- elemental type(hyperdual) function log10hyperdual (v1)
- elemental type(hyperdual) function exphyperdual (v1)
- elemental type(hyperdual) function sinhhyperdual (v1)
- elemental type(hyperdual) function coshhyperdual (v1)
- elemental type(hyperdual) function tanhhyperdual (v1)
- elemental type(hyperdual) function acoshyperdual (v1)
- elemental type(hyperdual) function asinhyperdual (v1)
- elemental type(hyperdual) function atanhyperdual (v1)
- elemental type(hyperdual) function atan2hyperdual (v1, v2)
- elemental type(hyperdual) function max_dd (v1, v2)
- elemental type(hyperdual) function max_ddd (v1, v2, v3)
- elemental type(hyperdual) function max_dr (v1, v2)
- elemental type(hyperdual) function max_rd (v1, v2)
- elemental type(hyperdual) function min_dd (v1, v2)
- elemental type(hyperdual) function min_dr (v1, v2)
- elemental type(hyperdual) function min_rd (v1, v2)
- elemental logical function hd_all_members_zero (v1)

5.27.1 Detailed Description

Hyperdual number definition & type declaration.

Original code provided by Philipp Rehner and Gernot Bauer, Institute of Thermodynamics and Thermal Process Engineering (ITT), University of Stuttgart, Stuttgart, Germany

Extended to third order differentials April 2023, Morten Hammer, NTNU.

Hypderdual numbers

Hypderdual numbers extend the idea of additional, non-real components from one non-real component (complex numbers) to seven non-real components: ε_1 , ε_2 , ε_3 , $\varepsilon_1\varepsilon_2$, $\varepsilon_1\varepsilon_3$, $\varepsilon_2\varepsilon_3$ and $\varepsilon_1\varepsilon_2\varepsilon_3$ Hyperdual numbers require \leftrightarrow : $(\varepsilon_1)^2 = 0$, $(\varepsilon_2)^2 = 0$ and $(\varepsilon_3)^2 = 0$. This leads to the fact, that the Taylor series of a function with hyperdual arguments can be truncated *exactly* after the third derivative term:

Because there is *no truncation error*, all first, second and third order derivatives can be obtained *exactly*, regardless of the step size " h_1 , and h_2 and h_3 . The derivatives (exemplified by a second order case) can be obtained for a function $f(\mathbf{x})$ with multiple variables $\mathbf{x} \in \mathbb{R}^n$ via

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \frac{\varepsilon_{1,\text{part}} \left\{ f(\mathbf{x} + h_1 \varepsilon_1 \mathbf{e}_i + h_2 \varepsilon_2 \mathbf{e}_j + h_1 h_2 \mathbf{0}) \right\}}{h_1}$$

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \frac{\varepsilon_{2,\text{part}} \left\{ f(\mathbf{x} + h_1 \varepsilon_1 \mathbf{e}_i + h_2 \varepsilon_2 \mathbf{e}_j + h_1 h_2 \mathbf{0}) \right\}}{h_2}$$

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} = \frac{(\varepsilon_1 \varepsilon_2)_{\text{part}} \left\{ f(\mathbf{x} + h_1 \varepsilon_1 \mathbf{e}_i + h_2 \varepsilon_2 \mathbf{e}_j + h_1 h_2 \mathbf{0}) \right\}}{h_1 h_2}$$

where e_i and e_j are unit vectors, which are all zero except for the *i*-th and *j*-th component, respectively.

Computation principles for hypderdual numbers

Hyperdual numbers $\mathbf{x} \in \mathbb{HD}$ can be expressed as tuples: $\mathbf{x} = [x_0, x_1, x_2, x_3, x_{12}, x_{13}, x_{23}, x_{123}] = x_0 + x_1\varepsilon_1 + x_2\varepsilon_2 + x_3\varepsilon_3 + x_{12}\varepsilon_1\varepsilon_2 + x_{13}\varepsilon_1\varepsilon_3 + x_{23}\varepsilon_2\varepsilon_3 + x_{123}\varepsilon_1\varepsilon_2\varepsilon_3$. By using the Taylor expansion of the function $f(\mathbf{x})$ one gets computation priniple for functions with hyperdual arguments from

A hyperdual number derived type is provided by: hyperdual.

References

[1] Fike, Alonso: **The Development of Hyper-Dual Numbers for Exact Second-Derivative Calculations.** *49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition* (2011)

[2] Rehner, P. and Bauer, G.: Application of Generalized (Hyper-) Dual Numbers in Equation of State Modeling. Frontiers in Chemical Engineering_ (2021)

5.28 isolines Module Reference

Module for mapping iso-lines.

Functions/Subroutines

- subroutine, public isotherm (t, pmin, pmax, z, n, pa, va, sa, ha, na) *Map isotherm.*
- subroutine, public isobar (p, tmin, tmax, z, n, ta, va, sa, ha, na) *Map isobar.*
- subroutine, public isenthalp (h, pmin, pmax, tmin, tmax, z, n, pa, va, sa, ta, na) *Map isoenthalp.*
- subroutine, public isentrope (s, pmin, pmax, tmin, tmax, z, n, pa, va, ha, ta, na) *Map isoentrope.*

5.28.1 Detailed Description

Module for mapping iso-lines.

5.28.2 Function/Subroutine Documentation

5.28.2.1 isenthalp()

```
subroutine, public isolines::isenthalp (
    real, intent(in) h,
    real, intent(in) pmin,
    real, intent(in) pmax,
    real, intent(in) tmin,
    real, intent(in) tmax,
    real, dimension(nc), intent(in) z,
    integer, intent(in) n,
    real, dimension(n), intent(out) pa,
    real, dimension(n), intent(out) va,
    real, dimension(n), intent(out) sa,
    real, dimension(n), intent(out) ta,
    integer, intent(out) na )
```

Map isoenthalp.

Author

Morten Hammer, 2020-06

Parameters

in	h	Specific enthalpy (J/mol)
in	pmax	Pressure limits (Pa)
in	tmax	Temperature limits (K)
in	Ζ	Composition (-)
in	n	Number of points
out	ра	Temperature (Pa)
out	va	Spcecific volume (m3/mol)
out	sa	Specific entropy (J/mol/K)
out	ta	Temperature (K)
out	na	Number of points

5.28.2.2 isentrope()

```
subroutine, public isolines::isentrope (
    real, intent(in) s,
    real, intent(in) pmin,
    real, intent(in) pmax,
    real, intent(in) tmin,
    real, intent(in) tmax,
    real, dimension(nc), intent(in) z,
    integer, intent(in) n,
    real, dimension(n), intent(out) pa,
    real, dimension(n), intent(out) ta,
    real, dimension(n), intent(out) ta,
    integer, intent(out) na )
```

Map isoentrope.

Author

Morten Hammer, 2020-06

Parameters

in	s	Specific entropy (J/mol/K)
in	pmax	Pressure limits (Pa)
in	tmax	Temperature limits (K)
in	z	Composition (-)
in	n	Number of points
out	ра	Pressure (Pa)
out	va	Spcecific volume (m3/mol)
out	ha	Specific enthalpy (J/mol)
out	ta	Temperature (K)
out	na	Number of points

5.28.2.3 isobar()

```
real, intent(in) tmax,
real, dimension(nc), intent(in) z,
integer, intent(in) n,
real, dimension(n), intent(out) ta,
real, dimension(n), intent(out) va,
real, dimension(n), intent(out) sa,
real, dimension(n), intent(out) ha,
integer, intent(out) na )
```

Map isobar.

Author

Morten Hammer, 2020-06

Parameters

in	р	Pressure (Pa)
in	tmax	Temperature limits (K)
in	Ζ	Composition (-)
in	n	Number of points
out	ta	Temperature (K)
out	va	Spcecific volume (m3/mol)
out	sa	Specific entropy (J/mol/K)
out	ha	Specifc enthalpy (J/mol)
out	na	Number of points

5.28.2.4 isotherm()

```
subroutine, public isolines::isotherm (
    real, intent(in) t,
    real, intent(in) pmin,
    real, intent(in) pmax,
    real, dimension(nc), intent(in) z,
    integer, intent(in) n,
    real, dimension(n), intent(out) pa,
    real, dimension(n), intent(out) va,
    real, dimension(n), intent(out) sa,
    real, dimension(n), intent(out) ha,
    integer, intent(out) na )
```

Map isotherm.

Author

Morten Hammer, 2020-06

in	t	Temperature (K)
in	pmax	Pressure limits (Pa)
in	Ζ	Composition (-)
in	n	Number of points
out	ра	Pressure (Pa)
out	va	Spcecific volume (m3/mol)
out	sa	Specific entropy (J/mol/K)
out	ha	Specifc enthalpy (J/mol)
Parameters

out <i>na</i>	Number of points
---------------	------------------

5.29 leekesler Module Reference

This module solves the Lee-Kesler EoS. Contains all partial derivative functions needed to do consistency check.

Functions/Subroutines

- subroutine, public mainleekesler (nc, comp, cbeos, t, p, nmoles, phase, z, sdep, hdep, Inphi)
 - Main subroutine of the Lee Kesler eos. Takes temperature, pressure, composition and phase as input, and returns comrpessibility, entropy departure, enthalpy departure and fugacity coefficients. Calls upon routine thermProps to calculate these values for simple fluid (0) and reference fluid (1) seperatly, with reduced values for temperature and pressure calculated by the mixing rules, and combines the results according to the Lee Kesler relation:
- subroutine, public lkcalcfug (nc, comp, cbeos, t, p, z, phase, lnfug, dlnfdt, dlnfdp, dlnfdz, v)

This function calculates the Fugacity coefficient and the derivatives.

- real function Inphim (t, p, tr, pr, vr, moles, b, c, d, e, simporref, dInphidt, dInphidp)
 - This function calculates reduced deparure Gibbs energy, or the mixture fugacity coefficient. That is; equation 21 in chapter 2 of Michelsen book:
- subroutine, public lkcalcgdep (nc, comp, cbeos, t, p, nmoles, phase, g, dgdt, dgdp)

This function calculates reduced deparure Gibbs energy.

• subroutine, public lkcalczfac (nc, comp, cbeos, t, p, z, phase, zfac, dzdt, dzdp, dzdz)

This function calculates the compressibillity factor and the derivatives.

- subroutine, public lkcalcentropy (nc, comp, cbeos, t, p, z, phase, entropy, dsdt, dsdp, dsdz)
 - This function calculates the residual entropy and the derivatives.
- subroutine, public lkcalcenthalpy (nc, comp, cbeos, t, p, z, phase, enthalpy, dhdt, dhdp, dhdz) This function calculates the residual enthalpy and the derivatives.
- subroutine thermprops (nc, comp, cbeos, tr, pr, vr, nmoles, tcm, vcm, pcm, zcm, wm, moles, z, s, h, Inphi, simporref)

Subroutine to calculate the thermodynamic properties of either simple fluid or reference fluid. Solutions are compined in main routine.

• subroutine mixrules (nc, comp, cbeos, tcm, vcm, pcm, zcm, wm, nmoles, moles)

Calculate the critical mixing temperature, volume, pressure, compressibility and acentricity factor, for given composition. Critical temperature and critical volume is used in the calculations, these values are known.

• subroutine trcoeff (tr, b, c, d, e, simporref)

Calculate the reduced temperature dependent coefficients B,C,D and E, in the expression for Helmholts reduced recidual function F, for given reduced temperature.

subroutine trcoeffdiff1 (tr, b_tr, c_tr, d_tr, e_tr, simporref)

Calculate the first order derivatives of the reduced temperature dependent coefficients B,C,D and E, for given reduced temperature.

subroutine trcoeffdiff2 (tr, b_trtr, c_trtr, d_trtr, e_trtr, simporref)

Calculate the second order derivatives of the reduced temperature dependent coefficients B,C,D and E, for given reduced temperature.

subroutine vrnewtraps (tr, pr, usedphase, simporref, vr, correctphase)

Calculate the reduced volume, vr, by use of the Newton-Rapson numerical method to solve Lee Keslers equation of state, given reduced temperature, reduced pressure and composition. The half step method is used to secure that vr is inside its limit. Calls upon functions fv and fvDiff, acting as the function f and the derivative of f in the numerical method.

• real function fv (pr, tr, vr, b, c, d, e, simporref)

Calculate the function f to be used in the numerical method to find reduced volume, given reduced pressure, reduced temperature, coefficients B - E and an increasingly more correct reduced volume, for each call.

real function fvdiff (pr, tr, vr, b, c, d, e, simporref)

Calculate the derivative of function f to be used in the numerical method to find reduced specific volume.

• real function fsolver (moles, vr, b, c, d, e, simporref)

Calculate the reduced recidual Helmholtz function F, given number of moles, reduced volume and coefficients B - E. This is the main function to be used to find the desired thermodynamic properties.

· real function fdifftr (moles, tr, vr, simporref)

In the following, functions that give the partial derivatives of F with respect to reduced temperature, reduced specific volume and composition are given.

• real function fdiff2tr (moles, tr, vr, simporref)

Calculate the second order derivative of Helmholts reduced recidual function, with respect to reduced temperature, for given moles, reduced temperature and reduced specific volume. Volume and composition is fixed.

• real function fdiffvr (moles, vr, b, c, d, e, simporref)

Calculate the first order derivative of Helmholts reduced recidual function, with respect to reduced volume, for given moles, reduced temperature and reduced specific volume. Temperature and composition is fixed.

real function fdiff2vr (moles, vr, b, c, d, e, simporref)

Calculate the second order derivative of Helmholts reduced recidual function, with respect to reduced volume, for given moles, reduced temperature and reduced specific volume. Temperature and composition is fixed.

real function fdiff3vr (moles, vr, b, c, d, e, simporref)

Calculate the third order derivative of Helmholtz reduced recidual function, with respect to reduced volume, for given moles, reduced temperature and reduced specific volume. Temperature and composition is fixed.

- real function fdiffni (nc, comp, cbeos, tr, vr, tcm, vcm, pcm, zcm, wm, nmoles, moles, i, b, c, d, e, simporref)
 Calculate the first order derivative of Helmholts reduced recidual function, with respect to composition, n(i), for given copmosition, reduced temperature and reduced specific volume. Temperature and volume is fixed.
- real function fdiff2ninj (nc, comp, cbeos, tr, vr, tcm, vcm, pcm, zcm, wm, nmoles, moles, i, j, b, c, d, e, simporref)

Calculate the second order derivative of Helmholts reduced recidual function, with respect to composition. Temperature and volume is fixed.

• real function fdiffn (moles, vr, b, c, d, e, simporref)

Help functions to calculate the first and second order derivatives of F with respect to composition.

real function fdiff2vrn (moles, vr, b, c, d, e, simporref)

Calculate the cross derivative of F, with respect to reduced volume and total number of moles, for fixed reduced temperature.

real function fdiff2trn (moles, tr, vr, simporref)

Calculate the cross derivative of F, with respect to reduced temperature and total number of moles, for fixed reduced volume.

• real function trdiffni (nc, comp, cbeos, tr, tcm, vcm, nmoles, moles, i)

Calculate the first order derivative of reduced temperature, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of *F*, with respect to composition.

• real function vrdiffni (nc, comp, cbeos, vr, tcm, vcm, pcm, zcm, wm, nmoles, moles, i)

Calculate the first order derivative of reduced volume, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of *F*, with respect to composition.

• real function trdiff2ninj (nc, comp, cbeos, tr, tcm, vcm, nmoles, moles, i, j)

Calculate the second order derivative of reduced temperature, with respect to composition, for fixed temperature and volume. Help function to be used in finding the second order derivative of F, with respect to composition.

real function vrdiff2ninj (nc, comp, cbeos, vr, tcm, vcm, pcm, zcm, wm, nmoles, moles, i, j)

Calculate the second order derivative of reduced volume, with respect to composition, for fixed temperature and volume. Help function to be used in finding the second order derivative of *F*, with respect to composition.

• real function tcmdiffni (nc, comp, cbeos, tcm, vcm, nmoles, moles, i)

Calculate the first order derivative of critical mixing temperature, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

• real function tcmdiff2ninj (nc, comp, cbeos, tcm, vcm, nmoles, moles, i, j)

Calculate the second order derivative of critical mixing temperature, with respect to composition, for fixed temperature and volume. Help function to be used in finding the second order derivative of *F*, with respect to composition.

• real function vcmdiffni (nc, comp, nmoles, vcm, moles, i)

Calculate the first order derivative of critical mixing volume, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of *F*, with respect to composition.

• real function vcmdiff2ninj (nc, comp, nmoles, moles, vcm, i, j)

Calculate the second order derivative of critical mixing volume, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of *F*, with respect to composition.

• real function pcmdiffni (nc, comp, cbeos, tcm, vcm, pcm, zcm, wm, nmoles, moles, i)

Calculate the first order derivative of the pseudo critical mixing pressure, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of *F*, with respect to composition.

• real function pcmdiff2ninj (nc, comp, cbeos, tcm, vcm, pcm, zcm, wm, nmoles, moles, i, j)

Calculate the first order derivative of the pseudo critical mixing pressure, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of *F*, with respect to composition.

real function zcmdiffni (nc, comp, moles, wm, i)

Calculate the first order derivative of the pseudo critical mixing compressibility, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

• real function zcmdiff2ninj (nc, comp, moles, wm, i, j)

Calculate the second order derivative of the pseudo critical mixing compressibility, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of *F*, with respect to composition.

real function wmdiffni (nc, comp, moles, wm, i)

Calculate the first order derivative of the pseudo critical acentricity factor, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

• real function wmdiff2ninj (nc, comp, moles, wm, i, j)

Calculate the second order derivative of the pseudo critical acentricity factor, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of *F*, with respect to composition.

• real function zdifft (z, t, p, moles, tr, vr, tcm, pcm, b, c, d, e, simporref)

The derivatives of the compressibility, with respect to temperature, pressure and composition follow.

- real function zdiffp (z, p, moles, tr, vr, tcm, pcm, b, c, d, e, simporref)
 - Calculate the derivative of the compressibility, with respect to pressure, for fixed temperature and composition.
- real function zdiffni (nc, comp, cbeos, z, moles, tr, vr, tcm, vcm, pcm, zcm, wm, b, c, d, e, nmoles, i, simporref)
 Calculate the derivative of the compressibility, with respect to composition, for fixed temperature and pressure.
- real function sdifft (t, p, moles, tr, vr, tcm, pcm, b, c, d, e, simporref)
 - The derivatives of the entropy, with respect to temperature, pressure and composition follow.
- real function sdiffp (t, p, moles, tr, vr, tcm, pcm, b, c, d, e, simporref)

Calculate the derivative of entropy, with respect to pressure, for fixed temperature and composition.

• real function sdiffni (nc, comp, cbeos, t, p, moles, tr, vr, tcm, vcm, pcm, zcm, wm, b, c, d, e, nmoles, i, z, simporref)

Calculate the derivative of entropy, with respect to pressure, for fixed temperature and composition.

• real function hdifft (t, p, moles, tr, vr, tcm, pcm, b, c, d, e, simporref)

The derivatives of the enthalpy, with respect to temperature, pressure and composition follow.

real function hdiffp (t, p, moles, tr, vr, tcm, pcm, b, c, d, e, simporref)

Calculate the derivative of enthalpy, with respect to pressure, for fixed temperature and composition.

• real function hdiffni (nc, comp, cbeos, t, p, moles, tr, vr, tcm, vcm, pcm, zcm, wm, b, c, d, e, nmoles, i, simporref)

Calculate the derivative of enthalpy, with respect to composition, for fixed temperature and pressure.

• real function Inphidifft (nc, comp, cbeos, t, p, moles, tr, vr, tcm, vcm, pcm, zcm, wm, b, c, d, e, nmoles, i, simporref)

The derivatives of the logarithm of the fugacity coefficient, with respect to temperature, pressure and composition follow.

• real function Inphidiffp (nc, comp, cbeos, t, p, moles, tr, vr, tcm, vcm, pcm, zcm, wm, b, c, d, e, nmoles, i, simporref)

Calculate the derivative of the logarithmic fugacity coefficients, with respect to pressure, for fixed temperature and composition.

• real function Inphidiffnj (nc, comp, cbeos, moles, tr, vr, tcm, vcm, pcm, zcm, wm, b, c, d, e, nmoles, i, j, simporref)

Calculate the derivative of the logarithmic fugacity coefficients, with respect to composition, for fixed temperature and pressure.

- real function fdiff2tni (nc, comp, cbeos, moles, tr, vr, tcm, vcm, pcm, zcm, wm, nmoles, i, simporref)
 - Help functions to calculate the derivatives of the entropy, enthalpy and logarithm of the fugacity coeficients.
- real function fdiff2trvr (moles, tr, vr, simporref)
 - Calculate the derivative of Helmholts reduced recidual function, with respect to reduced temperature and reduced specific volume. Composition is fixed.
- real function fdiff2vni (nc, comp, cbeos, moles, tr, vr, tcm, vcm, pcm, zcm, wm, nmoles, b, c, d, e, i, simporref) Calculate the derivative of Helmholts reduced recidual function, with respect to composition and volume. Temperature is fixed.
- real function vdiffni (nc, comp, cbeos, moles, tr, vr, tcm, vcm, pcm, zcm, wm, b, c, d, e, nmoles, i, simporref) Calculate the derivative of the volume, with respect to composition, For fixed temperature and pressure. Help function that simplifies notation.
- real function vdifft (t, p, moles, tr, vr, tcm, pcm, b, c, d, e, simporref)

Calculate the derivative of the volume, with respect to temperature, For fixed pressire and composition. Help function that simplifies notation.

real function pdifft (t, p, moles, tr, vr, tcm, pcm, simporref)

Pressure P = P(T, V, n) Derivatives of P with respect to temperature, volume and composition are used when finding several of the derivatives of the thermodynamic properties of interest. The functions for these derivatives follow.

• real function pdiffv (moles, tr, vr, tcm, pcm, b, c, d, e, simporref)

Calculate the derivative of the pressure, with respect to volume, for fixed temperature and composition.

- real function pdiffni (nc, comp, cbeos, moles, tr, vr, tcm, vcm, pcm, zcm, wm, b, c, d, e, nmoles, i, simporref) Calculate the derivative of the pressure, with respect to composition, for fixed temperature and volume.
- subroutine vrinitial (pr. tr. usedphase, simporref, vrinit, vrmin, vrmax)

The following subroutine is a routine that helps solving the non-linear equation of state (i.e. finding the reduced volume) by calculationg an appropriate initial value to be used in the numerical method. A bound for the allowed value of the reduced specific volume is also found.

subroutine zprtshape (t, tr, b, c, d, e, simporref)

Optional subroutines and functions. These arenot called upon automatically, hence the thermProps routine should be modified to call upon them, if this output is desired.

- subroutine fvshape (t, p, tr, pr, b, c, d, e, simporref)
- real function prsolver (tr, vr, b, c, d, e, simporref)

Calculate the reduced pressure, Pr, by directly solving the Lee Keslers equation of state, given reduced temperature, reduced volume and composition.

· subroutine znewtraps (tr, pr, phase, simporref, vr, zinit, zmax, zmin)

Calculate the reduced volume, vr, by use of the Newton-Rapson numerical method to solve Lee Keslers equation of state, given reduced temperature, reduced pressure and composition. The half step method is used to secure that vr is inside its limit. Calls upon functions fz, fzDiff and fzDiff2 acting as the function f, derivative of f and second derivative in the numerical method.

subroutine zinitial (tr, pr, phase, simporref, z, zmin, zmax, solved, hasphase)

Find phase minima/maxima of the Lee Keslers equation of state. If f(z) = 0 have a solution an interval for the solution is returned. If the search don't cross f(z) = 0, the minima/maxima is returned. Calls upon functions fz, fzDiff and fzDiff2 acting as the function f, derivative of f and second derivative in the numerical method.

real function fz (pr, tr, z, b, c, d, e, simporref)

Calculate the function f to be used in the numerical method to find compressibility, given reduced pressure, reduced temperature, coefficients B - E and an increasingly more correct compressibility, for each call.

- real function fzdiff (pr, tr, z, b, c, d, e, simporref)
 - Calculate the derivative of function f to be used in the numerical method to find compressibillity.
- real function fzdiff2 (pr, tr, z, b, c, d, e, simporref)

Calculate the second derivative of function f to be used in the numerical method to find compressibility.

• subroutine fzwithdiff (pr, tr, z, b, c, d, e, simporref, fz, fzd, fzd2)

Calculate the function f to be used in the numerical method to find compressibility. Differentials is also calculated, see fz, fzDiff and fzDiff2 for details.

• subroutine, public testdiffleekesler (nc, comp, cbeos, tin, pin, z, phase)

Test differentials of the Lee Kesler eos. Takes temperature, pressure, composition and phase as input, and test compressibility, entropy departure, enthalpy departure and fugacity coefficients differentials.

subroutine calcreducedvolume (tr, pr, phase, vrsimp, vrref)

Calculate the reduced volume, vr, by use of the Newton-Rapson numerical method to solve Lee Keslers equation of state, given reduced temperature, reduced pressure and composition. The half step method is used to secure that vr is inside its limit. Calls upon functions fz, fzDiff and fzDiff2 acting as the function f, derivative of f and second derivative in the numerical method.

subroutine setmaxminz (tr, pr, phase, z, zmax, zmin)

Set limits for compressibillity factor, and initial value based on phase flag.

subroutine fixedtrplot (vrlow, vrhigh, tr, outfile)

Dump data to file for plotting.

real function pred (tr, vr, simporref)

Calculate the reduced pressure given reduzed temperature and reduced volume:

Variables

- real, parameter eta = 0.25
- real, parameter wref = 0.3978
- integer, parameter **rootselection** = 3

1: No phase root analysis 2: Return minima if no root exsist 3: If the Simple/Reference phase don't have a root, but have a minima switch to other phase

- real, parameter vrminimum = 0.05
- real, parameter vrmaximum = 1E10
- real, dimension(2), parameter b1 = (/ 0.1181193, 0.2026579 /)

The constants b1, b2, b3, b4, c1, c2, c3, c4, d1, d2, beta and gamma have two distinct values each. Whether the first or second stored value for the constants are used, is determined by whether the calculations are done for a simple fluid, or a reference fluid. 1=simple fluid, 2=reference fluid.

- real, dimension(2), parameter b2 = (/ 0.265728, 0.331511 /)
- real, dimension(2), parameter **b3** = (/ 0.154790, 0.027655 /)
- real, dimension(2), parameter b4 = (/ 0.030323, 0.203488 /)
- real, dimension(2), parameter c1 = (/ 0.0236744, 0.0313385 /)
- real, dimension(2), parameter c2 = (/ 0.0186984, 0.0503618 /)
- real, dimension(2), parameter c3 = (/ 0.0, 0.016901 /)
- real, dimension(2), parameter c4 = (/ 0.042724, 0.041577/)
- real, dimension(2), parameter d1 = (/ 0.0000155488, 0.000048736 /)
- real, dimension(2), parameter d2 = (/ 0.0000623689, 0.00000740336/)
- real, dimension(2), parameter beta = (/ 0.65392, 1.226 /)
- real, dimension(2), parameter gamma = (/ 0.060167, 0.03754 /)

5.29.1 Detailed Description

This module solves the Lee-Kesler EoS. Contains all partial derivative functions needed to do consistency check.

Author

JA, June - July 2013

5.29.2 Function/Subroutine Documentation

5.29.2.1 calcreducedvolume()

```
subroutine leekesler::calcreducedvolume (
    real, intent(in) tr,
    real, intent(in) pr,
    integer, intent(in) phase,
    real, intent(out) vrsimp,
    real, intent(out) vrref )
```

Calculate the reduced volume, vr, by use of the Newton-Rapson numerical method to solve Lee Keslers equation of state, given reduced temperature, reduced pressure and composition. The half step method is used to secure that vr is inside its limit. Calls upon functions fz, fzDiff and fzDiff2 acting as the function f, derivative of f and second derivative in the numerical method.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \left(1 + \frac{f(x_n)f''(x_n)}{f'(x_n)^2} \right)$$

A Taylor expansion of f is used, and the root giving the smallest change in x is used. To simplify the step, the following series approximation is used,

$$1 - \sqrt{1 - \alpha} = \frac{\alpha}{2} + \frac{\alpha^2}{8} + O(\alpha^3).$$

Author

MH, 2013-09

5.29.2.2 fdiff2ninj()

```
real function leekesler::fdiff2ninj (
            integer, intent(in) nc,
            type (gendata_pointer), dimension(nc) comp,
             class(cb_eos), intent(in) cbeos,
             real, intent(in) tr,
            real, intent(in) vr,
             real, intent(in) tcm,
             real, intent(in) vcm,
             real, intent(in) pcm,
             real, intent(in) zcm,
             real, intent(in) wm,
             real, dimension(nc), intent(in) nmoles,
             real, intent(in) moles,
             integer, intent(in) i,
             integer, intent(in) j,
             real, intent(in) b,
             real, intent(in) c,
             real, intent(in) d,
             real, intent(in) e,
             integer, intent(in) simporref )
```

Calculate the second order derivative of Helmholts reduced recidual function, with respect to composition. Temperature and volume is fixed.

$$F_{ij} = \left(\frac{\partial^2 F}{\partial n_i \partial n_j}\right)_{T,V} = F_{NN} + F_{NX}X_j + F_{NY}Y_j + (F_{NX} + F_{XY}Y_j + F_{XX}X_j)X_i + F_XX_{ij} + (F_{NY} + F_{YY}Y_j + F_{XY}X_j)Y_i + F_YY_{ij}$$

With: $X = T_r Y = v_r N = n$

Author

JA, 2013-06

5.29.2.3 fdiff2tni()

```
real function leekesler::fdiff2tni (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) tr,
    real, intent(in) vcm,
    real, intent(in) vcm,
    real, intent(in) pcm,
    real, intent(in) zcm,
    real, intent(in) wm,
    real, dimension(nc), intent(in) nmoles,
    integer, intent(in) i,
    integer, intent(in) simporref )
```

Help functions to calculate the derivatives of the entropy, enthalpy and logarithm of the fugacity coeficients. Calculate the derivative of Helmholts reduced recidual function, with respect to composition and temperature. Volume is fixed.

$$F_{iT} = \left(\frac{\partial^2 F}{\partial T \partial n_i}\right)_V = F_{NT} + F_{NX}X_T + F_{NY}Y_T + (F_{XT} + F_{XX}X_T + F_{XY}Y_T)X_i + F_XX_{iT} + (F_{YT} + F_{YX}X_T + F_{YY}Y_T)Y_i + F_YY_{iT}$$

Author

JA, 2013-07

5.29.2.4 fdiff2tr()

```
real function leekesler::fdiff2tr (
            real, intent(in) moles,
            real, intent(in) tr,
            real, intent(in) vr,
            integer, intent(in) simporref )
```

Calculate the second order derivative of Helmholts reduced recidual function, with respect to reduced temperature, for given moles, reduced temperature and reduced specific volume. Volume and composition is fixed.

$$\left(\frac{\partial^2 F}{\partial T_r^2}\right)_{v_r,n} = n \left[\frac{B_{TT_r}}{v_r} + \frac{C_{TT_r}}{2v_r^2} + \frac{D_{TT_r}}{5v_r^5} + \frac{E_{TT_r}}{2\gamma}(\beta+1) - E_{TT_r}\exp\left(-\frac{\gamma}{v_r^2}\right)\left(\frac{1}{2\gamma}(\beta+1) + \frac{1}{2v_r^2}\right)\right]$$

Author

JA, 2013-06

5.29.2.5 fdiff2trn()

```
real, intent(in) tr,
real, intent(in) vr,
integer, intent(in) simporref )
```

Calculate the cross derivative of F, with respect to reduced temperature and total number of moles, for fixed reduced volume.

$$F_{nX} = \left(\frac{\partial^2 F}{\partial n \partial T_r}\right)_{v_r} = \frac{1}{n} \left(\frac{\partial F}{\partial T_r}\right)_{v_r,n}$$

Author

JA, 2013-07

5.29.2.6 fdiff2trvr()

```
real function leekesler::fdiff2trvr (
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    integer, intent(in) simporref )
```

Calculate the derivative of Helmholts reduced recidual function, with respect to reduced temperature and reduced specific volume. Composition is fixed.

$$F_{XY} = \left(\frac{\partial^2 F}{\partial T_r \partial v_r}\right)_n = -n \left[\frac{B_{T_r}}{v_r^2} + \frac{C_{T_r}}{v_r^3} + \frac{D_{T_r}}{v_r^6} + \frac{E_{T_r}}{v_r^3} \left(\beta + \frac{\gamma}{v_r^2}\right) \exp\left(-\frac{\gamma}{v_r^2}\right)\right]$$

Author

JA, 2013-07

5.29.2.7 fdiff2vni()

```
real function leekesler::fdiff2vni (
            integer, intent(in) nc,
             type (gendata_pointer), dimension(nc) comp,
             class(cb_eos), intent(in) cbeos,
             real, intent(in) moles,
             real, intent(in) tr,
             real, intent(in) vr,
             real, intent(in) tcm,
             real, intent(in) vcm,
             real, intent(in) pcm,
             real, intent(in) zcm,
             real, intent(in) wm,
             real, dimension(nc), intent(in) nmoles,
             real, intent(in) b,
             real, intent(in) c,
             real, intent(in) d,
             real, intent(in) e,
             integer, intent(in) i,
             integer, intent(in) simporref )
```

Calculate the derivative of Helmholts reduced recidual function, with respect to composition and volume. Temperature is fixed.

$$F_{iV} = \left(\frac{\partial^2 F}{\partial V \partial n_i}\right)_T = F_{NV} + F_{NX}X_V + F_{NY}Y_V$$

$$+ (F_{XV} + F_{XX}X_V + F_{XY}Y_V)X_i + F_XX_{iV}$$
$$+ (F_{YV} + F_{YX}X_V + F_{YY}Y_V)Y_i + F_YY_{iV}$$

JA, 2013-07

5.29.2.8 fdiff2vr()

```
real function leekesler::fdiff2vr (
    real, intent(in) moles,
    real, intent(in) vr,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the second order derivative of Helmholts reduced recidual function, with respect to reduced volume, for given moles, reduced temperature and reduced specific volume. Temperature and compotition is fixed.

$$\left(\frac{\partial^2 F}{\partial v_r^2}\right)_{T_r,n} = n \left[\frac{2B}{v_r^3} + \frac{3C}{v_r^4} + \frac{6D}{v_r^7} + \frac{E}{v_r^4} \left(3\beta + \frac{\gamma(5-2\beta)}{v_r^2} - \frac{2\gamma^2}{v_r^4}\right) \exp\left(-\frac{\gamma}{v_r^2}\right)\right]$$

Author

JA, 2013-06

5.29.2.9 fdiff2vrn()

```
real function leekesler::fdiff2vrn (
    real, intent(in) moles,
    real, intent(in) vr,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the cross derivative of F, with respect to reduced volume and total number of moles, for fixed reduced temperature.

$$F_{NY} = \left(\frac{\partial^2 F}{\partial n \partial v_r}\right)_{T_r} = \left(\frac{\partial}{\partial n} \left(\frac{\partial F}{\partial v_r}\right)_{T_r,n}\right)_{T_r,v_r} = \frac{1}{n} \left(\frac{\partial F}{\partial v_r}\right)_{T_r,n}$$

Author

JA, 2013-07

5.29.2.10 fdiff3vr()

```
real function leekesler::fdiff3vr (
```

```
real, intent(in) moles,
real, intent(in) vr,
real, intent(in) b,
real, intent(in) c,
real, intent(in) d,
real, intent(in) e,
integer, intent(in) simporref)
```

Calculate the third order derivative of Helmholtz reduced recidual function, with respect to reduced volume, for given moles, reduced temperature and reduced specific volume. Temperature and compotsition is fixed.

$$\begin{split} \left(\frac{\partial^3 F}{\partial v_r^3}\right)_{T_r,n} &= n \left[-\frac{6B}{v_r^4} - \frac{12C}{v_r^5} - \frac{42D}{v_r^8} \right. \\ &\left. - \frac{E}{v_r^5} \left(12\beta + \frac{(30 - 18\beta)\gamma}{v_r^2} + \frac{(4\beta - 26)\gamma^2}{v_r^4} + \frac{4\gamma^3}{v_r^6} \right) \exp\left(-\frac{\gamma}{v_r^2}\right) \right] \end{split}$$

Author

MH, 2013-09

5.29.2.11 fdiffn()

```
real function leekesler::fdiffn (
    real, intent(in) moles,
    real, intent(in) vr,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Help functions to calculate the first and second order derivatives of F with respect to composition.

Calculate the derivative of Helmholts reduced recidual function, with respect to total number of moles, for given moles, reduced temperature and reduced specific volume. Reduced temperature and reduced volume are fixed in this derivative.

$$F_N = \left(\frac{\partial F}{\partial n}\right)_{T_r, v_r} = \frac{F}{n}$$

Author

JA, 2013-06

5.29.2.12 fdiffni()

```
real, intent(in) zcm,
real, intent(in) wm,
real, dimension(nc), intent(in) nmoles,
real, intent(in) moles,
integer, intent(in) i,
real, intent(in) b,
real, intent(in) c,
real, intent(in) d,
real, intent(in) e,
integer, intent(in) simporref )
```

Calculate the first order derivative of Helmholts reduced recidual function, with respect to composition, n(i), for given copmosition, reduced temperature and reduced specific volume. Temperature and volume is fixed.

$$F_i = \left(\frac{\partial F}{\partial n_i}\right)_{T,V} = F_N + F_X X_i + F_Y Y_i$$

Author

JA, 2013-06

5.29.2.13 fdifftr()

```
real function leekesler::fdifftr (
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    integer, intent(in) simporref )
```

In the following, functions that give the partial derivatives of F with respect to reduced temperature, reduced specific volume and composition are given.

Calculate the first order derivative of Helmholts reduced recidual function, with respect to reduced temperature, for given moles, reduced temperature and reduced specific volume. Volume and compotition is fixed.

$$\begin{pmatrix} \frac{\partial F}{\partial T_r} \end{pmatrix}_{v_r,n} = n \left[\frac{B_{T_r}}{v_r} + \frac{C_{T_r}}{2v_r^2} + \frac{D_{T_r}}{5v_r^5} + \frac{E_{T_r}}{2\gamma} (\beta + 1) - E_{T_r} \exp\left(-\frac{\gamma}{v_r^2}\right) \left(\frac{1}{2\gamma} (\beta + 1) + \frac{1}{2v_r^2}\right) \right]$$

Author

JA, 2013-06

5.29.2.14 fdiffvr()

```
real function leekesler::fdiffvr (
    real, intent(in) moles,
    real, intent(in) vr,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the first order derivative of Helmholts reduced recidual function, with respect to reduced volume, for given moles, reduced temperature and reduced specific volume. Temperature and composition is fixed.

$$\left(\frac{\partial F}{\partial v_r}\right)_{T_r,n} = n \left[-\frac{B}{v_r^2} - \frac{C}{v_r^3} - \frac{D}{v_r^6} - \frac{E}{v_r^3} \left(\beta + \frac{\gamma}{v_r^2}\right) \exp\left(-\frac{\gamma}{v_r^2}\right) \right]$$

165

JA, 2013-06

5.29.2.15 fixedtrplot()

```
subroutine leekesler::fixedtrplot (
                real, intent(in) vrlow,
                real, intent(in) vrhigh,
                real, intent(in) tr,
                character(len=*), intent(in), optional outfile )
Dump data to file for plotting.
```

Author

MH, 2013-09

5.29.2.16 fsolver()

```
real function leekesler::fsolver (
    real, intent(in) moles,
    real, intent(in) vr,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the reduced recidual Helmholtz function F, given number of moles, reduced volume and coefficients B - E. This is the main function to be used to find the desired thermodynamic properties.

$$F(T, V, \mathbf{n}) = n \left[\frac{B}{v_r} + \frac{C}{2v_r^2} + \frac{D}{5v_r^5} + \frac{E}{2\gamma}(\beta + 1) - E \exp\left(-\frac{\gamma}{v_r^2}\right) \left(\frac{1}{2\gamma}(\beta + 1) + \frac{1}{2v_r^2}\right) \right]$$

Author

JA, 2013-07

5.29.2.17 fv()

```
real function leekesler::fv (
    real, intent(in) pr,
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the function f to be used in the numerical method to find reduced volume, given reduced pressure, reduced temperature, coefficients B - E and an increasingly more correct reduced volume, for each call.

$$f = v_r - \frac{T_r}{P_r} \left[1 + \frac{B}{v_r} + \frac{C}{v_r^2} + \frac{D}{v_r^5} + \frac{E}{v_r^2} \left(\beta + \frac{\gamma}{v_r^2} \right) \exp\left(-\frac{\gamma}{v_r^2}\right) \right] = 0$$

Author

JA, 2013-06

5.29.2.18 fvdiff()

```
real function leekesler::fvdiff (
```

```
real, intent(in) pr,
real, intent(in) tr,
real, intent(in) vr,
real, intent(in) b,
real, intent(in) c,
real, intent(in) d,
real, intent(in) e,
integer, intent(in) simporref)
```

Calculate the derivative of function f to be used in the numerical method to find reduced specific volume.

$$\left(\frac{\partial f}{\partial v_r}\right)_{T_r,P_r,\mathbf{n}} = 1 + \frac{Pr}{Tr} \left[\frac{B}{v_r} + \frac{2C}{v_r^3} + \frac{5D}{v_r^6} - \frac{E}{v_r^3} \left(-2\beta + \frac{\gamma(\beta-4)}{v_r^2} + \frac{2\gamma^2}{v_r^4}\right) \exp\left(-\frac{\gamma}{v_r^2}\right)\right]$$

Author

JA, 2013-06

5.29.2.19 fz()

```
real function leekesler::fz (
    real, intent(in) pr,
    real, intent(in) tr,
    real, intent(in) z,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the function f to be used in the numerical method to find compressibility, given reduced pressure, reduced temperature, coefficients B - E and an increasingly more correct compressibility, for each call.

$$f = \frac{v_r P_r}{T_r} - \left[1 - \frac{v_r}{n} \left(\frac{\partial F}{\partial v_r}\right)_{T_r,n}\right] = 0$$

Author

MH, 2013-09

5.29.2.20 fzdiff()

```
real function leekesler::fzdiff (
    real, intent(in) pr,
    real, intent(in) tr,
    real, intent(in) z,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the derivative of function f to be used in the numerical method to find compressibillity.

$$\left(\frac{\partial f}{\partial z}\right)_{T_r,P_r,\mathbf{n}} = 1 + \frac{Tr}{Prn} \left[\left(\frac{\partial F}{\partial v_r}\right)_{T_r,n} + v_r \left(\frac{\partial^2 F}{\partial v_r^2}\right)_{T_r,n} \right]$$

MH, 2013-09

5.29.2.21 fzdiff2()

```
real function leekesler::fzdiff2 (
    real, intent(in) pr,
    real, intent(in) tr,
    real, intent(in) z,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the second derivative of function f to be used in the numerical method to find compressibility.

$$\left(\frac{\partial^2 f}{\partial z^2}\right)_{T_r,P_r,\mathbf{n}} = \frac{Tr^2}{Pr^2n} \left[2\left(\frac{\partial^2 F}{\partial v_r^2}\right)_{T_r,n} + v_r \left(\frac{\partial^3 F}{\partial v_r^3}\right)_{T_r,n} \right]$$

Author

MH, 2013-09

5.29.2.22 fzwithdiff()

```
subroutine leekesler::fzwithdiff (
    real, intent(in) pr,
    real, intent(in) tr,
    real, intent(in) z,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) fz,
    real, intent(out) fz,
    real, intent(out) fzd,
    real, intent(out) fzd2 )
```

Calculate the function f to be used in the numerical method to find compressibillity. Differentials is also calculated, see fz, fzDiff and fzDiff2 for details.

Author

MH, 2013-09

5.29.2.23 hdiffni()

```
real, intent(in) pcm,
real, intent(in) zcm,
real, intent(in) wm,
real, intent(in) b,
real, intent(in) c,
real, intent(in) d,
real, intent(in) e,
real, dimension(nc), intent(in) nmoles,
integer, intent(in) i,
integer, intent(in) simporref )
```

Calculate the derivative of enthalpy, with respect to composition, for fixed temperature and pressure.

$$\left(\frac{\partial H^R}{\partial n_i}\right)_{T,P} = \bar{V}_i T \left(\frac{\partial P}{\partial T}\right)_{V,\mathbf{n}} - RT^2 \left(\frac{\partial^2 F}{\partial T \partial n_i}\right)_V - RT$$

Author

JA, 2013-07

5.29.2.24 hdiffp()

```
real function leekesler::hdiffp (
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) tcm,
    real, intent(in) pcm,
    real, intent(in) b,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the derivative of enthalpy, with respect to pressure, for fixed temperature and composition.

ъ.

$$\left(\frac{\partial H^R}{\partial P}\right)_{T,\mathbf{n}} = V - T\bar{V}_T$$

Author

JA, 2013-07

5.29.2.25 hdifft()

```
real function leekesler::hdifft (
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) tcm,
    real, intent(in) pcm,
    real, intent(in) b,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

The derivatives of the enthalpy, with respect to temperature, pressure and composition follow. Calculate the derivative of enthalpy, with respect to temperature, for fixed pressure and composition.

$$\left(\frac{\partial H^R}{\partial T}\right)_{P,\mathbf{n}} = \bar{V}_T T \left(\frac{\partial P}{\partial T}\right)_{V,\mathbf{n}} - RT \left[2 \left(\frac{\partial F}{\partial T}\right)_{V,\mathbf{n}} + T \left(\frac{\partial^2 F}{\partial T^2}\right)_{V,\mathbf{n}} + \frac{n}{T}\right]$$

Author

JA, 2013-07

5.29.2.26 lkcalcenthalpy()

```
subroutine, public leekesler::lkcalcenthalpy (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) enthalpy,
    real, intent(out), optional dhdt,
    real, intent(out), optional dhdp,
    real, dimension(nc), intent(out), optional dhdz )
This function calculates the residual enthalpy and the derivatives.
```

Author

Morten H.

Parameters

in	t	Temperature [K]
in	р	Pressure [Pa]
in	Ζ	The overall mole fraction [-]
in	phase	Phase, 1=liquid, 2=vapour
out	enthalpy	The residual enthalpy [J/mol]
out	dhdt	Temperature derivative [J/mol/K]
out	dhdp	Pressure derivative [J/mol/Pa]
out	dhdz	Composition derivative [J/mol]

5.29.2.27 lkcalcentropy()

```
subroutine, public leekesler::lkcalcentropy (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) entropy,
    real, intent(out), optional dsdt,
    real, intent(out), optional dsdp,
    real, dimension(nc), intent(out), optional dsdz )
```

This function calculates the residual entropy and the derivatives.

Author

Morten H.

Parameters

in	t	Temperature [K]
in	р	Pressure [Pa]
in	Ζ	The overall mole fraction [-]
in	phase	Phase, 1=liquid, 2=vapour
out	entropy	The residual entropy [J/mol/K]
out	dsdt	Temperature derivative [J/mol/K [^] 2]
out	dsdp	Pressure derivative [J/mol/K/Pa]
out	dsdz	Composition derivative [J/mol/K]

5.29.2.28 lkcalcfug()

```
subroutine, public leekesler::lkcalcfug (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    real, dimension(nc), intent(out) lnfug,
    real, dimension(nc), intent(out), optional dlnfdt,
    real, dimension(nc), intent(out), optional dlnfdz,
    real, dimension(nc,nc), intent(out), optional dlnfdz,
    real, intent(out), optional dlnfdz,
```

This function calculates the Fugacity coefficient and the derivatives.

Author

Morten H.

Parameters

in	t	Temperature [K]
in	р	Pressure [Pa]
in	Ζ	The overall mole fraction [-]
in	phase	Phase, 1=liquid, 2=vapour
out	Infug	The fugacity coefficients [-]
out	dlnfdt	Temperature derivative [1/K] (dln(f)/dT)
out	dInfdp	Pressure derivative [1/Pa] (dln(f)/dP)
out	dlnfdz	Composition derivative [1/kmole] (dln(f)/dNi)
out	V	Specific volume [mol/m3]

5.29.2.29 lkcalcgdep()

subroutine, public leekesler::lkcalcgdep (

```
integer, intent(in) nc,
type (gendata_pointer), dimension(nc) comp,
class(cb_eos), intent(in) cbeos,
real, intent(in) t,
real, intent(in) p,
real, dimension(nc), intent(in) nmoles,
integer, intent(in) phase,
real, intent(out) g,
real, intent(out), optional dgdt,
real, intent(out), optional dgdp )
```

This function calculates reduced departre Gibbs energy.

Author

Morten H.

Parameters

in	t	Temperature [K]
in	p	Pressure [Pa]
in	nmoles	Number of moles per component [mol]
in	phase	Phase integer
out	g	The departure gibbs energy [J/mol]

5.29.2.30 lkcalczfac()

```
subroutine, public leekesler::lkcalczfac (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) zfac,
    real, intent(out), optional dzdt,
    real, intent(out), optional dzdp,
    real, dimension(nc), intent(out), optional dzdz )
```

This function calculates the compressibillity factor and the derivatives.

Author

Morten H.

Parameters

in	t	Temperature [K]
in	р	Pressure [Pa]
in	Ζ	The overall mole fraction [-]
in	phase	Phase, 1=liquid, 2=vapour
out	zfac	The compressibilltiy factor [-]
out	dzdt	Temperature derivative [1/K]
out	dzdp	Pressure derivative [1/Pa]
out	dzdz	Composition derivative [-]

5.29.2.31 Inphidiffnj()

```
real function leekesler::lnphidiffnj (
             integer, intent(in) nc,
             type (gendata_pointer), dimension(nc) comp,
             class(cb_eos), intent(in) cbeos,
             real, intent(in) moles,
             real, intent(in) tr,
             real, intent(in) vr,
             real, intent(in) tcm,
             real, intent(in) vcm,
             real, intent(in) pcm,
             real, intent(in) zcm,
             real, intent(in) wm,
             real, intent(in) b,
             real, intent(in) c,
             real, intent(in) d,
             real, intent(in) e,
             real, dimension(nc), intent(in) nmoles,
             integer, intent(in) i,
             integer, intent(in) j,
             integer, intent(in) simporref )
```

Calculate the derivative of the logarithmic fugacity coefficients, with respect to composition, for fixed temperature and pressure.

$$\left(\frac{\partial \ln \phi_i}{\partial n_i}\right)_{T,P} = \left(\frac{\partial^2 F}{\partial n_j \partial n_i}\right)_{T,P} + \frac{1}{n} + \frac{\left(\frac{\partial P}{\partial V}\right)_{T,\mathbf{n}}}{RT} \bar{V}_j \bar{V}_i$$

Author

JA, 2013-07

5.29.2.32 Inphidiffp()

```
real function leekesler::lnphidiffp (
            integer, intent(in) nc,
            type (gendata_pointer), dimension(nc) comp,
             class(cb_eos), intent(in) cbeos,
             real, intent(in) t,
            real, intent(in) p,
             real, intent(in) moles,
             real, intent(in) tr,
             real, intent(in) vr,
             real, intent(in) tcm,
             real, intent(in) vcm,
             real, intent(in) pcm,
             real, intent(in) zcm,
             real, intent(in) wm,
             real, intent(in) b,
             real, intent(in) c,
             real, intent(in) d,
             real, intent(in) e,
             real, dimension(nc), intent(in) nmoles,
             integer, intent(in) i,
             integer, intent(in) simporref )
```

Calculate the derivative of the logarithmic fugacity coefficients, with respect to pressure, for fixed temperature and composition.

$$\left(\frac{\partial \ln \phi_i}{\partial P}\right)_{T,\mathbf{n}} = \frac{\bar{V}_i}{RT} - \frac{1}{P}$$

JA, 2013-07

5.29.2.33 Inphidifft()

```
real function leekesler::lnphidifft (
            integer, intent(in) nc,
             type (gendata_pointer), dimension(nc) comp,
             class(cb_eos), intent(in) cbeos,
             real, intent(in) t,
             real, intent(in) p,
             real, intent(in) moles,
             real, intent(in) tr,
             real, intent(in) vr,
             real, intent(in) tcm,
             real, intent(in) vcm,
             real, intent(in) pcm,
             real, intent(in) zcm,
             real, intent(in) wm,
             real, intent(in) b,
             real, intent(in) c,
             real, intent(in) d,
             real, intent(in) e,
             real, dimension(nc), intent(in) nmoles,
             integer, intent(in) i,
             integer, intent(in) simporref )
```

The derivatives of the logarithm of the fugacity coefficient, with respect to temperature, pressure and composition follow.

Calculate the derivative of the logarithmic fugacity coefficients, with respect to temperature, for fixed pressure and composition.

$$\left(\frac{\partial \ln \phi_i}{\partial T}\right)_{P,\mathbf{n}} = \left(\frac{\partial^2 F}{\partial T \partial n_i}\right)_V + \frac{1}{T} - \frac{\bar{V}_i}{RT} \left(\frac{\partial P}{\partial T}\right)_{V,\mathbf{n}}$$

Author

JA, 2013-07

5.29.2.34 Inphim()

```
real function leekesler::lnphim (
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) tr,
    real, intent(in) pr,
    real, intent(in) vr,
    real, intent(in) moles,
    real, intent(in) b,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref,
```

real, intent(out), optional dlnphidt, real, intent(out), optional dlnphidp)

This function calculates reduced departere Gibbs energy, or the mixture fugacity coefficient. That is; equation 21 in chapter 2 of Michelsen book:

$$\frac{G(T, P, \mathbf{n})}{RT} = F(T, V, \mathbf{n}) + n\left(\frac{PV}{RT} - 1 - \ln(z)\right)$$

Author

Morten H.

Parameters

in	t	Temperature [K]
in	р	Pressure [Pa]
in	tr	Reduced temperature [-]
in	pr	Reduced pressure [-]
in	vr	Reduced volume [-]
in	moles	Total number of moles [mol]

Returns

The mixture fugacity coefficients [-]

Parameters

in simporref Simple (1) or reference (2) fluid

5.29.2.35 mainleekesler()

```
subroutine, public leekesler::mainleekesler (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) nmoles,
    integer, intent(in) phase,
    real, intent(out) z,
    real, intent(out) sdep,
    real, intent(out) hdep,
    real, dimension(nc), intent(out) lnphi)
```

Main subroutine of the Lee Kesler eos. Takes temperature, pressure, composition and phase as input, and returns comrpessibility, entropy departure, enthalpy departure and fugacity coefficients. Calls upon routine thermProps to calculate these values for simple fluid (0) and reference fluid (1) seperatly, with reduced values for temperature and pressure calculated by the mixing rules, and combines the results according to the Lee Kesler relation:

$$M = M^{(0)} + \frac{\omega_M}{\omega^{(r)}} (M^{(r)} - M^{(0)})$$

where M is an arbitrary thermodynamic property.

JA, 2013-07

Call routine with parameter 2, calculates for simple fluid. Call routine with parameter 1, calculates for reference fluid.

5.29.2.36 mixrules()

```
subroutine leekesler::mixrules (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(out) tcm,
    real, intent(out) vcm,
    real, intent(out) pcm,
    real, intent(out) zcm,
    real, intent(out) wm,
    real, intent(out) wm,
    real, intent(in) moles,
    real, intent(in) moles )
```

Calculate the critical mixing temperature, volume, pressure, compressibility and acentricity factor, for given composition. Critical temperature and critical volume is used in the calculations, these values are known. Mixing rules:

$$T_{cM} = \frac{1}{v_{cM}^{\eta} n^2} \sum_{j} \sum_{k} n_j n_k \cdot v_{c,jk}^{\eta} \cdot T_{c,jk}$$
$$v_{cM} = \frac{1}{n^2} \sum_{j} \sum_{k} n_j n_k \cdot v_{c,jk}$$
$$\omega_M = \frac{1}{n} \sum_{j} n_j \omega_j$$
$$z_{cM} = (0.2905 - 0.085\omega_M)$$
$$P_{cM} = R \frac{z_{cM} T_{cM}}{v_{cM}}$$

$$T_{c,jk} = (T_{c,j} \cdot T_{c,k})^{1/2} \cdot \kappa_{jk}$$
$$v_{c,jk} = \frac{1}{8} (v_{c,j}^{1/3} + v_{c,k}^{1/3})^3$$

Author

JA, 2013-06

5.29.2.37 pcmdiff2ninj()

```
real function leekesler::pcmdiff2ninj (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) tcm,
    real, intent(in) vcm,
    real, intent(in) pcm,
    real, intent(in) zcm,
    real, intent(in) wm,
```

```
real, dimension(nc), intent(in) nmoles,
real, intent(in) moles,
integer, intent(in) i,
integer, intent(in) j )
```

Calculate the first order derivative of the pseudo critical mixing pressure, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$\begin{split} \left(\frac{\partial^2 P_c M}{\partial n_i \partial n_j}\right) &= \frac{1}{P_{cM}} \left(\frac{\partial P_{cM}}{\partial n_i}\right) \left(\frac{\partial P_{cM}}{\partial n_j}\right) + P_{cM} \left[-\frac{1}{z_{cM}^2} \left(\frac{\partial z_{cM}}{\partial n_i}\right) \left(\frac{\partial z_{cM}}{\partial n_j}\right) \right. \\ &+ \frac{1}{z_{cM}} \left(\frac{\partial^2 z_c M}{\partial n_i \partial n_j}\right) - \frac{1}{T_{cM}^2} \left(\frac{\partial T_{cM}}{\partial n_i}\right) \left(\frac{\partial T_{cM}}{\partial n_j}\right) + \frac{1}{T_{cM}} \left(\frac{\partial^2 T_c M}{\partial n_i \partial n_j}\right) \\ &+ \frac{1}{v_{cM}^2} \left(\frac{\partial v_{cM}}{\partial n_i}\right) \left(\frac{\partial v_{cM}}{\partial n_j}\right) - \frac{1}{v_{cM}} \left(\frac{\partial^2 v_c M}{\partial n_i \partial n_j}\right) \right] \end{split}$$

Author

JA, 2013-06

5.29.2.38 pcmdiffni()

Calculate the first order derivative of the pseudo critical mixing pressure, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$\left(\frac{\partial P_{cM}}{\partial n_i}\right)_{T,V} = P_{cM} \left(\frac{1}{z_{cM}} \left(\frac{\partial z_{cM}}{\partial n_i}\right)_{T,V} + \frac{1}{T_{cM}} \left(\frac{\partial T_{cM}}{\partial n_i}\right)_{T,V} - \frac{1}{v_{cM}} \left(\frac{\partial v_{cM}}{\partial n_i}\right)_{T,V}\right)$$

Author

JA, 2013-06

5.29.2.39 pdiffni()

```
real, intent(in) zcm,
real, intent(in) wm,
real, intent(in) b,
real, intent(in) c,
real, intent(in) d,
real, intent(in) e,
real, dimension(nc), intent(in) nmoles,
integer, intent(in) i,
integer, intent(in) simporref )
```

Calculate the derivative of the pressure, with respect to composition, for fixed temperature and volume.

$$\left(\frac{\partial P}{\partial n_i}\right)_{T,V} = -RT \left(\frac{\partial^2 F}{\partial V \partial n_i}\right)_T + \frac{RT}{V}$$

Author

JA, 2013-06

5.29.2.40 pdifft()

```
real function leekesler::pdifft (
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) tcm,
    real, intent(in) pcm,
    integer, intent(in) simporref )
```

Pressure P = P(T,V,n) Derivatives of P with respect to temperature, volume and composition are used when finding several of the derivatives of the thermodynamic properties of interest. The functions for these derivatives follow. Calculate the derivative of the pressure, with respect to temperature, for fixed volume and composition.

$$\left(\frac{\partial P}{\partial T}\right)_{V,\mathbf{n}} = \frac{P}{T} - RT \left(\frac{\partial^2 F}{\partial T \partial V}\right)_{n_i}$$

Author

JA, 2013-06

5.29.2.41 pdiffv()

```
real function leekesler::pdiffv (
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) tcm,
    real, intent(in) pcm,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the derivative of the pressure, with respect to volume, for fixed temperature and composition.

$$\left(\frac{\partial P}{\partial V}\right)_{T,\mathbf{n}} = -RT \left(\frac{\partial^2 F}{\partial V^2}\right)_{T,\mathbf{n}} - \frac{nRT}{V^2}$$

JA, 2013-06

5.29.2.42 pred()

```
real function leekesler::pred (
    real, intent(in) tr,
    real, intent(in) vr,
    integer, intent(in) simporref )
```

Calculate the reduced pressure given reduzed temperature and reduced volume:

$$Pr = \frac{T_r}{v_r} \left[1 - \frac{v_r}{n} \left(\frac{\partial F}{\partial v_r} \right)_{T_r, n} \right]$$

Author

MH, 2013-09

5.29.2.43 prsolver()

```
real function leekesler::prsolver (
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the reduced pressure, Pr, by directly solving the Lee Keslers equation of state, given reduced temperature, reduced volume and composition.

Author

JA, 2013-07

5.29.2.44 sdiffni()

```
real function leekesler::sdiffni (
            integer, intent(in) nc,
            type (gendata_pointer), dimension(nc) comp,
             class(cb_eos), intent(in) cbeos,
             real, intent(in) t,
             real, intent(in) p,
             real, intent(in) moles,
             real, intent(in) tr,
             real, intent(in) vr,
             real, intent(in) tcm,
             real, intent(in) vcm,
             real, intent(in) pcm,
             real, intent(in) zcm,
            real, intent(in) wm,
             real, intent(in) b,
             real, intent(in) c,
             real, intent(in) d,
             real, intent(in) e,
             real, dimension(nc), intent(in) nmoles,
             integer, intent(in) i,
```

real, intent(in) z,
integer, intent(in) simporref)

Calculate the derivative of entropy, with respect to pressure, for fixed temperature and composition.

$$\left(\frac{\partial S^{R}(T,P,\mathbf{n})}{\partial n_{i}}\right)_{T,P} = \bar{V}_{i} \left(\frac{\partial P}{\partial T}\right)_{V,\mathbf{n}} - R \left[\left(\frac{\partial F}{\partial n_{i}}\right)_{T,V} + T \left(\frac{\partial^{2} F}{\partial T \partial n_{i}}\right)_{V} + 1 - \ln z \right]$$

Author

JA, 2013-06

5.29.2.45 sdiffp()

```
real function leekesler::sdiffp (
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) tcm,
    real, intent(in) pcm,
    real, intent(in) b,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Calculate the derivative of entropy, with respect to pressure, for fixed temperature and composition.

$$\left(\frac{\partial S^R(T, P, \mathbf{n})}{\partial P}\right)_{T, \mathbf{n}} = \frac{nR}{P} - \bar{V}_T$$

Author

JA, 2013-06

5.29.2.46 sdifft()

```
real function leekesler::sdifft (
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) tcm,
    real, intent(in) pcm,
    real, intent(in) b,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

The derivatives of the entropy, with respect to temperature, pressure and composition follow. Calculate the derivative of entropy, with respect to temperature, for fixed pressure and composition.

$$\left(\frac{\partial S^R(T,P,\mathbf{n})}{\partial T}\right)_{P,\mathbf{n}} = \bar{V}_T \left(\frac{\partial P}{\partial T}\right)_{V,\mathbf{n}} - R \left[2\left(\frac{\partial F}{\partial T}\right)_{V,\mathbf{n}} + T\left(\frac{\partial^2 F}{\partial T^2}\right)_{V,\mathbf{n}} + \frac{n}{T}\right]$$

Author

JA, 2013-06

5.29.2.47 setmaxminz()

```
subroutine leekesler::setmaxminz (
    real, intent(in) tr,
    real, intent(in) pr,
    integer, intent(in) phase,
    real, intent(out) z,
    real, intent(out) zmax,
    real, intent(out) zmin )
```

Set limits for compressibillity factor, and initial value based on phase flag.

Author

MH, 2013-09

5.29.2.48 tcmdiff2ninj()

```
real function leekesler::tcmdiff2ninj (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) tcm,
    real, intent(in) vcm,
    real, dimension(nc), intent(in) nmoles,
    real, intent(in) moles,
    integer, intent(in) i,
    integer, intent(in) j)
```

Calculate the second order derivative of critical mixing temperature, with respect to composition, for fixed temperature and volume. Help function to be used in finding the second order derivative of F, with respect to composition.

$$\begin{split} \left(\frac{\partial^2 T_c M}{\partial n_i \partial n_j}\right) &= \frac{2}{n^2} T_{cM} - \frac{2}{n} \left(\frac{\partial T_{cM}}{\partial n_j}\right) - \frac{\eta}{v_{cM}} \left(\frac{\partial v_{cM}}{\partial n_i}\right) \left(\frac{\partial T_{cM}}{\partial n_j}\right) \\ &+ \frac{\eta T_{cM}}{v_{cM}^2} \left(\frac{\partial v_{cM}}{\partial n_i}\right) \left(\frac{\partial v_{cM}}{\partial n_j}\right) - \frac{\eta T_{cM}}{v_{cM}} \left(\frac{\partial^2 v_c M}{\partial n_i \partial n_j}\right) \\ &- \frac{4}{n^3 v_{cM}^\eta} \sum_l n_l v_{c,il}^\eta T_{c,il} - \frac{2\eta}{v_{cM}^{\eta+1} n^2} \left(\frac{\partial v_{cM}}{\partial n_j}\right) \sum_l n_l v_{c,il}^\eta T_{c,il} \\ &+ \frac{2}{v_{cM}^\eta n^2} v_{c,ij}^\eta T_{c,ij} \end{split}$$

Author

JA, 2013-06

5.29.2.49 tcmdiffni()

```
real function leekesler::tcmdiffni (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) tcm,
    real, intent(in) vcm,
    real, dimension(nc), intent(in) nmoles,
    real, intent(in) moles,
    integer, intent(in) i)
```

Calculate the first order derivative of critical mixing temperature, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$\left(\frac{\partial T_{cM}}{\partial n_i}\right)_{T,V} = -\frac{2}{n}T_{cM} - \frac{\eta T_{cM}}{v_{cM}} \left(\frac{\partial v_{cM}}{\partial n_i}\right)_{T,V} + \frac{2}{v_{cM}^{\eta}n^2}\sum_l n_l v_{c,il}^{\eta}T_{c,il}$$

JA, 2013-06

5.29.2.50 testdiffleekesler()

```
subroutine, public leekesler::testdiffleekesler (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) tin,
    real, intent(in) pin,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase )
```

Test differentials of the Lee Kesler eos. Takes temperature, pressure, composition and phase as input, and test compressibility, entropy departure, enthalpy departure and fugacity coefficients differentials.

Author

Morten H, 2013-09

5.29.2.51 thermprops()

```
subroutine leekesler::thermprops (
            integer, intent(in) nc,
             type (gendata_pointer), dimension(nc) comp,
             class(cb_eos), intent(in) cbeos,
             real, intent(in) tr,
             real, intent(in) pr,
             real, intent(in) vr,
             real, dimension(nc), intent(in) nmoles,
             real, intent(in) tcm,
             real, intent(in) vcm,
             real, intent(in) pcm,
             real, intent(in) zcm,
             real, intent(in) wm,
             real, intent(in) moles,
             real, intent(out) z,
             real, intent(out) s,
             real, intent(out) h,
             real, dimension(nc), intent(out) lnphi,
             integer, intent(in) simporref )
```

Subroutine to calculate the thermodynamic properties of either simple fluid or reference fluid. Solutions are compined in main routine.

Thermodynamic properties calculated by:

$$\begin{split} z &= \frac{P_r v_r}{T_r} \\ S^R(T,V,\mathbf{n}) &= -R \left[F + T \left(\frac{\partial F}{\partial T} \right)_{V,\mathbf{n}} \right] \\ H^R(T,P,\mathbf{n}) &= RT \left(\frac{\partial F}{\partial T} \right)_{V,\mathbf{n}} + PV - nRT \\ \ln \phi_i(T,P,\mathbf{n}) &= \left(\frac{\partial F}{\partial n_i} \right)_{T,V} - \ln z \end{split}$$

JA, 2013-07

5.29.2.52 trcoeff()

```
subroutine leekesler::trcoeff (
    real, intent(in) tr,
    real, intent(out) b,
    real, intent(out) c,
    real, intent(out) d,
    real, intent(out) e,
    integer, intent(in) simporref )
```

Calculate the reduced temperature dependent coefficients B,C,D and E, in the expression for Helmholts reduced recidual function F, for given reduced temperature.

$$B(T_r) = b_1 - \frac{b_2}{T_r} - \frac{b_3}{T_r^2} - \frac{b_4}{T_r^3}$$
$$C(T_r) = c_1 - \frac{c_2}{T_r} + \frac{c_3}{T_r^3}$$
$$D(T_r) = d_1 + \frac{d_2}{T_r}$$
$$E(T_r) = \frac{c_4}{T_r^3}$$

Author

JA, 2013-06

5.29.2.53 trcoeffdiff1()

```
subroutine leekesler::trcoeffdiff1 (
    real, intent(in) tr,
    real, intent(out) b_tr,
    real, intent(out) c_tr,
    real, intent(out) d_tr,
    real, intent(out) e_tr,
    integer, intent(in) simporref )
```

Calculate the first order derivatives of the reduced temperature dependent coefficients B,C,D and E, for given reduced temperature.

$$B_{T_r} = \frac{\partial B}{\partial T_r} = \frac{b_2}{T_r^2} + \frac{2b_3}{T_r^3} + \frac{3b_4}{T_r^4}$$
$$C_{T_r} = \frac{\partial C}{\partial T_r} = \frac{c_2}{T_r^2} - \frac{3c_3}{T_r^4}$$
$$D_{T_r} = \frac{\partial D}{\partial T_r} = -\frac{d_2}{T_r^2}$$
$$E_{T_r} = \frac{\partial E}{\partial T_r} = -\frac{3c_4}{T_r^4}$$

JA, 2013-06

5.29.2.54 trcoeffdiff2()

```
subroutine leekesler::trcoeffdiff2 (
    real, intent(in) tr,
    real, intent(out) b_trtr,
    real, intent(out) c_trtr,
    real, intent(out) d_trtr,
    real, intent(out) e_trtr,
    integer, intent(in) simporref )
```

Calculate the second order derivatives of the reduced temperature dependent coefficients B,C,D and E, for given reduced temperature.

$$B_{TT_r} = \frac{\partial^2 B}{\partial^2 T_r} = -\frac{2b_2}{T_r^3} - \frac{6b_3}{T_r^4} - \frac{12b_4}{T_r^5}$$
$$C_{TT_r} = \frac{\partial^2 C}{\partial^2 T_r} = -\frac{2c_2}{T_r^3} + \frac{12c_3}{T_r^5}$$
$$D_{TT_r} = \frac{\partial^2 D}{\partial^2 T_r} = \frac{2d_2}{T_r^3}$$
$$E_{TT_r} = \frac{\partial^2 E}{\partial^2 T_r} = \frac{12c_4}{T_r^5}$$

Author

JA, 2013-06

5.29.2.55 trdiff2ninj()

```
real function leekesler::trdiff2ninj (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) tr,
    real, intent(in) tcm,
    real, intent(in) vcm,
    real, dimension(nc), intent(in) nmoles,
    real, intent(in) moles,
    integer, intent(in) i,
    integer, intent(in) j)
```

Calculate the second order derivative of reduced temperature, with respect to composition, for fixed temperature and volume. Help function to be used in finding the second order derivative of F, with respect to composition.

$$X_{ij} = \left(\frac{\partial^2 T_r}{\partial n_i \partial n_j}\right)_{T,V} = \frac{2T_r}{T_{cM}^2} \left(\frac{\partial T_{cM}}{\partial n_i}\right) \left(\frac{\partial T_{cM}}{\partial n_j}\right) - \frac{T_r}{T_{cM}} \left(\frac{\partial^2 T_c M}{\partial n_i \partial n_j}\right)$$

Author

JA, 2013-06

5.29.2.56 trdiffni()

Calculate the first order derivative of reduced temperature, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$X_{i} = \left(\frac{\partial T_{r}}{\partial n_{i}}\right)_{T,V} = -\frac{T_{r}}{T_{cM}} \left(\frac{\partial T_{cM}}{\partial n_{i}}\right)_{T,V}$$

Author

JA, 2013-06

5.29.2.57 vcmdiff2ninj()

```
real function leekesler::vcmdiff2ninj (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    real, dimension(nc), intent(in) nmoles,
    real, intent(in) moles,
    real, intent(in) vcm,
    integer, intent(in) i,
    integer, intent(in) j)
```

Calculate the second order derivative of critical mixing volume, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$\begin{pmatrix} \frac{\partial^2 v_c M}{\partial n_i \partial n_j} \end{pmatrix} = \frac{2}{n^2} v_{cM} - \frac{2}{n} \left(\frac{\partial v_{cM}}{\partial n_j} \right) - \frac{4}{n^3} \sum_l n_l v_{c,il} + \frac{2}{n^2} v_{c,ij}$$
$$= \frac{2}{n^2} (v_{c,ij} - v_{cM}) - \frac{2}{n} \left[\left(\frac{\partial v_{cM}}{\partial n_i} \right) + \left(\frac{\partial v_{cM}}{\partial n_j} \right) \right]$$

Author

JA, 2013-06

5.29.2.58 vcmdiffni()

Calculate the first order derivative of critical mixing volume, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$\left(\frac{\partial v_{cM}}{\partial n_i}\right)_{T,V} = -\frac{2}{n}v_{cM} + \frac{2}{n^2}\sum_l n_l v_{c,il}$$

Author

JA, 2013-06

5.29.2.59 vdiffni()

```
real function leekesler::vdiffni (
            integer, intent(in) nc,
            type (gendata_pointer), dimension(nc) comp,
             class(cb_eos), intent(in) cbeos,
             real, intent(in) moles,
             real, intent(in) tr,
             real, intent(in) vr,
             real, intent(in) tcm,
             real, intent(in) vcm,
            real, intent(in) pcm,
             real, intent(in) zcm,
             real, intent(in) wm,
             real, intent(in) b,
             real, intent(in) c,
             real, intent(in) d,
             real, intent(in) e,
             real, dimension(nc), intent(in) nmoles,
             integer, intent(in) i,
             integer, intent(in) simporref )
```

Calculate the derivative of the volume, with respect to composition, For fixed temperature and pressure. Help function that simplifies notation.

$$\bar{V}_i \equiv \left(\frac{\partial V}{\partial n_i}\right)_{T,P} = -\frac{\left(\frac{\partial P}{\partial n_i}\right)_{T,V}}{\left(\frac{\partial P}{\partial V}\right)_{T,\mathbf{n}}}$$

/ \

Author

JA, 2013-06

5.29.2.60 vdifft()

```
real function leekesler::vdifft (
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) moles,
    real, intent(in) tr,
```

```
real, intent(in) vr,
real, intent(in) tcm,
real, intent(in) pcm,
real, intent(in) b,
real, intent(in) c,
real, intent(in) d,
real, intent(in) e,
integer, intent(in) simporref)
```

Calculate the derivative of the volume, with respect to temperature, For fixed pressire and composition. Help function that simplifies notation.

$$\bar{V}_T \equiv \left(\frac{\partial V}{\partial T}\right)_{P,\mathbf{n}} = -\frac{\left(\frac{\partial P}{\partial T}\right)_{V,\mathbf{n}}}{\left(\frac{\partial P}{\partial V}\right)_{T,\mathbf{n}}}$$

Author

JA, 2013-06

5.29.2.61 vrdiff2ninj()

```
real function leekesler::vrdiff2ninj (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    class(cb_eos), intent(in) cbeos,
    real, intent(in) vr,
    real, intent(in) tcm,
    real, intent(in) tcm,
    real, intent(in) pcm,
    real, intent(in) pcm,
    real, intent(in) zcm,
    real, intent(in) wm,
    real, intent(in) wm,
    real, intent(in) moles,
    integer, intent(in) i,
    integer, intent(in) j)
```

Calculate the second order derivative of reduced volume, with respect to composition, for fixed temperature and volume. Help function to be used in finding the second order derivative of F, with respect to composition.

$$\begin{split} Y_{ij} &= \left(\frac{\partial^2 v_r}{\partial n_i \partial n_j}\right)_{T,V} = \frac{1}{v_r} \left(\frac{\partial v_r}{\partial n_i}\right)_{T,V} \left(\frac{\partial v_r}{\partial n_j}\right)_{T,V} - \frac{v_r}{P_{cM}^2} \left(\frac{\partial P_{cM}}{\partial n_i}\right) \left(\frac{\partial P_{cM}}{\partial n_j}\right) \\ &+ \frac{v_r}{P_{cM}} \left(\frac{\partial^2 P_c M}{\partial n_i \partial n_j}\right) + \frac{v_r}{T_{cM}^2} \left(\frac{\partial T_{cM}}{\partial n_i}\right) \left(\frac{\partial T_{cM}}{\partial n_j}\right) \\ &- \frac{v_r}{T_{cM}} \left(\frac{\partial^2 T_c M}{\partial n_i \partial n_j}\right) + \frac{v_r}{n^2} \end{split}$$

Author

JA, 2013-06

5.29.2.62 vrdiffni()

```
real, intent(in) vr,
real, intent(in) tcm,
real, intent(in) vcm,
real, intent(in) pcm,
real, intent(in) zcm,
real, intent(in) wm,
real, dimension(nc), intent(in) nmoles,
real, intent(in) moles,
integer, intent(in) i)
```

Calculate the first order derivative of reduced volume, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$Y_i = \left(\frac{\partial v_r}{\partial n_i}\right)_{T,V} = \frac{v_r}{P_{cM}} \left(\frac{\partial P_{cM}}{\partial n_i}\right)_{T,V} - \frac{v_r}{T_{cM}} \left(\frac{\partial T_{cM}}{\partial n_i}\right)_{T,V} - \frac{v_r}{n_i}$$

Author

JA, 2013-06

5.29.2.63 vrinitial()

```
subroutine leekesler::vrinitial (
    real, intent(in) pr,
    real, intent(in) tr,
    integer, intent(in) usedphase,
    integer, intent(in) simporref,
    real, intent(out) vrinit,
    real, intent(out) vrmin,
    real, intent(out) vrmax)
```

The following subroutine is a routine that helps solving the non-linear equation of state (i.e. finding the reduced volume) by calculationg an appropriate initial value to be used in the numerical method. A bound for the allowed value of the reduced specific volume is also found.

Author

Ander, 2007, adapted by JA, 2013-07

5.29.2.64 vrnewtraps()

```
subroutine leekesler::vrnewtraps (
    real, intent(in) tr,
    real, intent(in) pr,
    integer, intent(in) usedphase,
    integer, intent(in) simporref,
    real, intent(out) vr,
    logical, intent(out) correctphase )
```

Calculate the reduced volume, vr, by use of the Newton-Rapson numerical method to solve Lee Keslers equation of state, given reduced temperature, reduced pressure and composition. The half step method is used to secure that vr is inside its limit. Calls upon functions fv and fvDiff, acting as the function f and the derivative of f in the numerical method.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Author

JA, 2013-07

5.29.2.65 wmdiff2ninj()

```
real function leekesler::wmdiff2ninj (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    real, intent(in) moles,
    real, intent(in) wm,
    integer, intent(in) i,
    integer, intent(in) j )
```

Calculate the second order derivative of the pseudo critical acentricity factor, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$\left(\frac{\partial^2 \omega_M}{\partial n_i \partial n_j}\right) = -\frac{1}{n} \left[\left(\frac{\partial \omega_M}{\partial n_i}\right) + \left(\frac{\partial w_M}{\partial n_j}\right) \right]$$

Author

JA, 2013-06

5.29.2.66 wmdiffni()

Calculate the first order derivative of the pseudo critical acentricity factor, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$\left(\frac{\partial \omega_M}{\partial n_i}\right)_{T,V} = \frac{1}{n}(\omega_i - \omega_M)$$

Author

JA, 2013-06

5.29.2.67 zcmdiff2ninj()

```
real function leekesler::zcmdiff2ninj (
    integer, intent(in) nc,
    type (gendata_pointer), dimension(nc) comp,
    real, intent(in) moles,
    real, intent(in) wm,
    integer, intent(in) i,
    integer, intent(in) j)
```

Calculate the second order derivative of the pseudo critical mixing compressibility, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$\left(\frac{\partial^2 z_c M}{\partial n_i \partial n_j}\right) = -0.085 \left(\frac{\partial^2 \omega_M}{\partial n_i \partial n_j}\right)$$

Author

JA, 2013-06

5.29.2.68 zcmdiffni()

Calculate the first order derivative of the pseudo critical mixing compressibility, with respect to composition, for fixed temperature and volume. Help function to be used in finding the derivative of F, with respect to composition.

$$\left(\frac{\partial z_{cM}}{\partial n_i}\right)_{T,V} = -0.085 \left(\frac{\partial \omega_M}{\partial n_i}\right)_{T,V}$$

Author

JA, 2013-06

5.29.2.69 zdiffni()

```
real function leekesler::zdiffni (
             integer, intent(in) nc,
             type (gendata_pointer), dimension(nc) comp,
             class(cb_eos), intent(in) cbeos,
             real, intent(in) z,
             real, intent(in) moles,
             real, intent(in) tr,
             real, intent(in) vr,
             real, intent(in) tcm,
             real, intent(in) vcm,
             real, intent(in) pcm,
             real, intent(in) zcm,
             real, intent(in) wm,
             real, intent(in) b,
             real, intent(in) c,
             real, intent(in) d,
             real, intent(in) e,
             real, dimension(nc), intent(in) nmoles,
             integer, intent(in) i,
             integer, intent(in) simporref )
```

Calculate the derivative of the compressibility, with respect to composition, for fixed temperature and pressure.

$$\left(\frac{\partial z}{\partial n_i}\right)_{T,P} = -z \left[\frac{1}{n} - \frac{V_i}{V}\right]$$

Author

JA, 2013-06

5.29.2.70 zdiffp()

```
real function leekesler::zdiffp (
    real, intent(in) z,
    real, intent(in) p,
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) tcm,
```
```
real, intent(in) pcm,
real, intent(in) b,
real, intent(in) c,
real, intent(in) d,
real, intent(in) e,
integer, intent(in) simporref )
```

Calculate the derivative of the compressibility, with respect to pressure, for fixed temperature and composition.

$$\left(\frac{\partial z}{\partial P}\right)_{T,\mathbf{n}} = z \left[\frac{1}{P} + \frac{1}{V\left(\frac{\partial P}{\partial V}\right)_{T,\mathbf{n}}}\right]$$

Author

JA, 2013-06

5.29.2.71 zdifft()

```
real function leekesler::zdifft (
    real, intent(in) z,
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) moles,
    real, intent(in) tr,
    real, intent(in) vr,
    real, intent(in) tcm,
    real, intent(in) pcm,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

The derivatives of the compressibility, with respect to temperature, pressure and composition follow. Calculate the derivative of the compressibility, with respect to temperature, for fixed pressure and composition.

$$\left(\frac{\partial z}{\partial T}\right)_{P,\mathbf{n}} = -z \left[\frac{1}{T} - \frac{\bar{V}_T}{V}\right]$$

Author

JA, 2013-06

5.29.2.72 zinitial()

```
subroutine leekesler::zinitial (
    real, intent(in) tr,
    real, intent(in) pr,
    integer, intent(in) phase,
    integer, intent(in) simporref,
    real, intent(out) z,
    real, intent(out) zmin,
    real, intent(out) zmax,
    logical, intent(out) solved,
    logical, intent(out) hasphase )
```

Find phase minima/maxima of the Lee Keslers equation of state. If f(z) = 0 have a solution an interval for the solution is returned. If the search don't cross f(z) = 0, the minima/maxima is returned. Calls upon functions fz, fzDiff and fzDiff2 acting as the function f, derivative of f and second derivative in the numerical method.

$$z_{n+1} = z_n - \frac{f'(z_n)}{f''(x_n)}$$

Author

MH, 2013-09

5.29.2.73 znewtraps()

```
subroutine leekesler::znewtraps (
    real, intent(in) tr,
    real, intent(in) pr,
    integer, intent(in) phase,
    integer, intent(in) simporref,
    real, intent(out) vr,
    real, intent(in) zinit,
    real, intent(inout) zmax,
    real, intent(inout) zmin )
```

Calculate the reduced volume, vr, by use of the Newton-Rapson numerical method to solve Lee Keslers equation of state, given reduced temperature, reduced pressure and composition. The half step method is used to secure that vr is inside its limit. Calls upon functions fz, fzDiff and fzDiff2 acting as the function f, derivative of f and second derivative in the numerical method.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \left(1 + \frac{f(x_n)f''(x_n)}{2f'(x_n)^2} \right)$$

A Taylor expansion of f is used, and the root giving the smallest change in x is used. To simplify the step, the following series approximation is used,

$$1 - \sqrt{1 - \alpha} = \frac{\alpha}{2} + \frac{\alpha^2}{8} + O(\alpha^3)$$

Author

MH, 2013-09

5.29.2.74 zprtshape()

```
subroutine leekesler::zprtshape (
    real, intent(in) t,
    real, intent(in) tr,
    real, intent(in) b,
    real, intent(in) c,
    real, intent(in) d,
    real, intent(in) e,
    integer, intent(in) simporref )
```

Optional subroutines and functions. These arenot called upon automatically, hence the thermProps routine should be modified to call upon them, if this output is desired.

The two following subroutines are help routines to generate neat output of large amounts of data. Output is used to get an intuitive understanding of the shape of the compressibility z and the function fv (of which the roots are found by the Newton-Rapson method), respectfully.

Author

JA, 2013-07

5.30 linear_numerics Module Reference

This module contains methods for solving systems of linear equations.

Functions/Subroutines

- subroutine, public cg (a, x, b)
 - A simple CG solver, can be used instead of LAPACK's dgesv for solving linear systems.
- subroutine, public **solvelu** (neq, x, a, symmetric, ierr)
- subroutine, public inverse (matrix, inv, n, errorflag)
 - Subroutine to find the inverse of a square matrix Modified after freely available routine written by Ashwith J. Rego.
- subroutine, public null_space (a, n, x_null, ierr) Calculate null space of A using SVD.
- subroutine, public outer_product (a, na, b, nb, ab) *Calculate outer product.*
- subroutine, public solve_lu_hd (a, n, b, ierr)
 Solve a x = b.

5.30.1 Detailed Description

This module contains methods for solving systems of linear equations.

Author

MH, August 2022

5.30.2 Function/Subroutine Documentation

5.30.2.1 cg()

```
subroutine, public linear_numerics::cg (
    real, dimension(:,:), intent(in) a,
    real, dimension(:), intent(inout) x,
    real, dimension(:), intent(in) b )
```

A simple CG solver, can be used instead of LAPACK's dgesv for solving linear systems.

Author

KEGT

5.30.2.2 inverse()

```
subroutine, public linear_numerics::inverse (
    real, dimension(n,n), intent(in) matrix,
    real, dimension(n,n), intent(out) inv,
    integer, intent(in) n,
    integer, intent(out) errorflag )
```

Subroutine to find the inverse of a square matrix Modified after freely available routine written by Ashwith J. Rego. Author

MH, August 2012

5.30.2.3 null_space()

MH, August 2022

Parameters

in,out	а	Symmetric matrix
in	n	Dimension of A
in,out	x_null	Null space of A
out	ierr	Error flag

5.30.2.4 outer_product()

```
subroutine, public linear_numerics::outer_product (
    real, dimension(na), intent(in) a,
    integer, intent(in) na,
    real, dimension(nb), intent(in) b,
    integer, intent(in) nb,
    real, dimension(na,nb), intent(out) ab )
```

Calculate outer product.

Author

MH, August 2022

5.30.2.5 solve_lu_hd()

```
subroutine, public linear_numerics::solve_lu_hd (
    type(hyperdual), dimension(n,n), intent(inout) a,
    integer, intent(in) n,
    type(hyperdual), dimension(n), intent(inout) b,
    integer, intent(out) ierr )
```

Solve a x = b.

Author

MH, January 2023

5.31 mbwr Module Reference

MBWR module.

Data Types

type eosmbwr

MBWR model type for mbwr19 and mbwr32.

• type nijlarray

Functions/Subroutines

- subroutine allocnijl (nijl, len)
- subroutine deallocnijl (nijl)
- subroutine dealloceosmbwr (refeosmbwr)
- subroutine nijlassign (nijl, idx, nn, ii, jj, ll)
- subroutine initializembwrmodel (compid, model, nineteenor32)
- · subroutine readdbparameters (compid, model, nineteenor32)
- subroutine fillijl32 (nijl)
- subroutine fillijl19 (nijl)
- subroutine computezcoeff (model)
- subroutine computehelmcoeff (model)

- subroutine mbwr_coef (ntderivatives, t, rhocoef, model)
- subroutine **makeparam** (parameters, t, model, ntderivatives)
- subroutine **mbwr_pressure** (rho, param, p, dpdrho, d2pdrho2)
- logical function densityrootdoesntexist (redt, phase, rho_old, rho_new, prho_old, prho, dpdrho, iter) Helper function for the search for density root in newton_density.
- subroutine newton_density (fun, param, redt, p, rho_inout, phase_in, rho_releps, p_releps, meta_extrem, prho_init, dpdrho_init)

A Newton solver targeted at solving for density from a function P = P(rho). fun is a function handle computing pressure derivatives, having the form fun(x, param, p, dpdrho, d2pdrho2) where the last three arguments are optional.

real function mbwr_density (t, p, phase_in, param, model, phase_found_out, meta_extrem)

Interface to the density solver. Outputs density [mol/L].

- real function mbwr_density_tplib (t, p, phase, rhocoef, model)
- A reimplementation of the tplib-solver, where SRK is used to find the initial guess.
- real function mb_frt (d, rhocoef, model)
- real function liquiddensitysrkguess (t, p, model)
- logical function extremasearchisdiverging (phase, drho, prho_old, prho, dpdrho, p_in)
 - Helper function for find_extremum.
- subroutine find_extremum (fun, p_in, phase, param, found_extrem, rho_extrem)

Only works as a subroutine for newton_density, as the algorithm assumes that no root exists in the given phase.

- subroutine mbwr_criticalparameters (tc, pc, rc, model)
- real function barenewton (fun, param, p_in, x, x_releps, f_releps)

Variables

- integer, parameter **bplen19** = 6
- integer, parameter belen19 = 2

the number of coefficients of the rho-powers in the polynomial part and exponential part of MBWR-19

- integer, parameter **bplen32** = 9
- integer, parameter **belen32** = 6

the number of coefficients of the rho-powers in the polynomial part and exponential part of MBWR-32

- integer, parameter ipol19 = 13
- integer, parameter iexp19 = 6

the number of fitted parameters in the polynomial part and exponential part of MBWR-19 (not counting gamma)

- integer, parameter ipol32 = 19
- integer, parameter iexp32 = 13

the number of fitted parameters in the polynomial part and exponential part of MBWR-32 (not counting gamma)

- real, parameter pi = 4.e0*ATAN(1.0)
- logical verbose = .false.

5.31.1 Detailed Description

MBWR module.

5.31.2 Function/Subroutine Documentation

5.31.2.1 find_extremum()

```
real, dimension(:), intent(in) param,
logical, intent(out) found_extrem,
real, intent(inout) rho_extrem )
```

Only works as a subroutine for newton_density, as the algorithm assumes that no root exists in the given phase.

Parameters

in	p_in	Pressure [Pa]	
in	phase	Desired phase	
in	param	param The parameters fun depends on	
in,out	rho_extrem	Comes in with the initial value, comes out with metastable density	

5.31.2.2 initializembwrmodel()

```
subroutine mbwr::initializembwrmodel (
    character(len=*), intent(in) compid,
    type(eosmbwr), intent(inout) model,
    integer, intent(in) nineteenor32 )
```

Parameters

in	compid	e.g. C3
in	nineteenor32	19 or 32

5.31.2.3 mbwr_density()

```
real function mbwr::mbwr_density (
    real, intent(in) t,
    real, intent(in) p,
    integer, intent(in) phase_in,
    real, dimension(:), intent(in) param,
    type(eosmbwr), intent(in) model,
    integer, intent(out) phase_found_out,
    logical, intent(in), optional meta_extrem )
```

Interface to the density solver. Outputs density [mol/L].

Parameters

i	n	t	Temperature [K]
i	n	р	Pressure [Pa]

5.31.2.4 newton_density()

```
subroutine mbwr::newton_density (
```

```
external subroutine(real, intent(in) rho, real, dimension(:), intent(in) param,
real, intent(out) p, real, intent(out), optional dpdrho, real, intent(out), optional d2pdrho2)
fun,
```

```
real, dimension(:), intent(in) param,
real, intent(in) redt,
real, intent(in) p,
real, intent(inout) rho_inout,
integer, intent(in) phase_in,
real, intent(in) rho_releps,
real, intent(in) p_releps,
logical, intent(in), optional meta_extrem,
real, intent(in), optional prho_init,
real, intent(in), optional dpdrho_init)
```

A Newton solver targeted at solving for density from a function P = P(rho). fun is a function handle computing pressure derivatives, having the form fun(x, param, p, dpdrho, d2pdrho2) where the last three arguments are optional.

The initial value of rho is the initial guess. It should be an overestimate for liquids, and an underestimate (e.g. 1e-6) for gas. Equals -1 if no solution exists for the given phase. A solution always exists if present(meta_extrem).

Author

Ailo A, November 2014

Parameters

in	param	temperature dependent parameters	
in	redt	reduced temperature	
in	p	pressure	
in	phase_in	the phase in which we desire a density.	
in	rho_releps	relative tolerance for density	
in	p_releps	relative tolerance for pressure	
in	meta_extrem	metastable extremum	
in	prho_init	if one happens to know the value of p when fun is evaluated at rho_inout	
in	dpdrho_init	if one happens to know the value of dpdrho when fun is evaluated at rho_inout	
in,out	rho_inout	the computed density; comes in with the initial guess	

5.32 meosdatadb Module Reference

Automatically generated file meosdatadb.f90 Time stamp: 2023-03-23T14:18:36.228460.

Data Types

type meosdata

Variables

- integer, parameter meos_max_n = 54
- integer, parameter meos_max_n_gauss = 14
- integer, parameter meos_max_n_nona = 3
- integer, parameter meos_id_max_n = 13
- type(meosdata), parameter meos_1 = meosdata(ident = "PXYL", name = "pxylene", default_ref_state = "NBP", bibref = "DOI: 10.1063/1.3703506", mw = 106.165, tc = 616.168, pc = 3531.5, rhoc = 2.↔ 69392, ttr = 286.4, ptr = 0.580, t nbp = 411.470, tr = 616.168, rhor = 2.69392, Rgas = 8.314472, acf = 0.324, t max = 700.0, p max = 200000.0, n poly eos = 7, n exp eos = 5, n gauss eos = 4, n \leftrightarrow nona eos = 0, n assoc eos = 0, n eos = (/ 0.0010786811,-0.103161822,0.0421544125, 1.47865376,-2.4266,-0.46575193, 0.190290995,-1.06376565,-0.209934069, 1.25159879,-0.951328356,-0.0269980032, 1.37103180, -0.494160616, -0.0724317468, -3.69464746, 0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 1.0, 0.83, 0.83, 0.281, 0.932, 1.1, 0.443, 2.62, 2.5, 1.2, 3.0, 0.778, 1.13, 4.5, 2.2, 2.0, 0.0d0, 0.0d0,0d0, 0.0d0, 0.1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -1.179,-1.065,-1.764.-13.675,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta eos = (/ -2.445.-1.↔ 483,-4.971,-413.0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma eos = (/ 1.↔ 267,0.4242,0.864,1.1465,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos =

• type(meosdata), parameter meos_2 = meosdata(ident = "C2", name = "ethane", default_ref_state = "NBP", bibref = "DOI: 10.1063/1.1859286", mw = 30.06904, tc = 305.322, pc = 4872.2, rhoc = 6.856886685, ttr = 90.368, ptr = 0.001142, t_nbp = 184.569, tr = 305.322, rhor = 6.856886685, Rgas = 8.314472, acf = 0.0995, t max = 675.0, p max = 900000.0, n poly eos = 5, n exp ↔ eos = 34, n gauss eos = 5, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.83440745735241,-1.↔ 033127037870838,-0.11751654894130,-0.11160957833067, 0.062181592654406,0.098481795434443,-0.098268582682358, -0.00023977831007049,0.00069885663328821,0.19665987803305e-4, **-0**.⇔ 014586152207928.0.046354100536781.0.0060764622180645. -0.0026447330147828.-0.042931872689904.0.↔ 35362456650354,-0.12477390173714, 0.18425693591517,-0.16192256436754,-0.082770876149064, 0.↔ 050160758096437,0.0093614326336655,-0.00027839186242864, 0.23560274071481e-4,0.0039238329738527,-0.00076488325813618. -0.004994430444073, 0.0018593386407186, -0.00061404353331199,-0.↔ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0 /), t_eos = (/ 0.25,1.0,0.25, 0.75,0.75,2.0, 4.25,0.75,2.25, 3.0,1.0,1.25, 2.75,1.0,2.0, 2.5,5.5,7.0, 0.5,5.5,2.5, 4.0,2.0,10.0, 16.0,18.0,20.0, 14.0,18.↔ $0,12.0,\ 19.0,7.0,15.0,\ 9.0,26.0,28.0,\ 28.0,22.0,13.0,\ 0.0,3.0,3.0,\ 0.0,3.0,0.0d0,\ 0.0d0,0.0d0,0.0d0,\ 0.0d0,0.cd$ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_eos = (/ 1,1,2,2,4,1, 1,2,2,3,6,6, 7,9,10,2,4,4, 5,5,6,8,9,2, 3,3,3,4,4,5, 2,2,2,2,2,3, 3,3,3,3,3,3,3,3,3,3,3,4,4, 4,4,4,2,2,2, 2,2,0,0,0,0, 0,0,0,0,0,0 /), g eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0, 1.0d0,0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0d0,0.0d0 /), eta eos = (/ -15.0,-15.0,-15.0,-20.0,-20.0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔ 0.0d0,0.0d0 /), gamma eos = (/ 1.05,1.05,1.05,1.22,1.16,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0 /), epsilon eos = (/ 1.0,1.0,1.0,1.0,1.0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), = (/ 0.0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 5, c id = (/ 4.003039265,1.117433359,3.467773215, 6.94194464,5.970850948,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,430.23083,1224.3159, 2014.12064,4268.34363,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = -3.0938209725939316, a2_id = 3.2503021100636769)

type(meosdata), parameter meos_3 = meosdata(ident = "CO", name = "co", default_ref_state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 28.0101, tc = 132.86, pc = 3494.0, rhoc = 10.85, ttr = 68.16, ptr = 15.↔ 53, t_nbp = 81.64, tr = 132.86, rhor = 10.85, Rgas = 8.314472, acf = 0.0497, t_max = 500.0, p_max = 100000.0, n poly eos = 6, n exp eos = 6, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = 0(/ 0.90554,-2.4515,0.53149, 0.024173,0.072156,0.00018818, 0.19405,-0.043268,-0.12778, -0.027896,-0.↔ 034154,0.016329, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.125,1.↔ $5, \ 1.375, 0.25, 0.875, \ 0.625, 1.75, 3.625, \ 3.625, 14.5, 12.0, \ 0.0d0, 0.0d0,$ 0.0d0, $0d0, \ 1.0d0, 1.0d0, 1.0d0, \ 0.0d0, 0.0d0$

- type(meosdata), parameter meos 4 = meosdata(ident = "O-H2", name = "orthohyd", default ref state = "IDGAS", bibref = "DOI: 10.1063/1.3160306", mw = 2.01594, tc = 33.22, pc = 1310.65, rhoc = 15.↔ 445, ttr = 14.008, ptr = 7.560, t_nbp = 20.38, tr = 33.22, rhor = 15.445, Rgas = 8.314472, acf = -0.↔ 218, t max = 1000.0, p max = 2000000.0, n poly eos = 7, n exp eos = 2, n gauss eos = 5, n nona↔ eos = 0, n assoc eos = 0, n eos = (/ 0.01,-6.83148,2.11505, 4.38353,0.211292,-1.00939, 0.142086,- $0.876960, 0.804927, -0.710775, 0.0639688, 0.0710858, -0.087654, 0.647088, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0. \leftarrow 0.0000, 0.0000, 0. \leftarrow 0.00000, 0.0000, 0. \leftarrow 0.00000, 0.0000, 0. \leftarrow 0.00000, 0.0000, 0. \leftarrow 0.00000, 0.0000, 0.0000, 0. \leftarrow 0.00000, 0.00000, 0.0000, 0.0000, 0.0000, 0.00000, 0.0000, 0$ 0d0, 0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.7333,1.1372, 0.5136,0.5638,1.6248, 1.8290,2.4040,2.1050, 4.↔ $1,7.658,1.259,\ 7.589,3.9460,0.0d0,\ 0.0d0,0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,0.0d0,0.0d0,\ 0.0d0,0$ $0d0, 0.0d0, \ 0.0d0, 0.0d0, 0.0d0, \ 0.0d0, 0.0d0$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d eos = (/ 4,1,1,1,2,2, 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.↔ $0d0, 0.0d0, \ 0.0d0, 0.0d0,$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -1.169,-0.894,-0.04,-2.072,-1.306,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.4555,-0.4046,-0.0869,-0.4415.-0.5743,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 1.5444,0.↔ 6627,0.763,0.6587,1.4327,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon eos = (/ 0.↔ 6366,0.3876,0.9437,0.3976,0.9626,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp <--0.0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0... 0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 5, c↔ _id = (/ 2.5,2.54151,-2.3661, 1.00365,1.22447,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,856.0,1444.0, 2194.0,6968.0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -5.↔ 6016156823632457, a2 id = 5.1318379867780717)
- type(meosdata), parameter meos 5 = meosdata(ident = "IC5", name = "ipentane", default ref state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 72.14878, tc = 460.35, pc = 3378.0, rhoc = 3.271, ttr = 112.65, ptr = 0.00000008952, t_nbp = 300.98, tr = 460.35, rhor = 3.271, Rgas = 8.314472, acf = 0.2274, t_max = 500.0, p_max = 1000000.0, n_poly_eos = 6, n_exp_eos = 6, n_gauss_eos = 0, n_nona_eos = 0, n_assoc↔ _eos = 0, n_eos = (/ 1.0963,-3.0402,1.0317, -0.15410,0.11535,0.00029809, 0.39571,-0.045881,-0.35804, -0.10107,-0.035484,0.018156, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0... 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.125,1.5, 1.375,0.25,0.875, 0.625,1.75,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0... 0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d

- type(meosdata), parameter meos 6 = meosdata(ident = "NC10", name = "decane", default ref state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 142.28168, tc = 617.7, pc = 2103.0, rhoc = 1.64, ttr = 243.5, ptr = 0.001404, t_nbp = 447.27, tr = 617.7, rhor = 1.64, Rgas = 8.314472, acf = 0.4884, t_max = 675.0, p_max = 800000.0, n_poly_eos = 6, n_exp_eos = 6, n_gauss_eos = 0, n_nona_eos = 0, n_assoc↔ eos = 0, n eos = (/ 1.0461,-2.4807,0.74372, -0.52579,0.15315,0.00032865, 0.84178,0.055424,-0.73555, -0.18507,-0.020775,0.012335, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0... 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.125,1.5, 1.375,0.25,0.875, 0.625,1.75,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0, $0d0, 0.0d0, \ 0.0d0, 0.0d0, 0.0d0, \ 0.0d0, 0.0d0$ 0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0.0d0.0.0d0, 0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), tau exp eos = 0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 5, c id = (/ 19.109,25.685,28.233, 12.417,10.035,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0, 0.0d0 /), t_id = (/ 0.0,1193.0,2140.0, 4763.↔ 0,10862.0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = 13.936202857079877, a2 id = -10.5265173263752523)
- type(meosdata), parameter meos_7 = meosdata(ident = "R21", name = "r21", default ref state = "IIR", bibref = "ISBN: 978-3-662-02610-6", mw = 102.92, tc = 451.48, pc = 5181.20, rhoc = 5.1107656, ttr = 142.8, ptr = 0.00006828, t nbp = 282.01, tr = 451.48, rhor = 5.1107656, Rgas = 8.31451, acf = 0.2061, t_max = 473.0, p_max = 138000.0, n_poly_eos = 16, n_exp_eos = 6, n_gauss_eos = 0, n_nona_eos = 0, n_assoc_↔ eos = 0, n_eos = (/ -44.386484873,9.26505600935,-0.551709104376, 0.504676623431,-0.732431415692,-0.868403860387, 0.146234705555,-0.280576335053,0.864743656093, -2.70767233732,3.30476390706,-0.210878239171, 0.449531449589,0.120779813143,-0.277297953777, 0.0305441291172,44.386484873,- $9.26505600935, \ 0.551709104376, 1.21128809552, 0.167119476587, \ -0.0504876793028, 0.0d0, 0.0d0,$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 3.↔ 0d0,4.0d0,5.0d0, 0.0d0,1.0d0,2.0d0, 3.0d0,4.0d0,0.0d0, 1.0d0,2.0d0,0.0d0, 1.0d0,0.0d0,1.0d0, 1.0d0,3.↔ $0d0, 4.0d0, \ 5.0d0, 3.0d0, 4.0d0, \ 5.0d0, 0.0d0, 0.0d0$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,0.07470252,0.07470252, 0.↔ 07470252, 0.07470252, 0.07470252, 0.07470252, 0.000, 0.0

0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), eta_eos = (/ 0.0d0,0.0d0 /), epsilon_eos = (/ 0.0d0,0.0d0 /), tau_exp_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_assoc_eos = (/ 0.0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), b_ara = (/ 0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0 /), n_1id = 5, n_id = 5, c_id = (/ 2.941811386600052,0.015738255695164235,4. \leftrightarrow 01226227210022e-06, -3.085217165653779e-08,2.125621923119943e-11,0.0d0, 0.0d0,0.0d0,0.0d0, 0. \leftrightarrow 0d0,0.0d0,0.0d0 /), t_id = (/ 0.0,1.0,2.0, 3.0,4.0,0.0d0, 0.0d0,0.

- type(meosdata), parameter meos_8 = meosdata(ident = "ETOH", name = "ethanol", default_ref_state = "NBP", bibref = "DOI: 10.1063/1.4895394", mw = 46.06844, tc = 514.71, pc = 6268.0, rhoc = 5.93, ttr = 159.0, ptr = 0.0000007184, t_nbp = 351.57, tr = 514.71, rhor = 5.93, Rgas = 8.314472, acf = 0.↔ 646, t max = 650.0, p max = 280000.0, n poly eos = 6, n exp eos = 10, n gauss eos = 9, n nona ↔ eos = 0, n assoc eos = 0, n eos = (/ 0.058200796,0.94391227,-0.80941908, 0.55359038,-1.4269032,0.↔ 13448717, 0.42671978,-1.1700261,-0.92405872, 0.34891808,-0.91327720,0.022629481, -0.15513423,0.↔ 21055146,-0.21997690, -0.0065857238,0.75564749,0.10694110, -0.069533844,-0.24947395,0.027177891, -0.0009053953,-0.12310953,-0.08977971, -0.39512601,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 1.0,1.04,2.72, 1.174,1.329,0.195, 2.43,1.274,4.16, 3.3,4.177,2.↔ 5, 0.81,2.02,1.606, 0.86,2.5,3.72, 1.19,3.25,3.0, 2.0,2.0,1.0, 1.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0, 0.0d0, 0.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0,0.0d0 /), eta eos = (/ -1.075,-0.463,-0.876,-1.108,-0.741,-4.032, -2.453,-2.3,-3.143,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -1.207,-0.0895,-0.581,-0.947,-2.356,-27.01, -4.542,-1.287,-3.090,0.0d0,0.↔ 0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 1.194,1.986,1.583,0.756,0.495,1.002, 1.077,1.493,1.542,0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.779,0.805,1.869,0.694,1.312,2.054, 0.441,0.793,0.↔ 313,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp eos = (/ 2,2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0, /), del exp eos = (/ 2,2,2,2,2,2, 2,2,2,0,0,0,0,0 /), b assoc eos = (/ 0.0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.↔ 0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 5, c id = (/ 4.43069,2.14326,5.09206, 6.60138,5.70777,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,420.4,1334.0, 1958.0,4420.0,0.0d0, 0.0d0,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = -3.6443990342909416, a2_id = 5.0708070582887474)
- type(meosdata), parameter meos 9 = meosdata(ident = "KR", name = "krypton", default ref state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 83.798, tc = 209.48, pc = 5525.0, rhoc = 10.85, ttr = 115.775, ptr = 73.53, t_nbp = 119.73, tr = 209.48, rhor = 10.85, Rgas = 8.314472, acf = -0.000894, t_max = 750.0, p_max = 200000.0, n_poly_eos = 6, n_exp_eos = 6, n_gauss_eos = 0, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.83561,-2.3725,0.54567, 0.014361,0.066502,0.0001931, 0.16818,-0.033133,-0.15008, -0.022897,-0.↔ 021454,0.0069397, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0... 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.125,1.↔ 5, 1.375,0.25,0.875, 0.625,1.75,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.-0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... $0d0, \ 1.0d0, 1.0d0, 1.0d0, \ 0.0d0, 0.0d0$ 0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta eos = (/ 0.↔

- type(meosdata), parameter meos_10 = meosdata(ident = "IC4", name = "isobutan", default ref state = "IIR", bibref = "DOI: 10.1063/1.1901687", mw = 58.1222, tc = 407.81, pc = 3629.0, rhoc = 3.879756788, ttr = 113.73, ptr = 0.00002289, t_nbp = 261.401, tr = 407.81, rhor = 3.879756788, Rgas = 8.314472, acf = 0.184, t_max = 575.0, p_max = 200000.0, n_poly_eos = 7, n_exp_eos = 16, n_gauss_eos = 2, n↔ nona eos = 0, n assoc eos = 0, n eos = (/ 2.0686820727966,-3.6400098615204,0.51968754427244, 0.17745845870123,-0.12361807851599,0.045145314010528, 0.03047647996598,0.75508387706302,-0.↔ 85885381015629, 0.036324009830684,-0.01954879945055,-0.004445239290496, 0.004641076366646,-0.071444097992825,-0.080765060030713, 0.15560460945053,0.0020318752160332,-0.10624883571689, 0.039807690546305,0.016371431292386,0.00053212200682628, -0.0078681561156387,-0.0030981191888963,-0.042276036810382, -0.0053001044558079,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.∞ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 0.5,1.0,1.5, 0.0,0.5,0.5, 0.75,2.0,2.5, 2.5,1.5,1.0, 1.5,4.0,7.0, 3.0,7.0,3.↔ 0.0d0, 0.0d0,1.0d0, 1.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -10.0,-10.↔ 0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -150.↔ 0,-200.0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 1.16,1.13,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon eos = (/ 0.85,1.0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp eos = (/ 2,2,0,0,0,0,0,0,0,0,0,0,0,0/), del exp eos = (/ 2,2,0,0,0,0,0,0,0,0,0,0,0,0/), b assoc eos = (/ 0.0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 5, c id = (/ 4.05956619,4.↔ 94641014,4.09475197, 15.6632824,9.73918122,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,387.94064,973.80782, 1772.71103,4228.52424,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0 /), a1_id = -5.9995196315283579, a2_id = 5.0189508361247883)
- type(meosdata), parameter meos_11 = meosdata(ident = "C1", name = "methane", default_ref_state = "NBP", bibref = "DOI: 10.1063/1.555898", mw = 16.0428, tc = 190.564, pc = 4599.2, rhoc = 10.139128, ttr = 90.6941, ptr = 11.696, t_nbp = 111.667, tr = 190.564, rhor = 10.139128, Rgas = 8.31451, acf = 0.01142, t_max = 625.0, p_max = 1000000.0, n_poly_eos = 13, n_exp_eos = 23, n_gauss_eos = 4, n ↔ nona eos = 0, n assoc eos = 0, n eos = (/ 0.04367901028,0.6709236199,-1.765577859, 0.8582330241,-1.206513052,0.512046722, -0.0004000010791,-0.01247842423,0.03100269701, 0.001754748522,-0.↔ 3171921605e-5,-0.224034684e-5, 0.2947056156e-6,0.1830487909,0.1511883679, -0.4289363877,0.↔ 06894002446.-0.01408313996. -0.0306305483.-0.02969906708.-0.01932040831. -0.1105739959.0. 09952548995,0.008548437825, -0.06150555662,-0.04291792423,-0.0181320729, 0.0344590476,-0.↔ 00238591945,-0.01159094939, 0.06641693602,-0.0237154959,-0.03961624905, -0.01387292044,0.↔ 03389489599,-0.002927378753, 0.9324799946e-4,-6.287171518,12.71069467, -6.423953466,0.0d0,0.0d0, $0.0d0, 0.0d0, 0.0d0 /), t_eos = (/ -0.5, 0.5, 1.0, 0.0d0, 0.0d0$ 0.5,1.0,1.5, 4.5,0.0,1.0, 3.0,1.0,3.0, 3.0,0.0,1.0, 2.0,0.0,0.0, 2.0,2.0,5.0, 5.0,5.0,2.0, 4.0,12.0,8.0, 10.0,10.↔ $0,10.0, \ 14.0,12.0,18.0, \ 22.0,18.0,14.0, \ 2.0,0.0,1.0, \ 2.0,0.0d0,0.0d0, \ 0.0d0,0.0d0, \ 0.0d0,0.0d0,0.0d0,0... \leftarrow 0.000,0.000,0.000,0.0d$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d eos = (/ 1,1,1,2,2,2, 2,3,4,4,8,9, 10,1,1,1,2,4, 5,6,1,2,3,4,

- type(meosdata), parameter meos 12 = meosdata(ident = "NC6", name = "hexane", default ref state = "NBP", bibref = "Unpublished. Thol, Lemmon and Span (2019). Fundamental Equations of State for Hy", mw = 86.17536, tc = 507.82, pc = 3044.1, rhoc = 2.706, ttr = 177.83, ptr = 0.001189, t_nbp = 341.866, tr = 507.82, rhor = 2.706, Rgas = 8.3144598, acf = 0.30, t_max = 600.0, p_max = 100000. 0, n poly eos = 5, n exp eos = 5, n gauss eos = 5, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.0446249,1.740621,-2.050688, -0.7724346,0.2116422,-3.187864, -1.134719,0.6817086,-1.111314, -0.↔ $02377251, 3.744662, -0.4322223, -0.8054799, -1.055577, -0.02932639, \ 0.0d0, 0.0d0,$ $0d0,\ 0.0d0, 0$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0 /), t_eos = (/ 1.0,0.303,0.845, 1.055,0.523,1.48, 2.06,1.19,1.883, 0.98,0.94,1.47, 1.11,0.895,1.73, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0... 0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.- $0d0, 0.0d0, \ 0.0d0, 0.0d0,$ $0d0,\ 0.0d0, 0$ 0d0,0.0d0,0.0d0 /), eta eos = (/ -0.864,-1.094,-0.751,-1.062,-6.6,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.7,-0.52,-0.69,-0.88,-180.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0, 0.0d0,0.0d0 /), gamma eos = (/ 1.21,1.13,1.0,0.82,1.14,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon_eos = (/ 0.767,0.707,0.692,0.46,0.92,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0,0 /), b assoc eos = (/ 0.0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 5, c_id = (/ 4.0,9.21,6.04, 25.3,10.96,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,190.0,3000.0, 1500.0,4500.0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = 12.↔ 3137913581698513, a2_id = -1.3163412546284243)
- type(meosdata), parameter meos_13 = meosdata(ident = "N2", name = "nitrogen", default_ref_state = "IDGAS", bibref = "DOI: 10.1063/1.1349047", mw = 28.01348, tc = 126.192, pc = 3395.8, rhoc = 11.1839, ttr = 63.151, ptr = 12.5198, t nbp = 77.3550, tr = 126.192, rhor = 11.1839, Rgas = 8.31451, acf = 0.0372, t max = 2000.0, p max = 2200000.0, n poly eos = 6, n exp eos = 26, n gauss eos = 4, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.924803575275,-0.492448489428,0.661883336938, -1.92902649201,-0.↔ 0622469309629,0.349943957581, 0.564857472498,-1.61720005987,-0.481395031883, 0.421150636384,-0.0161962230825,0.172100994165, 0.00735448924933, 0.0168077305479, -0.00107626664179, -0.← 0137318088513,0.000635466899859,0.00304432279419, -0.0435762336045,-0.0723174889316,0.*←* -0.021220136391,0.00408822981509,-0.551990017984e-4, 0389644315272, -0.0462016716479,-0.*←* 00300311716011,0.0368825891208, -0.0025585684622,0.00896915264558,-0.0044151337035, 0.⇔ 00133722924858,0.000264832491957,19.6688194015, -20.911560073,0.0167788306989,2627.67566274, 0.0d0, 0.0d0,0d0,0.0d0 /), t eos = (/ 0.25,0.875,0.5, 0.875,0.375,0.75, 0.5,0.75,2.0, 1.25,3.5,1.0, 0.5,3.0,0.0, 2.75,0.↔ 75,2.5, 4.0,6.0,6.0, 3.0,3.0,6.0, 16.0,11.0,15.0, 12.0,12.0,7.0, 4.0,16.0,0.0, 1.0,2.0,3.0, 0.0d0,0.0d0,0.0d0,

0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0/), d eos = 0,0,0,0,0,0 /), g_eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0,1 1.0d0, 1.0d0,0d0,1.0d0, 1.0d0,1.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), eta eos = (/ -20.0,-20.0,-15.0,-25.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -325.0,-325.0,-300.0,-275.0,0.0d0,0.↔ 0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 1.16,1.16,1.13,1.25,0.0d0,0.0d0, 0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0, 0.0d0.0.0d0 /), epsilon eos = (/ 1.0,1.0,1.0,1.0,0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau_exp_eos = (/ 2,2,2,2,0,0, 0,0,0,0,0,0,0,0,0 /), del_exp_eos = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 4, n_id = 5, c_id = (/ 3.5,3.066469e-6,4.70124e-9, -3.987984e-13,1.012941,0.↔ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,1.0,2.0, 3.0,3364.011,0.0d0, 0.0d0,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -12.7695270804627707, a2 id = -0.0078416296806012

- type(meosdata), parameter meos_14 = meosdata(ident = "NC12", name = "c12", default_ref_state = "NBP", bibref = "DOI: 10.1021/ef0341062", mw = 170.33484, tc = 658.1, pc = 1817.0, rhoc = 1.33, ttr = 263.6, ptr = 0.0006262, t_nbp = 489.442, tr = 658.1, rhor = 1.33, Rgas = 8.314472, acf = 0.574, t max = 700.↔ 0, p_max = 700000.0, n_poly_eos = 6, n_exp_eos = 6, n_gauss_eos = 0, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 1.38031,-2.85352,0.288897, -0.165993,0.0923993,2.82772e-4, 0.956627,0.0353076,-0.↔ 445008, -0.118911,-0.0366475,0.0184223, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... $0d0, 0.0d0, \ 0.0d0, 0.0d0,$ /), t eos = (/ 0.32,1.23,1.5, 1.4,0.07,0.8, 2.16,1.1,4.1, 5.6,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0 0d0, 0.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), eta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), tau exp eos = 0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0, 0.0d0, 0.0d0 /), big d na = (/ 0.0d0, 0.0d0, 0.0d0 /), n1 id = 1, n id = 5, c id = (/ 23.085, 37.776, 29.369, 10.000, 0.000 /) 12.461,7.7733,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,1280.0,2399.0, 5700.↔ 0,13869.0,0.0d0, 0.0d0,0.0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0 /), a1_id = 20.5642558466316814, a2_id = -15.593070164198167)
- type(meosdata), parameter meos_15 = meosdata(ident = "D2", name = "d2", default_ref_state = "NBP", bibref = "DOI: 10.1063/1.4864752", mw = 4.0282, tc = 38.34, pc = 1679.6, rhoc = 17.23, ttr = 18.724, ptr = 17.189, t_nbp = 23.661, tr = 38.34, rhor = 17.23, Rgas = 8.3144598, acf = -0.136, t_max = 600.0, p_max = 2000000.0, n_poly_eos = 8, n_exp_eos = 6, n_gauss_eos = 7, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.006267958,10.53609,-10.14149, 0.3560610,0.1824472,-1.129638, -0.0549812,-0.6791329,1.347918, -0.8657582,1.719146,-1.917977, 0.1233365,-0.07936891,1.686617, -4.240326,1.857114,-0.5903705, 1.↔ 520171,2.361373,-2.297315, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.

)

1.0d0, 0.0d0, 0.0d0,0d0, 0.0d0, 0.0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -0.868,-0.636,-0.668,-0.650,-0.745,-0.782, -0.693,0.0d0,0.↔ 0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.613,-0.584,-0.570,-1.056,-1.010,-1.025, -1.029,0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.6306,0.7110,0.6446,0.8226,0.9920,1.2184, 1.2030,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 1.460,1.7864,1.647,0.541,0.969,1.↔ 892, 1.076, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), tau exp eos = (/ 2,2,2,2,2,2,2,0,0,0,0,0,0,0,0) /),/), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d↔ na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 13, c id = (/ 2.5,-3.54145,3.0326, -3.52422,-1.73421,-3.↔ 57135, 2.14858,6.23107,-3.30425, 6.23098,-3.57137,3.32901, 0.97782 /), t_id = (/ 0.0,7174.1,8635.0, 902.↔ 7,181.1,438.5, 5034.2,269.9,229.9, 666.4,452.8,192.0, 1187.6 /), a1_id = -2.0677350466039846, a2_id = 2.4237150686246927)

- type(meosdata), parameter meos_16 = meosdata(ident = "SO2", name = "so2", default_ref_state = "NBP", bibref = "DOI: 10.1021/acs.jced.6b00195", mw = 64.0638, tc = 430.64, pc = 7886.6, rhoc = 8.078, ttr = 197.↔ 7, ptr = 1.6661, t nbp = 263.137, tr = 430.64, rhor = 8.078, Rgas = 8.3144598, acf = 0.256, t max = 525.0, p_max = 35000.0, n_poly_eos = 5, n_exp_eos = 5, n_gauss_eos = 6, n_nona_eos = 0, n_assoc_eos = 0, n↔ _eos = (/ 0.01744413,1.814878,-2.246338, -0.4602906,0.1097049,-0.9485769, -0.8751541,0.4228777,-0.↔ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 1.0,0.45,0.9994, 1.0d0,0.45,2.907, 2.992,0.87,3.302, 1.002,1.↔ 15,0.997, 1.36,2.086,0.855, 0.785,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), d eos = (/ 4,1,1,2,3,1, 3,2,2,7,1,1, 1.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -1.061,-0.945,-1.741,-1.139,-1.644,-0.647, 0.0d0,0.0d0,0.↔ 0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_eos = (/ -0.967,-2.538,-2.758,-1.062,-1.039,-0.41, 0.0d0,0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 1.276,0.738,0.71,0.997,1.35,0.919, 0.0d0,0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon_eos = (/ 0.832,0.69,0.35,0.961,0.981,0.333, 0.0d0,0.↔ 0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), tau exp eos = (/ 2,2,2,2,2,2, 0,0,0,0,0,0,0,0,0 /), del exp eos na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 2, n id = 4, c id = (/ 4.0,0.00007397,1.0875, 1.916,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,1.0,783.0, 1864.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 (), a1_id = -4.541423325625578, a2_id = 4.4732288061807504)
- type(meosdata), parameter meos_17 = meosdata(ident = "NC8", name = "octane", default_ref_state = "NBP", bibref = "Unpublished. Beckmueller, Thol, Lemmon and Span (2019). Fundamental Equation of ", mw = 114.229, tc = 568.74, pc = 2483.59, rhoc = 2.031, ttr = 216.37, ptr = 0.0020746, t_nbp = 398.794, tr = 568.74, rhor = 2.031, Rgas = 8.3144598, acf = 0.398, t_max = 730.0, p_max = 1000000.0, n_poly_eos = 5, n_.
 exp_eos = 5, n_gauss_eos = 4, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.042240369, 1.4800888, 2.0975357, -0.72303256, 0.26084383, -1.6713762, -1.3023632, 0.67710461, -1.1644509, -0.030939987, 3...
 1437871, -0.011637891, -0.95649696, -0.36897912, 0.0d0, 0.0d0

0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0/), eta eos = (/ -0.985,-13.6,-1.03,-1.084,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -1.52,-998.0d0,-1.57,-1.44,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma ↔ eos = (/ 1.448,1.08,1.185,1.3,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.989,0.986,0.532,1.16,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp eos 0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 4, c_id = (/ 4.↔ 0,17.47,33.25, 15.63,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,380.0,1724.0, 3881.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = 16.93282505786505, a2_id = -4.06060362648397)

- type(meosdata), parameter meos_18 = meosdata(ident = "R23", name = "r23", default ref state = "IIR", bibref = "DOI: 10.1063/1.1559671", mw = 70.01385, tc = 299.293, pc = 4832.0, rhoc = 7.52, ttr = 118.02, ptr = 0.05804, t_nbp = 191.132, tr = 299.293, rhor = 7.52, Rgas = 8.314472, acf = 0.↔ 263, t max = 475.0, p max = 120000.0, n poly eos = 5, n exp eos = 12, n gauss eos = 0, n \leftrightarrow $0.1863285, \ 0.3280510, 0.5191023, 0.06916144, \ -0.005045875, -0.01744221, -0.05003972, \ 0.04729813, -0. \leftarrow 0.01744221, -0.05003972, \ 0.04729813, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744221, -0.01744224, -0.01744224, -0.01744424, -0.0174444, -0.0174444, -0.0174444, -0.0174444, -0.0174444, -0.0174444, -0.01744, -0.01744, -0.01744, -0.01744, -0.01744,$ 06164031, 0.01583585, -0.00179579, -0.001099007, 0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.744,0.94,4.↔ 3, 1.46,0.68,4.8, 1.5,2.07,0.09, 9.6,0.19,11.2, 0.27,1.6,10.3, 14.0,15.0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.-0.0d0.0.0d0, 0.0d0, 0.0 0,0,0,0,0,0 /), g eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0,1 0d0, 0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0..c→ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.-↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon_eos = (/ 0.0d0,0.0d0,0... na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 5, c_id = (/ 3.999,2.371,3.↔ 237, 2.61,0.8274,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,744.0,1459.0, 2135.↔ 0,4911.0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -8.3138729985195088, a2 id = 6.↔ 5508807867641732)
- type(meosdata), parameter meos_19 = meosdata(ident = "AR", name = "argon", default_ref_state = "IDGAS", bibref = "DOI: 10.1063/1.556037", mw = 39.948, tc = 150.687, pc = 4863.0, rhoc = 13.↔ 40742965, ttr = 83.8058, ptr = 68.891, t nbp = 87.302, tr = 150.687, rhor = 13.40742965, Rgas = 8.31451, acf = -0.00219, t max = 2000.0, p max = 1000000.0, n poly eos = 12, n exp \leftrightarrow eos = 25, n gauss eos = 4, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.08872230499,0.↔ 705148051673,-1.68201156541, -0.149090144315,-0.120248046009,-0.121649787986, 0.400359336268,-0.271360626991,0.242119245796, 0.00578895831856, 0.0410973356153, 0.0247107615416, -0.*←* 321813917507,0.332300176958,0.0310199862873, -0.0307770860024,0.0938911374196,-0.090643210682, -0.000457783492767,-0.826597290252e-4,0.000130134156031, -0.011397840002,-0.0244551699605,-0.064324067176, 0.404898392969,-0. 0.0588894710937,-0.00064933552113,-0.0138898621584, 386125195947,-0.188171423322, 0.159776475965,0.0539855185139,-0.028953417958, -0.0130254133814,0.↔ 00289486967758,-0.00226471343048, 0.00176164561964,0.00585524544828,-0.6925190827, 1.↩ 53154900305,-0.00273804474498,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔

0d0,0.0d0,0.0d0 /), t_eos = (/ 0.0,0.25,1.0, 2.75,4.0,0.0, 0.25,0.75,2.75, 0.0,2.0,0.75, 3.0,3.5,1.0, 2.0,4.0,3.0, 0.0,0.5,1.0, 1.0,7.0,5.0, 6.0,6.0,10.0, 13.0,14.0,11.0, 14.0,8.0,14.0, 6.0,7.0,24.0, 22.0,3.0,1.0, 0.0,0.0,0.↔ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_eos = (/ 1,1,1,1,1,2, $2,2,2,3,3,4, 1,1,3,4,4,5, 7,10,10,2,2,4, 4,8,3,5,5,6, 6,7,7,8,9,5, 6,2,1,2,3,0, 0,0,0,0,0,0, 0,0,0,0,0,0,0, |, l_{\leftarrow}$ 0,0,0,0,0,0 /), g eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0, 1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -250.0,-375.0,-300.0,-225.0,0.0d0,0.↔ 0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 1.11,1.14,1.17,1.11,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon_eos = (/ 1.0,1.0,1.0,1.0,0.0d0,0.0d0,0.0d0,0.-0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau_exp_eos = (/ 2,2,2,2,0,0, 0,0,0,0,0,0,0,0,0 /), del_exp_eos = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 1, c id = (/ 2.5,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0... $0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), t_id = (/ 0.0, 0.0d0, 0.0d0$ 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = -10.2938148004759711, a2_id = -0.0003415237881503)

- type(meosdata), parameter meos 20 = meosdata(ident = "R32", name = "r32", default ref state = "IIR", bibref = "DOI: 10.1063/1.556002", mw = 52.024, tc = 351.255, pc = 5782.0, rhoc = 8.1500846, ttr = 136.34, ptr = 0.0480, t_nbp = 221.499, tr = 351.255, rhor = 8.1500846, Rgas = 8.314471, acf = 0.2769, t_max = 435.0, p_max = 70000.0, n_poly_eos = 8, n_exp_eos = 11, n_gauss_eos = 0, n_nona_eos = 0, n_assoc_↔ eos = 0, n eos = (/ 1.046634,-0.5451165,-0.002448595, -0.04877002,0.03520158,0.00162275, 0.2377225e-4,0.029149,0.003386203, -0.004202444,0.0004782025,-0.005504323, -0.02418396,0.4209034,-0.4616537, $-1.200513, -2.59155, -1.400145, \ 0.8263017, 0.0d0, 0.0d0, \ 0.0d0, 0.$ 0d0, 0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.0,-0.25, -1.0,2.0,2.↔ $0,\ 0.75, 0.25, 18.0,\ 26.0, -1.0, 25.0,\ 1.75, 4.0, 5.0,\ 1.0, 1.5, 1.0,\ 0.5, 0.0d0, 0.0d0,\ 0.0d0, 0.0$ 0d0, 0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d eos = (/ 1,2,5,1,1,3, /), g eos = (/ 1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.↔ 0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,00,00,00,00,00,00,00,00, a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 5, c_id = (/ 4.004486,1.160761,2.645151, 5.794987,1.129475,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,798.0,4185.0, 1806.0,11510.0,0.0d0, 0.0d0,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = -8.2581043885434511, a2_id = 6.3531025573429387) type(meosdata), parameter meos 21 = meosdata(ident = "NC22", name = "c22", default ref state = "NBP",
- bibref = "Unpublished. Romeo and Lemmon (2018).", mw = 310.601, tc = 792.2, pc = 1174.0, rhoc = 0. \leftrightarrow 723, ttr = 317.04, ptr = 0.000003913, t_nbp = 641.298, tr = 792.2, rhor = 0.723, Rgas = 8.3144598, acf = 0.978, t_max = 1000., p_max = 500000., n_poly_eos = 5, n_exp_eos = 5, n_gauss_eos = 5, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.04239455,2.370432,-4.30263, -0.4039603,0.4005704,-2.643419, -0. \leftrightarrow 9199641,0.1394402,-1.448862, -0.0547678,4.579069,-0.3534636, -0.8217892,-0.2604273,-0.7618884, 0. \leftrightarrow 0d0,0.0

0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), d eos = (/ 4,1,1,2,3,1, 3,2,2,7,1,1, 1.0d0, 0.0d0, 0.0d0,0d0, 0.0d0, 0.0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -0.641,-1.008,-1.026,-1.21,-0.93,0.0d0, 0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.516,-0.669,-0.25,-1.33,-2.1,0.0d0, 0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 1.335,1.187,1.39,1.23,0.763,0.0d0, 0.0d0,0.0d0,0.0d0,0.-0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.75,1.616,0.47,1.306,0.46,0.0d0, 0.0d0,0.0d0,0.0d0,0... 0,0,0,0,0,0,0,0,0/), b_assoc_eos = (/ 0.0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0... 0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0, 0.0d0, 0.0d0 /), big c na = (/ 0.0d0, 0.0d0, 0.0d0 /), big d na = (/ 0.0d0, 0.0d0, 0.0d0 /), n1_id = 1, n_id = 3, c_id = (/ 33.9,61.6,77.7, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), t_id = (/ 0.0,1000.0,2400.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = 66.7339510994363536, a2 id = -44.1656208449909968)

- type(meosdata), parameter meos_22 = meosdata(ident = "ALLENE", name = "propadiene", default_ref↔ _state = "NBP", bibref = "Unpublished. Gao, Wu and Lemmon (2017).", mw = 40.06386, tc = 398.0, pc = 5215.6, rhoc = 5.9, ttr = 136.65, ptr = 0.018343, t nbp = 240.874, tr = 398.0, rhor = 5.9, Rgas = 8.↔ 3144598, acf = 0.115, t_max = 400.0, p_max = 10000.0, n_poly_eos = 5, n_exp_eos = 5, n_gauss_eos = 0, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.7231448,-1.790058,-0.06836828, 0.07947672,0.↔ 000040778,0.1760558, 0.1443484,-0.1494723,0.008248376, -0.009386559,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0, $0d0, 0.0d0, \ 0.0d0, 0.0d0, 0.0d0, \ 0.0d0, 0.0d0$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 0.125,1.125,1.25, 0.25,0.75,0.625, 2.0,4.125,4.125, 17.0, 0.0d0, 00d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d eos = (/ 1,1,2,3,8,2, /), g eos = (/ 1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0... $0d0,\ 0.0d0, 0$ 0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔ a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 4, c id = (/ 4.0,2.1260,7.4934, 5.2240,0.0d0,0.0d0, 0.0d0,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,512.0,1442.0, 3896.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = -2.7836228624391168, a2_id = 3.2416044956386374)
- type(meosdata), parameter **meos_23** = meosdata(ident = "R1234YF", name = "r1234yf", default_ref_state = "IIR", bibref = "DOI: 10.1021/je200369m", mw = 114.0415928, tc = 367.85, pc = 3382.2, rhoc = 4. \leftrightarrow 17, ttr = 122.77, ptr = 0.000738, t_nbp = 243.665, tr = 367.85, rhor = 4.17, Rgas = 8.314472, acf = 0. \leftrightarrow 276, t_max = 410.0, p_max = 30000.0, n_poly_eos = 5, n_exp_eos = 5, n_gauss_eos = 5, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.04592563,1.546958,-2.355237, -0.4827835,0.1758022,-1.210006, -0. \leftrightarrow 6177084,0.6805262,-0.6968555, -0.02695779,1.389966,-0.4777136, -0.1975184,-1.147646,0.0003428541, 0.0d0,0.0

- type(meosdata), parameter meos 24 = meosdata(ident = "P-H2", name = "parahyd", default ref state = "NBP", bibref = "DOI: 10.1063/1.3160306", mw = 2.01588, tc = 32.938, pc = 1285.8, rhoc = 15.538, ttr = 13.8033, ptr = 7.041, t_nbp = 20.271, tr = 32.938, rhor = 15.538, Rgas = 8.314472, acf = -0.↔ 219, t max = 1000.0, p_max = 2000000.0, n_poly_eos = 7, n_exp_eos = 2, n_gauss_eos = 5, n_nona⇔ eos = 0, n assoc eos = 0, n eos = (/ 0.01,-7.33375,2.60375, 4.66279,0.682390,-1.47078, 0.135801,-1.05327, 0.328239, -0.0577833, 0.0449743, 0.0703464, -0.0401766, 0.119510, 0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.6855,1.0, 0.489,0.774,1.133, 1.386,1.619,1.162, 3.96,5.276,0.99, 6.791, 3.190, 0.0d0, 0.0d0,0d0, 0.0d0, 0.0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), d eos = (/ 4,1,1,1,2,2,3,1,3,2,1,3, 1,1,0,0,0,0, 0.0d0, 0.0 0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, $0.0d0, 0.0d0, 0.0d0 \ /), \ eta_eos \ = \ (/ \ -1.7437, -0.5516, -0.0634, -2.1341, -1.7770, 0.0d0, \ 0.0d0, 0.0d$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.194,-0.2019,-0.0301,-0.2383,-0.3253,0.0d0, 0.0d0,0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.8048,1.5248,0.6648,0.6832,1.4930,0.↔ 0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 1.5487,0.1785,1.28,0.6319,1.↔ 0,0 /), del_exp_eos = (/ 2,2,2,2,2,0, 0,0,0,0,0,0,0,0,0,0), b_assoc_eos = (/ 0.0d0,0.0d0 /), n_na = (/ 0.0d0,0... 0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0, 0.0d0, 0.0d0 /), big b na = (/ 0.0d0, 0.0d0, 0.0d0 /), big c na = (/ 0.0d0, 0.0d0, 0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 8, c_id = (/ 2.5,4.30256,13.0289, -47.7365,50.0013,-18.6261, 0.993973,0.536078,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,499.0,826.5, 970.8,1166.↔ 2,1341.4, 5395.0,10185.0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -1.4485885457134948, a2 id = 1.↔ 8845208741487571)
- type(meosdata), parameter meos_25 = meosdata(ident = "ACETYLENE", name = "acetylene", default⇔ _ref_state = "IIR", bibref = "Unpublished. Gao, Wu and Lemmon (2017).", mw = 26.03728, tc = 308.3, pc = 5988.2, rhoc = 8.83, ttr = 191.75, ptr = 123.523, t_nbp = 188.260, tr = 308.3, rhor = 8.83, Rgas = 8.3144598, acf = 0.178, t_max = 310.0, p_max = 10000.0, n_poly_eos = 5, n_exp_eos = 5, n_gauss⇔ _eos = 0, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.8157856, -1.85265, -0.115457, 0.0938171, 0.⇔ 00006405, 0.2031037, 0.1417312, -0.1641216, 0.01495196, -0.014536, 0.0d0, 0.0d

/), g_eos = (/ 1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,0.

- type(meosdata), parameter meos_26 = meosdata(ident = "R1234ZE", name = "r1234zee", default_ref↔ state = "IIR", bibref = "DOI: 10.1007/s10765-016-2040-6", mw = 114.0416, tc = 382.513, pc = 3634.↔ 9, rhoc = 4.29, ttr = 169.0, ptr = 0.2286, t nbp = 254.177, tr = 382.513, rhor = 4.29, Rgas = 8.3144598, acf = 0.313, t_max = 420.0, p_max = 100000.0, n_poly_eos = 5, n_exp_eos = 5, n_gauss_eos = 6, n_↔ nona eos = 0, n assoc eos = 0, n eos = (/ 0.03982797,1.812227,-2.537512, -0.5333254,0.1677031,-1.↔ 323801, -0.6694654,0.8072718,-0.7740229, -0.01843846,1.407916,-0.4237082, -0.2270068,-0.805213,0.↔ 00994318, -0.008798793,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0... $0d0, 0.0d0, \ 0.0d0, 0.0d0,$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 1.0,0.223,0.755, 1.24,0.44,2.0, 2.2,1.2,1.5, 0.9,1.33,1.75, 2.11,1.0,1.5, 1.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0... 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_eos = (/ 4,1,1,2,3,1, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -1.0,-1.61,-1.24,-9.34,-5.78,-3.08, 0.0d0,0.0d0,0.↔ $0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 \ /), \ beta_eos = (/ -1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -171.0d0, -47.4, -15.4, 0.0d0, 0.0d0, 0. < (-1.21, -1.37, -0.98, -1.3$ 0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 0.943,0.642,0.59,1.2,1.33,0.64, 0.0d0,0.0d0,0.↔ 0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.728,0.87,0.855,0.79,1.3,0.71, 0.0d0,0.0d0,0.↔ 0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau_exp_eos = (/ 2,2,2,2,2,2, 0,0,0,0,0,0, 0,0 /), del_exp_eos = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.↔ 0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 3, c id = (/ 4.0,9.3575,10.717, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, $0.0d0, 0.0d0, 0.0d0, 0.0d0 \ /), \ t_id \ = \ (/ \ 0.0, 513.0, 1972.0, \ 0.0d0, 0.0d$ 0d0,0.0d0, 0.0d0 /), a1_id = -12.5583513312376738, a2_id = 8.7912317462661171)
- type(meosdata), parameter meos_27 = meosdata(ident = "H2S", name = "h2s", default_ref_state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 34.08088, tc = 373.1, pc = 9000.0, rhoc = 10.19, ttr = 187.7, ptr = 23.25, t_nbp = 212.85, tr = 373.1, rhor = 10.19, Rgas = 8.314472, acf = 0.1005, t_max = 760.0, p_max = 170000.0, n poly eos = 6, n exp eos = 6, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/0.87641,-2.0367,0.21634, -0.050199,0.066994,0.00019076, 0.20227,-0.0045348,-0.22230, -0.034714,-0.↔ 014885,0.0074154, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0 /), t eos = (/ 0.25,1.125,1. 5, 1.375, 0.25, 0.875, 0.625, 1.75, 3.625, 3.625, 14.5, 12.0, 0.0d0, 00.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.- $0d0, \ 1.0d0, 1.0d0, 1.0d0, \ 0.0d0, 0.0d0$

- type(meosdata), parameter meos 28 = meosdata(ident = "NE", name = "neon", default ref state = "NBP", bibref = "Unpublished. Thol, Beckmueller, Weiss, Harvey, Lemmon, Jacobsen and Span (2019).", mw = 20.179, tc = 44.4, pc = 2661.63, rhoc = 24.1, ttr = 24.5561, ptr = 43.355, t_nbp = 27.1000, tr = 44.4, rhor = 24.1, Rgas = 8.3144598, acf = -0.0355, t max = 725.0, p max = 1000000.0, n poly eos = 5, n exp eos = 6, n gauss eos = 6, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.031522418, 3.7716418, -4.27399448, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.27399448, -4.27399448, -4.27399448, -4.27399448, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739948, -4.2739,0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0, 0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 1.0d0,0.431,0.592, 1.105,0.49,2.3, 3.18,1.36,2.0d0, 0.5,1.12,0.41, $0.64, 0.579, 0.6, \quad 0.52, 0.655, 0.0d0, \quad 0.0d0, 0.0d0, 0.0d0, \quad 0.0d0, 0.0d0$ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), d_eos = (/ 4,1,1,2,3,1, 3,2,2,4,7,1, 1,3,2,1,2,0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -0.76,-2.126,-2.168,-2.033,-0.743,-4.38, 0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.537,-0.765,-0.883,-0.751,-0.531,-11.4, 0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 1.997,1.782,1.663,1.837,1.953,1.658, 0.0d0,0.0d0,0.↔ 0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.5775,0.9137,0.7895,0.6229,0.4992,0.869, 0.↔ a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 1, c id = (/ 2.5,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = -3.0384719151147275, a2_id = 3.253690479855404)
- type(meosdata), parameter meos 29 = meosdata(ident = "R116", name = "r116", default ref state = "IIR", bibref = "DOI: 10.1021/je050186n", mw = 138.01182, tc = 293.03, pc = 3048.0, rhoc = 4.444, ttr = 173.1, ptr = 26.08, t_nbp = 195.06, tr = 293.03, rhor = 4.444, Rgas = 8.314472, acf = 0.2566, t_max = 425.0, p_max = 50000.0, n_poly_eos = 6, n_exp_eos = 6, n_gauss_eos = 0, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 1.1632,-2.8123,0.77202, -0.14331,0.10227,0.00024629, 0.30893,-0.028499,-0.30343, -0.068793,-0.↔ 027218,0.010665, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.∞ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.125,1.↔ 5, 1.375,0.25,0.875, 0.625,1.75,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.-0d0, 0.0d0, 0. $0d0, \ 1.0d0, 1.0d0, 1.0d0, \ 0.0d0, 0.0d0$ 0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta eos = (/ 0.↔

- type(meosdata), parameter meos 30 = meosdata(ident = "CYCLOHEX", name = "cyclohex", default ref state = "NBP", bibref = "DOI: 10.1063/1.4900538", mw = 84.15948, tc = 553.6, pc = 4080.5, rhoc = 3.↔ 224, ttr = 279.86, ptr = 5.3487, t_nbp = 353.865, tr = 553.6, rhor = 3.224, Rgas = 8.3144598, acf = 0.↔ 2096, t_max = 700.0, p_max = 250000., n_poly_eos = 5, n_exp_eos = 5, n_gauss_eos = 10, n_nona_eos = 0, n assoc eos = 0, n eos = (/ 0.05483581,1.607734,-2.375928, -0.5137709,0.1858417,-0.9007515, -0.↔ 5628776.0.2903717.-0.3279141, -0.03177644.0.8668676.-0.1962725, -0.1425992.0.004197016.0.1776584, -0.04433903,-0.03861246,0.07399692, 0.02036006,0.00272825,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0... 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.37,0.79, 1.↔ 075,0.37,2.4, 2.5,0.5,3.0d0, 1.06,1.6,0.37, 1.33,2.5,0.9, 0.5,0.73,0.2, 1.5,1.5,0.0d0, 0.0d0,0.0d0,0.0d0, 0.↔ 0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_eos = (/ 0,0,0,0,0,0 /), g_eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0,1.0d0, 1.0d0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -0.99,-1.43,-0.97,-1.93,-0.92,-1.27, -0.87,-0.82,-1.40,-3.0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.38,-4.2,-1.2,-0.9,-1.2,-2.6, -5.3,-4.4,-4.↔ 2,-25.0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.65,0.63,1.14,0.09,0.56,0.40, 1.01,0.45,0.85,0.86,0.↔ 0d0, 0.0d0, 0.0d0, 0.0d0 /), epsilon eos = (/ 0.73, 0.75, 0.48, 2.32, 0.20, 1.33, 0.68, 1.11, 1.47, 0.99, 0.0d0, 0.0d0 /), b assoc eos = (/ 0.0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, $n_{id} = 5$, $c_{id} = (/ 4.0, 0.83775, 16.036, 24.636, 7.1715, 0.0d0, 0.0d0,$ /), t id = (/ 0.0,773.0,941.0, 2185.0,4495.0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = 0.9891146198409615, a2 id = 1.6359656987149183)
- type(meosdata), parameter meos 31 = meosdata(ident = "R114", name = "r114", default ref state = "IIR", bibref = "ISBN: 978-3-662-02610-6", mw = 170.921, tc = 418.83, pc = 3257.0, rhoc = 3.3932, ttr = 180.63, ptr = 0.2021, t nbp = 276.741, tr = 418.83, rhor = 3.3932, Rgas = 8.31451, acf = 0.↔ 2523, t_max = 507.0, p_max = 21000.0, n_poly_eos = 16, n_exp_eos = 6, n_gauss_eos = 0, n_↔ nona_eos = 0, n_assoc_eos = 0, n_eos = (/ -0.340776521414,0.32300139842,-0.0424950537596, 1.↔ 0793887971,-1.99243619673,-0.155135133506, -0.121465790553,-0.0165038582393,-0.186915808643, 0.308074612567,0.115861416115,0.0276358316589, 0.108043243088,0.0460683793064,-0.174821616881, 0.0317530854287,0.340776521414,-0.32300139842, 0.0424950537596,-1.66940100976,4.08693082002, -2.41738963889, 0.0d0, 0.0d00d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0 /), t eos = (/ 3.0d0,4.0d0,5.0d0, 0.0d0,1.0d0,2.0d0, 3.0d0,4.0d0,0.0d0, 1.0d0,2.0d0,0.↔ 0d0, 1.0d0,0.0d0,1.0d0, 1.0d0,3.0d0,4.0d0, 5.0d0,3.0d0,4.0d0, 5.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0. \leftarrow 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), d eos = (/ 0,0,0,1,1,1, 1,1,2,2,2,3, $eos = (/ \ 1.0d0, 1.0$ 1.0d0,1.21103865,1.21103865, 1.21103865,1.21103865,1.21103865, 1.21103865,0.0d0,0.0d0, 0.0d0,0.↔

- type(meosdata), parameter meos_32 = meosdata(ident = "O2", name = "oxygen", default_ref_state = "IDGAS", bibref = "DOI: 10.1016/0378-3812(85)87016-3", mw = 31.9988, tc = 154.581, pc = 5043.0, rhoc = 13.63, ttr = 54.361, ptr = 0.14628, t_nbp = 90.1878, tr = 154.581, rhor = 13.63, Rgas = 8.↔ 31434, acf = 0.0222, t max = 2000.0, p max = 82000.0, n poly eos = 13, n exp eos = 19, n gauss↔ eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.3983768749,-1.846157454,0.4183473197, 0005454628515,0.0005113182277,0.2953466883e-6, -0.8687645072e-4,-0.2127082589,0.08735941958, 0.127550919,-0.09067701064,-0.03540084206, -0.03623278059,0.0132769929,-0.0003254111865, -0.↔ 008313582932,0.002124570559,-0.0008325206232, -0.2626173276e-4,0.002599581482,0.009984649663, $0.002199923153, -0.02591350486, -0.1259630848, \ 0.1478355637, -0.01011251078, 0.0d0, \ 0.0d0, 0.0$ $0d0,\ 0.0d0, 0$ 0d0,0.0d0,0.0d0 /), t_eos = (/ 0.0,1.5,2.5, -0.5,1.5,2.0, 0.0,1.0,2.5, 0.0,2.0,5.0, 2.0,5.0,6.0, 3.5,5.5,3.0, $7.0, 6.0, 8.5, \ 4.0, 6.5, 5.5, \ 22.0, 11.0, 18.0, \ 11.0, 23.0, 17.0, \ 18.0, 23.0, 0.0d0, \ 0.0d0, 0.0$ $0d0, 0.0d0, \ 0.0d0, 0.0d0, 0.0d0, \ 0.0d0, 0.0d0$ 1.0d0, 1.0d0,0.0d0.0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ 0.0d0,0... 0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp↔ = (/ 0.0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.↔ 0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0. 0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0, 0.0d0 /), t_id = (/ 0.0,2246.3244,11259.9763, 1201.26209,69.↔ 0089445,5328.05445, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -14.7168366664971053, a2 id = -0.0110839854084588)
- type(meosdata), parameter meos_33 = meosdata(ident = "H2", name = "hydrogen", default_ref_state = "NBP", bibref = "DOI: 10.1063/1.3160306", mw = 2.01588, tc = 33.145, pc = 1296.4, rhoc = 15.508, ttr = 13.957, ptr = 7.3578, t_nbp = 20.369, tr = 33.145, rhor = 15.508, Rgas = 8.314472, acf = -0.219, t_max = 1000.0, p_max = 200000.0, n_poly_eos = 7, n_exp_eos = 2, n_gauss_eos = 5, n_nona_eos = 0, n_assoc↔ _eos = 0, n_eos = (/ 0.01, -6.93643, 2.1101, 4.52059, 0.732564, -1.34086, 0.130985, -0.777414, 0.351944, -0.0211716, 0.0226312, 0.032187, -0.0231752, 0.0557346, 0.0d0, 0.0d0,

0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,1.0d0,0

type(meosdata), parameter meos_34 = meosdata(ident = "R124", name = "r124", default ref state = "IIR", bibref = "de Vries et al. (1995). Thermodynamic Properties of HCFC 124.", mw = 136.475, tc = 395.425, pc = 3624.295, rhoc = 4.1033156, ttr = 74,, ptr = 0.0000000000003228, t nbp = 261.187, tr = 395.425, rhor = 4.1033156, Rgas = 8.314471, acf = 0.28810, t_max = 470.0, p_max = 40000.0, n_poly_eos = 9, n_exp_eos = 11, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ -0.01262962,2.168373,-3.330033, 0.↔ 1610361,-0.9666145e-4,0.0119131, -0.002880217,0.001681346,0.1594968e-4, 0.1289674,0.1182213e-4,-0.4713997, -0.2412873,0.6868066,-0.08621095, 0.4728645e-5,0.01487933,-0.03001338, 0.001849606,0.↔ 0004126073, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 2.0,0.5,1.0, 0.5,2.5,-1.0, 1.0,0.0,-0.5, 1.5,1.0,2.5, -0.25,1.0,5.0, 2.0,15.0,20.↔ 0, 15.0, 45.0, 0.0d0, 0.0d0,0d0, 0.0d0, 0.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,0.0d0, 0.0d0,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp eos 0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0... 0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 4, n id = 4, c id = (/ 3.175638,0.037376164885882274,-3.3525629318311684e-05, 2.1642904553909864e-08,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,1.0,2.0, 3.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -11.6694278205254687, a2 id = 9.8760554938431273)

• type(meosdata), parameter meos_35 = meosdata(ident = "MEOH", name = "methanol", default_ref_state = "NBP", bibref = "ISBN: 0-632-03455-6", mw = 32.04216, tc = 513.38, pc = 8215.85, rhoc = 8.78517, ttr = 175.61, ptr = 0.00018629, t nbp = 337.632, tr = 513.38, rhor = 8.78517, Rgas = 8.31448, acf = 0.5625, t max = 620.0, p max = 800000.0, n poly eos = 17, n exp eos = 19, n gauss eos = 8, n nona eos = 0, n assoc eos = 0, n eos = (/ -2.80062505988,12.5636372418,-13.0310563173, 3.2659313406,-4.↔ 11425343805,3.46397741254, -0.083644396759,-0.369240098923,0.00313180842152, 0.603201474111,-0.231158593638.0.106114844945. -0.0792228164995,-0.422419150975e-4,0.00758196739214, -0.⇔ 244617434701e-4,0.115080328802e-5,-12.5099747447, 27.0392835391,-21.2070717086,6.3279947227, 14.3687921636, -28.7450766617, 18.5397216068, -3.88720372879, -4.16602487963, 5.29665875982, 0, -2.596688, 0, -2.59688, 0, -2.5968, 0, -2.59688, 0, -2.509360272812,-3.30257604839,-0.311045210826, 0.273460830583,0.518916583979,-0.00227570803104, 0.0211658196182,-0.0114335123221,0.00249860798459, -8.19291988442,0.478601004557,-0.444161392885, 0.17962181041,-0.687602278259,2.40459848295, -6.88463987466,1.13992982501,0.0d0, 0.0d0.0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 0.0d0,1.0d0,2.0d0, 3.0d0,1.0d0,2.0d0, $3.0d0, 4.0d0, 6.0d0, \quad 0.0d0, 3.0d0, 4.0d0, \quad 0.0d0, 7.0d0, 1.0d0, \quad 6.0d0, 7.0d0, 1.0d0, \quad 2.0d0, 3.0d0, 4.0d0, \quad 1. \leftarrow 0.0d0, 0.0d0,$

0d0,0.0d0,0.0d0 /), d eos = (/ 1,1,1,1,2,2, 2,2,2,3,3,3, 4,4,5,6,7,1, 1,1,1,2,2,2, 2,3,4,5,5,5, 5,6,9,6,6,4, $2,2,2,4,4,6, 2,3,2,4,2,3, 2,4,0,0,0,0, 0,0,0,0,0,0,0,0,0,0 \ /), \ \underline{g}_{eos} = (/ \ 1.0d0,1.0$ 0d0, 1.0d0, 1.0 01733510223052,1.01733510223052,1.01733510223052, 1.01733510223052,1.01733510223052,1. 01733510223052, 1.01733510223052,1.01733510223052,1.01733510223052, 1.01733510223052,1.↔ 01733510223052,1.01733510223052, 1.01733510223052,1.01733510223052,1.01733510223052, 1.↔ 03497071023039,1.03497071023039,1.05291203329783, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.⇔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), eta_eos = (/ -4.↔ 06934040892209,-8.20892015621185,-9.15601592007471,-83.8326275286616,-16.2773616356884,-27.↔ 705105527215, -16.2773616356884,-264.95250181898,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_eos (/ 3.8940745646517,3.8940745646517,3.8940745646517,3.8940745646517,3.8940745646517,23.↔ 23.0649031906293,23.0649031906293,0.0d0,0.0d0,0.0d0,0.0d0, 0649031906293, 0.0d0,0.0d0 Δ. gamma_eos = (/ 1.54080254509371,1.54080254509371,1.54080254509371,1.54080254509371,1.↔ 54080254509371,1.08389789427588, 1.08389789427588,1.08389789427588,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0 /), epsilon eos = (/ 0.0d0, 0.0d0,/), b_assoc_eos = (/ 0.0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.↔ 0d0, 0.0d0, 0.0d0 /), big c na = (/ 0.0d0, 0.0d0, 0.0d0 /), big d na = (/ 0.0d0, 0.0d0, 0.0d0 /), n1 id = 1, n id = 8, c id = (/ 3.9007912,10.992677,18.33683, -16.366004,-6.2332348,2.8035363, 1.0778099,0.96965697,0.0d0, $0.0d0, 0.0d0, 0.0d0, 0.0d0 \ /), \ t_id = (/ \ 0.0, 2115.01542, 1676.18569, \ 1935.16717, 1504.97016, 4222.83691, 0.000$ 5296.17127,273.36934,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = -4.4231521797113365, a2_id = 5.↔ 4815623918310443)

- type(meosdata), parameter meos_36 = meosdata(ident = "R12", name = "r12", default_ref_state = "IIR", bibref = "Marx et al. (1992). Neue Zustandsgleichungen fuer R 12, R 22, R 11 und R 113.", mw = 120.913, tc = 385.12, pc = 4136.1, rhoc = 4.672781, ttr = 116.099, ptr = 0.0002425, t nbp = 243.398, tr = 385.12, rhor = 4.672781, Rgas = 8.314471, acf = 0.17948, t max = 525.0, p max = 200000.0, n poly eos = 7, n exp eos = 15, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ 2.075343402,-2.962525996,0.↔ 01001589616. 0.01781347612,0.02556929157,0.002352142637, -0.8495553314e-4,-0.01535945599,-0.2108816776, -0.01654228806,-0.0118131613,-0.416029583e-4, 0.2784861664e-4,0.1618686433e-5,-003361012009, 0.0003789190008,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.5,1.0,2.0, 2.5,-0.5,0.0, 0.0,-0.5,1.5, 2.5,-0.5,0.0, 0.5,-0.5,4.0, 4.0, 2.0, 4.0, 12.0, 14.0, 0.0, 14.0, 0.0d0, 0.0d0.0d0, 0.0d0, 0.0d0,0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), eta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0, 0.0d0,gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0... b assoc eos = (/ 0.0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big↔ _b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 5, c id = (/ 4.00363901052655,3.1606387751370404,0.37125992205225483, 3.↔ 5622775274430247,2.1215335661615504,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,1433.4342,2430.0498, 685.65952,412.41579,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0, 0.0d0 /), a1_id = -14.7178947415560639, a2_id = 9.4030125798124899)
- type(meosdata), parameter meos_37 = meosdata(ident = "NC16", name = "c16", default_ref_state = "NBP", bibref = "Unpublished. Romeo and Lemmon (2018).", mw = 226.441, tc = 722.1, pc = 1479.85, rhoc = 1.0, ttr

- = 291.329, ptr = 0.00009387, t_nbp = 559.903, tr = 722.1, rhor = 1.0, Rgas = 8.3144598, acf = 0.749, t_max = 800.0, p max = 50000.0, n poly eos = 5, n exp eos = 5, n gauss eos = 5, n nona eos = 0, n assoc \leftrightarrow _eos = 0, n_eos = (/ 0.03965879,1.945813,-3.738575, -0.3428167,0.3427022,-2.519592, -0.8948857,0.↔ $10760773, -1.297826, \ -0.04832312, 4.245522, -0.31527585, \ -0.7212941, -0.2680657, -0.7859567, \ 0.0d0, 0, e \in [0, 1]{10}, 0, 0 \in [0, 1]{10}, 0 \in [0, 1]{1$ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.224,0.91, 0.95,0.555,2.36, 3.58,0.5,1.72, 1.078,1.14,2.↔ 43, 1.75, 1.1, 1.08, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), d eos = (/ 4,1,1,2,3,1, 3,2,2,7,1,1, 3,2,2,0,0,0, 0.0d0, 0.0 0.0d0, $0d0, 0.0d0, \ 0.0d0, 0.0d0, 0.0d0, \ 0.0d0, 0.0d0$ 0d0, 0.0d0,0.0d0,0.0d0 /), eta_eos = (/ -0.641,-1.008,-1.026,-1.21,-0.93,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.516,-0.669,-0.25,-1.33,-2.1,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 1.335,1.187,1.39,1.23,0.763,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0 /), epsilon_eos = (/ 0.75,1.616,0.47,1.306,0.46,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0... 0,0,0,0,0,0,0,0/), b assoc eos = (/ 0.0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0... 0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), $n1_id = 1, n_id = 3, c_id = (/ 23.03, 18.91, 76.23, 0.0d0, 0.0d$ 0.0d0 /), t id = (/ 0.0,420.0,1860.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = 45.9620674049700142, a2 id = -26.1883393966868319)
- type(meosdata), parameter meos 38 = meosdata(ident = "F6S", name = "sf6", default ref state = "IIR", bibref = "DOI: 10.1063/1.3037344", mw = 146.0554192, tc = 318.7232, pc = 3754.983, rhoc = 5.0823174112, ttr = 223.555, ptr = 231.429, t nbp = 204.9, tr = 318.7232, rhor = 5.0823174112, Rgas = 8.314472, acf = 0.218, t max = 625.0, p max = 150000.0, n poly eos = 10, n exp eos = 12, n gauss eos = 14, n nona↔ eos = 0, n assoc eos = 0, n eos = (/ 0.54958259132835,-0.87905033269396,-0.84656969731452, 0.↔ 27692381593529.-4.9864958372345.4.8879127058055. 0.036917081634281.0.00037030130305087.0.↔ 039389132911585, 0.00042477413690006,-0.02415001386389,0.059447650642255, -0.38302880142267,0.↔ 32606800951983,-0.029955940562031, -0.086579186671173,4.1600684707562,-4.1398128855814, -0.↔ 55842159922714,0.56531382776891,0.0082612463415545, -0.01020099533808,-0.021662523861406,0.↔ 034650943893908, -0.028694281385812,0.0084007238998053,-0.26969359922498, 9.0415215646344,-3.7233103557977, -2752.4670823704, 5771.1861697319, -3023.4003119748, 2225277.843536, -23056065559032,6391885.2944475,-6079209.1415592, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0 /), t eos = (/ 0.125,1.25,1.875, 0.125,1.5,1.↔ 625, 1.5,5.625,0.625, 0.25,6.0,0.25, 4.75,5.375,5.875, 2.0,5.875,6.0, 5.625,5.75,0.0, 0.5,4.0,1.0, 3.0.2.↩ $0,4.0, \ 3.0,4.0,1.0, \ 2.0,3.0,3.0, \ 4.0,3.0,4.0, \ 0.0d0,0.0d0,0.0d0, \ 0.0d0,0.0d0, \ 0.0d0,0.0d0, \ 0.0d0,0.0d0, \ 0.0d0,0.0d0, \ 0.0d0,0.0d0, \ 0.0d0,0.0d$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_eos = (/ 1,1,1,2,2,2, 3,3,4,6,1,2, 2,2,3,6,2,2, 0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0, 0.0d0 /), eta eos = (/ -10.0, -10.0, -10.0, -10.0, -11.0, -25.0, -30. -30.0,-30.0 /), beta eos = (/ -150.0,-150.0,-150.0,-150.0,-225.0,-300.0, -350.0,-350.0,-350.0,-350.0,-400.↔ 0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0, 0.0d0, 0.0d0 /), big a na = (/ 0.0d0, 0.0d0, 0.0d0 /), big b na = (/ 0.0d0, 0.0d0, 0.0d0/), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 4, c id = (/ 4.0,3.66118232,7.87885103, 3.45981679,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id $=(/\ 0.0,515.4653151,875.5693279,\ 1349.12572,0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.0d0,0.0d0,\ 0.0d0,0.0d0,0.0d0,0.0d0,\ 0.0d0,$ /), a1_id = -15.4089857348096295, a2_id = 10.8151609115241314)

 type(meosdata), parameter meos_39 = meosdata(ident = "HE", name = "helium", default_ref_state = "NBP", bibref = "Unpublished. Ortiz-Vega, Hall, Holste, Arp, Harvey and Lemmon (2018)", mw = 4.002602, tc = 5.1953, pc = 228.32, rhoc = 17.3837, ttr = 2.1768, ptr = 5.0393, t_nbp = 4.2238, tr = 5.1953, rhor = 17.3837, Rgas = 8.3144598, acf = -0.3836, t_max = 2000.0, p_max = 1000000.0, n_poly_eos = 6, n_exp_eos = 6, n_gauss_eos = 11, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.015559018,3.0638932,-4.2420844, 0.054418088,-0.18971904,0.087856262, 2.2833566,-0.53331595,-0.53296502, 0.99444915,-0.30078896,-1.6432563, 0.8029102,0.026838669,0.04687678, -0.14832766,0.03016211,-0.019986041, $0.14283514, 0.007418269, -0.22989793, \quad 0.79224829, -0.049386338, 0.0d0, \quad 0.0d0, 0.0d0, 0.0d0, \quad 0.0d0, 0. \leftarrow 0.000, 0.$ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), t eos = (/ 1.0,0.425,0.63, 0.69,1.83,0.575, 0.925,1.585,1.69, 1.51,2.9,0.8, 1.26,3.51,2.785, 1.0d0,4.22,0.83, 1.575,3.447,0.73, 1.634,6.13,0.0d0, 0.↔ 0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_eos = (/ 0,0,0,0,0,0 /), g_eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0,1.0 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0.0.0d0. 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta_eos = (/ -1.5497,-9.245,-4.76323,-6.↔ 3826,-8.7023,-0.255, -0.3523,-0.1492,-0.05,-0.1668,-42.2358,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.2471,-0.0983,-0.1556,-2.6782,-2.7077,-0.6621, -0.1775,-0.4821,-0.3069,-0.1758,-1357.6577,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 3.15, 2.54505, 1.2513, 1.9416, 0.5984, 2.2282, 1.606, 3.815, 1.61958, 0.6407, 1.076, 0.0d0, 1.076, 0.040, 0.016, 00.0d0,0.0d0 /), epsilon_eos = (/ 0.596,0.3423,0.761,0.9747,0.5868,0.5627, 2.5346,3.6763,4.5245,5.039,0.↔ 2,2,2,2,2,0, 0,0 /), b assoc eos = (/ 0.0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0... 0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 0.0d0 /), t id = (/ 0.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = 0.1733487932835764, a2 id = 0.4674522201550815)

type(meosdata), parameter meos 40 = meosdata(ident = "H2O", name = "water", default ref state = "TRIPLE POINT", bibref = "DOI: 10.1063/1.1461829", mw = 18.015268, tc = 647.096, pc = 22064.↔ 0, rhoc = 17.8737279956, ttr = 273.16, ptr = 0.61248, t_nbp = 373.1243, tr = 647.096, rhor = 17.↔ 8737279956, Rgas = 8.314371357587, acf = 0.3443, t_max = 2000.0, p_max = 1000000.0, n_poly↔ eos = 7, n exp eos = 44, n gauss eos = 3, n nona eos = 2, n assoc eos = 0, n eos = (/ 0.012533547935523,7.8957634722828,-8.7803203303561, 0.31802509345418,-0.26145533859358,-0. 0078199751687981, 0.0088089493102134,-0.66856572307965,0.20433810950965, -0.66212605039687e-4,-0.19232721156002,-0.25709043003438, 0.16074868486251,-0.040092828925807,0.39343422603254e--0.75941377088144e-5,0.00056250979351888,-0.15608652257135e-4, 0.11537996422951e-8,0.↔ 6. 36582165144204e-6.-0.13251180074668e-11.-0.62639586912454e-9.-0.10793600908932.0.017611491008752. 0.22132295167546,-0.40247669763528,0.58083399985759, 0.0049969146990806,-0.031358700712549,-0083326504880713,-0.029052336009585, 0.038615085574206,-0.020393486513704,-0.0016554050063734, 0.0019955571979541,0.00015870308324157,-0.1638856834253e-4, 0.043613615723811,0.034994005463765,-31777497330738,-0.11841182425981, -31.306260323435,31.546140237781,-2521.3154341695 /), t_eos = (/ -0.5,0.875,1.0, 0.5,0.75,0.375, 1.0,4.0,6.0, 12.0,1.0,5.0, 4.0,2.0,13.0, 9.0,3.0,4.0, 11.0,4.0,13.0, 1.↔ 0,7.0,1.0, 9.0,10.0,10.0, 3.0,7.0,10.0, 10.0,6.0,10.0, 10.0,1.0,2.0, 3.0,4.0,8.0, 6.0,9.0,8.0, 16.0,22.0,23.0, 23.0,10.0,50.0, 44.0,46.0,50.0, 0.0,1.0,4.0 /), d eos = (/ 1,1,1,2,2,3,4,1,1,1,2,2,3,4,4,5,7,9,10,11,13,15,1,2, 0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d 1.0d0, 1.0d0,0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d 0.0d0, 0.0d0, 0.0d0 /, eta eos = (/ -20.0, -20.0, -20.0, 0.0d0, 0.0d0 0.0d0,0.0d0 /), epsilon_eos = (/ 1.0,1.0,1.0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔

- type(meosdata), parameter meos 41 = meosdata(ident = "R115", name = "r115", default ref state = "IIR", bibref = "DOI: 10.1021/acs.jced.5b00684", mw = 154.466416, tc = 353.1, pc = 3129.0, rhoc = 3.98, ttr = 173.75, ptr = 2.213, t_nbp = 233.932, tr = 353.1, rhor = 3.98, Rgas = 8.3144598, acf = 0.248, t_max = 550.0, p max = 60000.0, n poly eos = 5, n exp eos = 7, n gauss eos = 0, n nona eos = 0, n assoc \leftrightarrow eos = 0, n eos = (/ 1.20873,-3.54460,0.745302, 0.114128,4.36572e-4,0.988385, 1.13878,-0.0215633,-0.↔ 630230, 0.0167901,-0.149412,-0.0271153, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.↔ 0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.25,1.5, 0.25,0.875,2.375, 2.0,2.125,3.5, 6.5,4.75,12.5, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ $0d0, \ 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), = (/ 0.0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0, 0.0d0, 0.0d0 /), big a na = (/ 0.0d0, 0.0d0, 0.0d0 /), big b na = (/ 0.0d0, 0.0d0, 0.0d0 /), big c na = (/ 0.0d0.0.0d0.0.0d0 /), big d na = (/ 0.0d0.0.0d0.0.0d0 /), n1 id = 1, n id = 3, c id = (/ 4. 0,7.142,10.61, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,289.0,1301.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -13.4050037923356555, a2 id = 10.0015536023086682)
- type(meosdata), parameter meos 42 = meosdata(ident = "R11", name = "r11", default ref state = "IIR", bibref = "DOI: 10.1016/0378-3812(92)87054-Q", mw = 137.368, tc = 471.11, pc = 4407.↔ 638, rhoc = 4.032962, ttr = 162.68, ptr = 0.006510, t nbp = 296.858, tr = 471.11, rhor = 4. 032962, Rgas = 8.314510, acf = 0.18875, t_max = 625.0, p_max = 30000.0, n_poly_eos = 14, n exp eos = 14, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ 1. \leftrightarrow 25993633881,-2.60818574641,0.00982122542463, -1.06085385839,1.2282036351,0.118000776439, 0.000698956926463,-0.0355428373358,0.00197169579643, -0.00848363012252,0.00417997567653,-961768948364e-5,0.00246717966418, -0.00167030256045,0.00240710110806,0.00156214678738, -0.↔ 00323352596704,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0... 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.5,1.↔ 5,5.0, 1.0,1.5,0.0, 5.0,2.0,3.0, 1.0,2.0,4.0, 1.0,4.0,5.0, 6.0,3.5,5.5, 7.5,3.0,2.5, 5.0,1.5,11.0, 9.0,13.0,5.0, $9.0,0.0d0,0.0d0,\ 0.0d0,0.0d0,0.0d0,\ 0.0d0,0.0d0,\ 0.0d0,0.$ eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0, 1.0d 1.0d0, 0.0d0, 0.0d0,0d0, 0.0d0, 0.0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔

- type(meosdata), parameter meos 43 = meosdata(ident = "13BD", name = "13butadiene", default ref state = "NBP", bibref = "Unpublished. Gao, Wu and Lemmon (2017)", mw = 54.09044, tc = 425.135, pc = 4305.3, rhoc = 4.53, ttr = 164.25, ptr = 0.069922, t nbp = 268.661, tr = 425.135, rhor = 4.53, Rgas = 8.3144598, acf = 0.192, t max = 426.0, p max = 10000.0, n poly eos = 5, n exp eos = 7, n gauss eos = 0, n nona eos = $0.42974178, 0.004085874, -0.25316, \ 0.02068683, -0.041815041, -0.02051974, \ 0.0d0, 0.0d0,$ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.25,1.5, 0.25,0.875,2.375, 2.0,2.125,3.5, 6.5,4.75,12.5, 0.↔ 0d0, 0.0d0, 0.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0, 0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0... 0,0,0,0,0,0,0,0/), b assoc eos = (/ 0.0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0... 0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 4, c id = (/ 4.0,2.3797,11.213, 8.1824,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0, 0.0d0 /), t id = (/ 0.0,308.0,1210.0, 2631.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), a1_id = -1.0260215656338829, a2_id = 2.7310597807829633)
- type(meosdata), parameter meos 44 = meosdata(ident = "ACETONE", name = "acetone", default ref ~ state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 58.07914, tc = 508.1, pc = 4692.4, rhoc = 4.7, ttr = 178.5, ptr = 0.002326, t nbp = 329.22, tr = 508.1, rhor = 4.7, Rgas = 8.314472, acf = 0.3071, t max = 550.0, p max = 700000.0, n poly eos = 5, n exp eos = 7, n gauss eos = 0, n nona eos = 0, n assoc \leftrightarrow eos = 0, n eos = (/ 0.90041,-2.1267,-0.083409, 0.065683,0.00016527,-0.039663, 0.72085,0.0092318,-0.↔ 17217, -0.14961,-0.076124,-0.018166, 0.0d0.0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = $(/\ 0.25, 1.25, 1.5,\ 0.25, 0.875, 2.375,\ 2.0, 2.125, 3.5,\ 6.5, 4.75, 12.5,\ 0.0d0, 0.0d0, 0.0d0,\ 0.0d0, 0.0d0, 0.0d0,\ 0.0d0, 0.0$ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0... 0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), eta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp eos

0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 4, c_id = (/ 4.0,3. \leftrightarrow 7072,7.0675, 11.012,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), t_id = (/ 0.0,310.0,3480.0, 1576.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), a1_id = 0.3015070258580721, a2_id = 2.7317365462703083)

- type(meosdata), parameter meos 45 = meosdata(ident = "NH3", name = "ammonia", default ref state = "TRIPLE POINT", bibref = "Gao et al. (2023). doi:10.1063/5.0128269", mw = 17.03052, tc = 405.56, pc = 11363.4, rhoc = 13.696, ttr = 195.49, ptr = 6.05438, t nbp = 239.832, tr = 405.56, rhor = 13.↔ 696, Rgas = 8.3144598, acf = 0.256, t_max = 725.0, p_max = 1000000.0, n_poly_eos = 5, n_exp_↔ eos = 3, n gauss eos = 12, n nona eos = 0, n assoc eos = 2, n eos = (/ 0.006132232,1.7395866,-2.2261792, -0.30127553,0.08967023,-0.076387037, -0.84063963,-0.27026327,6.212578, -5.7844357,2.↔ 4817542, -2.3739168, 0.01493697, -3.7749264, 0.0006254348, -0.000017359, -0.13462033, 0.07749072839, -1.6909858, 0.93739074, 0.0d0, 0.0d00.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.382,1.0, 1.0,0.677,2.915, 3.51,1.063,0.655, 1.3,3.1,1.4395, 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d eos = (/ 4,1,1,2,3,3, 2,3,1,1,1,2, 2,1,3,3,1,1, 0.0d0, 0.0d0,0d0, 0.0d0, 0.0d0,0.0d0,0.0d0 /), eta_eos = (/ -0.42776,-0.6424,-0.8175,-0.7995,-0.91,-0.3574, -1.21,-4.14,-22.↔ 56,-22.68,-2.8452,-2.8342, 0.0d0,0.0d0 /), beta_eos = (/ -1.708,-1.4865,-2.0915,-2.43,-0.488,-1.1, -0.85,-1.↔ 14,-945.64,-993.85,0.3696,0.2962, 0.0d0,0.0d0 /), gamma eos = (/ 1.036,1.2777,1.083,1.2906,0.928,0.934, 0.919.1.852,1.05897,1.05277,1.108,1.313, 0.0d0,0.0d0 /), epsilon eos = (/ -0.0726,-0.1274,0.7527,0.57,2,... 0,0 /), del exp eos = (/ 2,2,2,2,2,2,2,2,2,2,2,2,2,0,0 /), b assoc eos = (/ 1.244,0.6826 /), n na = (/ 0.0d0,0.↔ 0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 4, c_id = (/ 4.0,2.224,3.148, 0.9579,0.0d0,0.0d0, $0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), t_id = (/ 0.0d0, 1646.0d0, 3965.0d0, 7231.0d0, 0.0d0, 0.0d0,$ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -6.59406093943886, a2 id = 5.60101151987913) • type(meosdata), parameter meos 46 = meosdata(ident = "BENZENE", name = "benzene", default ref ~ state = "NBP", bibref = "Unpublished. Thol, Lemmon, and Span (2012).", mw = 78.11184, tc = 562.02, pc = 4907.277, rhoc = 3.901, ttr = 278.674, ptr = 4.785, t nbp = 353.219, tr = 562.02, rhor = 3.901, Rgas = 8.314472, acf = 0.211, t max = 725.0, p max = 500000.0, n poly eos = 5, n exp eos = 5, n gauss eos = 4, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.03512459,2.2338,-3.10542612, -0.577233,0.25101,-0.705518, -0.139648, 0.83494, -0.331456, -0.0279953, 0.7099766, -0.3732185, -0.0629985, -0.803041, 0.0d0,
- 0.0d0.0.0d0, 0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 1.0,0.29,0.696, 1.212,0.595,2.51, 3.96,1.24,1.83, 0.↔ 82,0.57,2.04, 3.2,0.78,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), d eos = (/ 4,1,1,2,3,1, 3,2,2,7,1,1, $0d0, 0.0d0, \ 0.0d0, 0.0d0,$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -1.032,-1.423,-1.071,-14.2,0.0d0,0.0d0, 0.0d0,0.0d0,0... 0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_eos = (/ -1.864,-1.766,-1.825,-297.9,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 1.118,0.639,0.654,1.164,0.0d0,0.0d0, 0.↔ $0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 \ /), \ epsilon_eos \ = \ (/ \ 0.729, 0.907, 0.765, 0.870, 0.0d0, 0.0d0,$

 $a_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ b_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ beta_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_a_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_b_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_c_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_d_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_d_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_d_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_d_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_d_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_d_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_d_na = (/ \ 0.0d0, 0.0d0, 0.0d0 \ /), \ big_d_na = (/ \ 0.0d0, 0.$

- type(meosdata), parameter meos_47 = meosdata(ident = "N2O", name = "n2o", default_ref_state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 44.0128, tc = 309.52, pc = 7245.0, rhoc = 10.27, ttr = 182.↔ 33, ptr = 87.84, t nbp = 184.68, tr = 309.52, rhor = 10.27, Rgas = 8.314472, acf = 0.162, t max = 525.0, p max = 50000.0, n poly eos = 5, n exp eos = 7, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.88045,-2.4235,0.38237, 0.068917,0.00020367,0.13122, 0.46032,-0.0036985,-0.23263, -0.↔ 00042859,-0.042810,-0.023038, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.- $0d0, \ 0.0d0, 0.0d0,$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25, 1.25, 1.5, 0.25, 0.875, 2.375, 2.0, 2.125, 3.5, 6.5, 4.75, 12.5, 0.0d0, 0.0d0,0d0, 0.0d0, 0. $0d0, 0.0d0, \ 0.0d0, 0.0d0,$ 0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0/), eta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), tau_exp_eos = 0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 4, c id = (/ 3.5,2.1769,1.6145, 0.48393,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,879.0,2372.0, 5447.↔ 0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), a1 id = -4.4262724194662564, a2 id = 4.↔ 3120468016770888)
- type(meosdata), parameter meos 48 = meosdata(ident = "CO2", name = "co2", default ref ~ state = "IIR", bibref = "DOI: 10.1063/1.555991", mw = 44.0098, tc = 304.1282, pc = 7377.3, rhoc = 10.6249063, ttr = 216.592, ptr = 517.95, t nbp = 194.686, tr = 304.1282, rhor = 10.6249063, Rgas = 8.31451, acf = 0.22394, t max = 2000.0, p max = 800000.0, n poly eos = 7, n exp ↔ eos = 27, n gauss eos = 5, n nona eos = 3, n assoc eos = 0, n eos = (/ 0.388568232032.2.↔ 93854759427,-5.58671885349, -0.767531995925,0.317290055804,0.548033158978, 0.122794112203,2.↔ 16589615432,1.58417351097, -0.231327054055,0.0581169164314,-0.553691372054, 0.489466159094,-0.0242757398435,0.0624947905017, -0.121758602252, -0.370556852701, -0.0167758797004, **-0**.⇔ 11960736638,-0.0456193625088,0.0356127892703, -0.00744277271321,-0.00173957049024,-0. 0218101212895, 0.0243321665592,-0.0374401334235,0.143387157569, -0.134919690833,-0.0231512250535,0.↔ 0123631254929, 0.00210583219729,-0.000339585190264,0.00559936517716, -0.000303351180556,-0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.0,0.75,1.0, 2.↔ 0,0.75,2.0, 0.75,1.5,1.5, 2.5,0.0,1.5, 2.0,0.0,1.0, 2.0,3.0,6.0, 3.0,6.0,8.0, 6.0,0.0,7.0, 12.0,16.0,22.0, 24.↔ 0,16.0,24.0, 8.0,2.0,28.0, 14.0,1.0,0.0, 1.0,3.0,3.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0... 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0, 1.0d0,1.0d0, 1.0d0, 1.0d0,1.0d0, 1.0d0, 1.0d0,1.0d0, 1.0d0, 0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0,1.0d0, 1.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0 /), eta_eos = (/ -25.0,-25.0,-25.0,-15.0,-20.0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔ 0.0d0,0.0d0 /), gamma eos = (/ 1.16,1.19,1.19,1.25,1.22,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0 /), epsilon eos = (/ 1.0,1.0,1.0,1.0,1.0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0)

/), tau_exp_eos = (/ 2,2,2,2,2,0, 0,0,0,0,0,0,0,0,0,0,0), del_exp_eos = (/ 2,2,2,2,2,0, 0,0,0,0,0,0,0,0,0,0), b _assoc_eos = (/ 0.0d0,0.0d0 /), n_na = (/ -0.666422765408,0.726086323499,0.0550686686128 /), a_na = (/ 3.5,3.5,3.0 /), b_na = (/ 0.875,0.925,0.875 /), beta_na = (/ 0.3,0.3,0.3 /), big_a_na = (/ 0.7,0.7,0.7 /), big_b_na = (/ 0.3,0.3,1.0 /), big_c_na = (/ 10.0,10.0,12.5 /), big_d_na = (/ 275.0,275.0,275.0 /), n1_id = 1, n_id = 6, c_id = (/ 3.5,1.99427042,0.621052475, 0.411952928,1.04028922,0.0832767753, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,958.49956,1858.80115, 2061.10114,3443.89908,8238.20035, 0. \leftrightarrow 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), a1_id = -6.124871063353245, a2_id = 5.1155963185961815)

type(meosdata), parameter meos 49 = meosdata(ident = "R14", name = "r14", default ref state = "TRIPLE_POINT", bibref = "ISBN: 978-3-662-02610-6", mw = 88.01, tc = 227.51, pc = 3750.0, rhoc = 7.1094194, ttr = 89.54, ptr = 0.1012, t nbp = 145.10, tr = 227.51, rhor = 7.1094194, Rgas = 8.31451, acf = (12.10)0.1785, t max = 623.0, p max = 51000.0, n poly eos = 16, n exp eos = 6, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ -0.334698748966,0.586690904687,-0.147068929692, 1.03999039623,-2.45792025288,0.799614557889, -0.749498954929,0.152177772502,-0.293408331764, 0.717794502866,-0.0426467444199,0.226562749365, -0.391091694003,-0.0257394804936,0.0554844884782, 0.00610988261204,0.↔ 334698748966,-0.586690904687, 0.147068929692,-0.190315426142,0.716157133959, -0.703161904626,0.↔ $0.0d0, 0.0d0, 0.0d0 \ /), \ t_{\leftarrow}$ eos = (/ 3.0d0,4.0d0,5.0d0, 0.0d0,1.0d0,2.0d0, 3.0d0,4.0d0,0.0d0, 1.0d0,2.0d0,0.0d0, 1.0d0,0.0d0,1.0d0, 1.0d0, 3.0d0, 4.0d0, 5.0d0, 3.0d0, 4.0d0, 5.0d0, 0.0d0, 0.0d0,0d0, 0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_eos = (/ 0,0,0,1,1,1, 1,1,2,2,2,3, 3,4,4,5,0,0, 0,2,2,2,0,0, 0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,0.99832625,0.99832625, $0.99832625, 0.99832625, 0.99832625, 0.99832625, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0. \\ \leftarrow$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.c↔ 0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau_exp_eos = (/ 0,0,0,0,0,0, 0,0,0,0,0, 0,0 /), 0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0, 0.0d0, 0.0d0 /), big b na = (/ 0.0d0, 0.0d0, 0.0d0 /), big c na = (/ 0.0d0, 0.0d0, 0.0d0 /), big d na = (/ 0.0d0, 0.0d0, 0.0d0 /), n1 id = 5, n id = 5, c id = (/ 3.9465247, -0.0088586725, 0.00013939626, -0.30056204e-6,0.20504001e-9,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,1.0,2.↔ 0, 3.0,4.0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0 /), a1 id = -8.5391328033953542, a2 id = 13.4878238763322749)

• type(meosdata), parameter meos_50 = meosdata(ident = "MEG", name = "eglycol", default ref state = "NBP", bibref = "Unpublished. Zhou and Lemmon (2018)", mw = 62.06784, tc = 719.0, pc = 10508.7, rhoc = 5.88, ttr = 260.6, ptr = 0.0002366, t nbp = 470.313, tr = 719.0, rhor = 5.88, Rgas = 8.3144598, acf = 0.619, t_max = 750.0, p_max = 100000.0, n_poly_eos = 7, n_exp_eos = 7, n_gauss_eos = 7, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.019393376,1.2215576,1.2751617, -3.6681302,-1.4660821,0.24628603, $1273408, \quad -0.12188623, -0.79487875, -0.024231918, \quad -0.00574040155, 0.0083087704, -0.041852456, \quad 0. \hookleftarrow$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.1,1.27, 1.244,1.1,0.32, 1.0,0.89,1.2, 1.34,1.3,1.49, 1.23,0.18,1.1, 0.75,0.79,0.77, 0.↔ 6,1.0,1.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta eos = (/ -0.9,-1.35,-0.8,-1.9.-2.0.-1.3. -20.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0, 0.0d0.0.0d0 /), beta eos = (/ -0.91,-1.25,-0.97,-0.5,-1.↔

0,-0.42, -1000.0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 1.17,1.49,1.3,1.5,1.2,1.2, 1.07,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_eos = (/ 1.37,0.4,1.0d0,2.45,1.9,2.0d0, 0.9,0. \leftarrow 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), tau_exp_eos = (/ 2,2,2,2,2,2,2,0,0,0,0,0,0,0) /), del_exp_eos = (/ 2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0) /), del_exp_eos = (/ 2,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0) /), b_assoc_eos = (/ 0.0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n_1_id = 1, n_id = 2, c_id = (/ 4.0,20.86,0.0d0, 0.0d0,0.

- type(meosdata), parameter meos_51 = meosdata(ident = "NC7", name = "heptane", default ref state = "NBP", bibref = "Unpublished. Tenji, Thol, Lemmon and Span (2018).Fundamental Equation of State f", mw = 100.202, tc = 540.2, pc = 2735.73, rhoc = 2.33, ttr = 182.55, ptr = 0.00017426, t nbp = 371.550, tr = 540.2, rhor = 2.33, Rgas = 8.3144598, acf = 0.349, t max = 600.0, p max = 100000.0, n poly eos = 5, n exp eos = 5, n_gauss_eos = 4, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.04021974,1.417638,-1.822198, -0.8536007,0.265174,-1.968992, -1.420553,0.8501985,-1.516957, -0.02581013,2.810547,-0.008215312, -0.0d0.0.0d0, 0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.208,0.87, 1.036,0.↔ 574,2.0, 2.26,1.1,1.87, 0.985,0.73,1.13, 1.23,1.4,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.-0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), d eos = 0d0, 0.0d0, 0. $0d0, 0.0d0, \ 0.0d0, 0.0d0, 0.0d0, \ 0.0d0, 0.0d0$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -1.017,-5.3,-1.135,-1.227,0,↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -1.41,-83.0,-1.54,-1.405,0,↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 1.35,1.14,1.04,1.26,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.9,0.92,0.52,1.236,0.↔ 0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.↔ 0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 4, c id = (/ 4.0,11.36,18.82, 29.14,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,190.0,3800.0, 1500.0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = 17.46311465657638, a2_id = -2.9932383994019123)
- type(meosdata), parameter meos 52 = meosdata(ident = "NC4", name = "butane", default ref↔ _state = "IIR", bibref = "DOI: 10.1063/1.1901687", mw = 58.1222, tc = 425.125, pc = 3796.↔ 0, rhoc = 3.922769613, ttr = 134.895, ptr = 0.0006656, t_nbp = 272.660, tr = 425.125, rhor = 3.922769613, Rgas = 8.314472, acf = 0.201, t max = 575.0, p max = 200000.0, n poly \leftrightarrow eos = 7, n exp eos = 16, n gauss eos = 2, n nona eos = 0, n assoc eos = 0, n eos = (/ 2. 0.11215007011442,-0.035910933680333,0. 5536998241635, -4.4585951806696, 0.82425886369063, 025147918369616,-0.0015202958578918, 0.004706068232642,-0.097845414174006,-0.04831790415876, 0.17841271865468,0.018173836739334,-0.11399068074953, 0.0193298966666669,0.001157587740101,0.↔ 00015253808698116, -0.043688558458471,-0.0082403190629989,-0.028390056949441, 0.0014904666224681,0.↔ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0 /), t eos = (/ 0.5,1.0,1.↔ 5, 0.0,0.5,0.5, 0.75,2.0,2.5, 2.5,1.5,1.0, 1.5,4.0,7.0, 3.0,7.0,3.0, 1.0,6.0,0.0, 6.0,13.0,2.0, 0.0,0.0d0,0.0d0, 0.0d0, $eos = (/ \ 1.0d0, 1.0$ 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), eta eos = (/ -10.0, -10.0, 0.0d0, 0.0d0,

- type(meosdata), parameter meos_53 = meosdata(ident = "OXYL", name = "oxylene", default ref state = "NBP", bibref = "DOI: 10.1063/1.3703506", mw = 106.165, tc = 630.259, pc = 3737.5, rhoc = 2.6845, ttr = 247.985, ptr = 0.0228, t_nbp = 417.521, tr = 630.259, rhor = 2.6845, Rgas = 8.314472, acf = 0.312, t_max = 700.0, p_max = 70000.0, n_poly_eos = 7, n_exp_eos = 5, n_gauss_eos = 4, n_nona_eos = 0, n↔ assoc eos = 0, n eos = (/ 0.0036765156,-0.13918171,0.014104203, 1.5398899,-2.3600925,-0.44359159, 0.19596977,-1.0909408,-0.21890801, 1.1179223,-0.93563815,-0.018102996, 1.4172368,-0.57134695,-0.↔ 081944041, -40.682878,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.↔ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.6,0.91, 0.3,0.895,1.↔ $167, \ 0.435, 2.766, 3.8, \ 1.31, 3.0, 0.77, \ 1.41, 4.8, 1.856, \ 2.0, 0.0d0, 0.0d0, \ 0.0d0, 0.0$ $0d0,\ 0.0d0, 0$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_eos = (/ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), eta eos = (/ -1.1723,-1.095,-1.6166,-20.4,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -2.442,-1.342,-3.0,-450.0,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 1.2655,0.3959,0.7789,1.↔ 162,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon_eos = (/ 0.552,0.728,0.↔ 498,0.894,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp eos = (/ 2,2,2,2,0,0, na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 5, c_id = (/ 3.748798,4.754892,6.↔ 915052, 25.84813,10.93886,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,225.0,627.0, 1726.0,4941.0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = 10.1373795661858708, a2 id = -0.9128323735238781)
- type(meosdata), parameter meos_54 = meosdata(ident = "R134A", name = "r134a", default ref state = "IIR", bibref = "DOI: 10.1063/1.555958", mw = 102.032, tc = 374.21, pc = 4059.28, rhoc = 5.017053, ttr = 169.85, ptr = 0.3896, t nbp = 247.076, tr = 374.18, rhor = 4.978830171, Rgas = 8.314471, acf = 0.32684, t max = 455.0, p_max = 70000.0, n_poly_eos = 8, n_exp_eos = 13, n_gauss_eos = 0, n_nona_eos = 0, n_assoc_↔ eos = 0, n_eos = (/ 0.05586817,0.498223,0.02458698, 0.0008570145,0.0004788584,-1.800808, 0.2671641,-0.04781652,0.01423987, 0.3324062,-0.007485907,0.0001017263, -0.5184567,-0.08692288,0.2057144, 0.005000457,0.0004603262,-0.003497836, 0.006995038,-0.01452184,-0.0001285458, 0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ -0.↔ 5,0.0,0.0, 0.0,1.5,1.5, 2.0,2.0,1.0, 3.0,5.0,1.0, 5.0,5.0,6.0, 10.0,10.0,10.0, 18.0,22.0,50.0, 0.0d0,0.0d0,0.↔ $0d0,\ 0.0d0, 0$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), d eos = (/ 0,0,0,0,0,0 /), g_eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0,1.0d0, 1.↔ 0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0...

- type(meosdata), parameter meos 55 = meosdata(ident = "C3", name = "propane", default ref state = "IIR", bibref = "DOI: 10.1021/je900217v", mw = 44.09562, tc = 369.89, pc = 4251.2, rhoc = 5.0, ttr = 85.525, ptr = 0.000000172, t_nbp = 231.036, tr = 369.89, rhor = 5.0, Rgas = 8.314472, acf = 0.1521, t_max = 650.0, p_max = 1000000.0, n_poly_eos = 5, n_exp_eos = 6, n_gauss_eos = 7, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.042910051,1.7313671,-2.4516524, 0.34157466,-0.46047898,-0.66847295, 0.20889705,0.19421381,-0.22917851, -0.60405866,0.066680654,0.017534618, 0.33874242,0.22228777,-0.23219062, -0.09220694,-0.47575718,-0.017486824, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.33,0.8, 0.43,0.90,2.46, 2.09,0.88,1.↔ 09, 3.25, 4.62, 0.76, 2.50, 2.75, 3.05, 2.55, 8.40, 6.75, 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), d_eos = (/ 4,1,1,2,2,1, 3,6,6,2,3,1, $=(/\ 1.0d0, 0.0d0, 0.$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -0.963,-1.977,-1.917,-2.307,-2.546,-3.28, -14.↔ 6,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -2.33,-3.47,-3.15,-3.19,-0.92,-18.8, -547.↔ 8,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.684,0.829,1.419,0.817,1.5,1.426, 1.↔ 093,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon eos = (/ 1.283,0.6936,0.788,0.473,0.8577,0.271, a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 5, c_id = (/ 4.0,3.043,5.874, 9.337,7.922,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,393.0,1237.0, 1984.0,4351.0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0 /), a1 id = -4.9705912033525124, a2 id = 4.293524424315649)
- type(meosdata), parameter meos_56 = meosdata(ident = "TOLU", name = "toluene", default ref state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 92.13842, tc = 591.75, pc = 4126.3, rhoc = 3.169, ttr = 178.0, ptr = 0.00003939, t nbp = 383.75, tr = 591.75, rhor = 3.169, Rgas = 8.314472, acf = 0.2657, t max = 700.0, p_max = 500000.0, n_poly_eos = 6, n_exp_eos = 6, n_gauss_eos = 0, n_nona_eos = 0, n_assoc↔ _eos = 0, n_eos = (/ 0.96464,-2.7855,0.86712, -0.18860,0.11804,0.00025181, 0.57196,-0.029287,-0.43351, $-0.12540, -0.028207, 0.014076, \ 0.0d0, 0.0d0, 0.0d0, \ 0.0d0, 0.0d0,$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.125,1.5, 1.375,0.25,0.875, 0.625,1.75,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0, 0.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0. $0d0, 0.0d0, \ 0.0d0, 0.0d0,$ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), eta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma eos =

- type(meosdata), parameter meos 57 = meosdata(ident = "R142B", name = "r142b", default ref state = "IIR", bibref = "DOI: 10.1021/je050186n", mw = 100.49503, tc = 410.26, pc = 4055.0, rhoc = 4.438, ttr = 142.↔ 72, ptr = 0.003632, t nbp = 264.03, tr = 410.26, rhor = 4.438, Rgas = 8.314472, acf = 0.2321, t max = 470.0, p_max = 60000.0, n_poly_eos = 5, n_exp_eos = 7, n_gauss_eos = 0, n_nona_eos = 0, n_assoc↔ _eos = 0, n_eos = (/ 1.0038,-2.7662,0.42921, 0.081363,0.00024174,0.48246, 0.75542,-0.007430,-0.41460, -0.016558,-0.10644,-0.021704, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0... $0d0, \ 0.0d0, 0.0d0,$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25, 1.25, 1.5, 0.25, 0.875, 2.375, 2.0, 2.125, 3.5, 6.5, 4.75, 12.5, 0.0d0, 0.0d0,0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0, 0.0d0, 0.0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0/), eta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), tau exp eos = 0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 5, c id = (/ 4.0,5.0385,6.8356, 4.0591,2.8136,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,473.0,1256.0, 2497.↔ 0,6840.0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -12.6016704500950851, a2 id = 8.316026972375175)
- type(meosdata), parameter meos_58 = meosdata(ident = "NC5", name = "pentane", default ref state = "NBP", bibref = "Unpublished. Thol, Uhde, Lemmon and Span (2019). Fundamental Equations of State ", mw = 72.14878, tc = 469.7, pc = 3367.5, rhoc = 3.21, ttr = 143.47, ptr = 0.000078028, t nbp = 309.209, tr = 469.7, rhor = 3.21, Rgas = 8.3144598, acf = 0.251, t max = 650.0, p max = 780000.0, n poly eos = 5, n exp eos = 6, n_gauss_eos = 5, n_nona_eos = 0, n_assoc_eos = 0, n_eos = (/ 0.042952795,2.4923999,-2.603872, -0.83829913,0.19223378,-3.0778196, -0.000324816,-1.6781976,0.6416425, -1.7300934,-0.017585046,4.↔ 5708883, -0.0758188, -0.62122633, -0.42413043, -2.0418443, 0.0d0, 0.0d $0d0, 0.0d0, \ 0.0d0, 0.0d0, 0.0d0, \ 0.0d0, 0.0d0$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t↔ eos = (/ 1.0d0,0.367,0.704, 1.04,0.494,1.34, 0.688,1.688,0.88, 1.357,1.021,0.979, 2.966,1.35,0.664, 0.↔ 937,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0. $0d0,\ 0.0d0, 0$ 0.0d0,0.0d0 /), beta eos = (/ -0.583,-31.6,-0.52,-0.654,-0.75,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 1.06,1.37,1.09,1.19,0.83,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.↔
- type(meosdata), parameter meos 59 = meosdata(ident = "3MP", name = "3methylpentane", default ref ~ state = "NBP", bibref = "Unpublished. Gao, Wu and Lemmon (2017)", mw = 86.17536, tc = 506.0, pc = 3184.5, rhoc = 2.78, ttr = 110.263, ptr = 0.0000000002, t nbp = 336.379, tr = 506.0, rhor = 2.78, Rgas = 8.3144598, acf = 0.268, t max = 550.0, p max = 1000000.0, n poly eos = 5, n exp eos = 5, n gauss eos = 6, n nona \leftrightarrow eos = 0, n assoc eos = 0, n eos = (/ 0.006178288, 0.763315017, -0.5546657, -1.0604327, 0.23117181, -0.5546657, -0.554665, -0.554665, -0.554665, -0.55466, -0.55466, -0.55466, -0.55466, -0.55466, -0.55466, -0.55466, -0.55466, -0.55466, -0.55466, -0.5566,12365512, -0.12052593, -0.53359397, 0.0d0, $0d0,\ 0.0d0, 0.0d0, 0.0d0,\ 0.0d0, 0.0d0,$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), t eos = (/ 1.0d0,0.16,1.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0)), t eos = (/ 1.0d0,0.16,1.0d0,0. 1.0d0,0.386,1.54, 2.0d0,1.0d0,2.5, 1.66,0.44,1.0d0, 0.55,0.705,1.5, 1.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 0,0,0,0,0,0, 0,0,0,0,0,0 /), g_eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0,1.0d0, 1.0d0,0.↔ 0d0, 0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta_eos = (/ -1.409,-2.53,-1.↔ 781,-2.045,-0.688,-20.1, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -1.876,-1.158,-1.808.-1.646.-1.0d0.-660.0d0, 0.0d0.0.0d0.0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0.0.0d0 /), gamma eos = (/ 1.↔ 2603,1.207,1.045,1.069,0.923,1.109, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.7065,2.19,0.244,1.014,0.689,0.905, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp eos = 0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 4, c_id = (/ 7.0,17.↔ 741,25.090, 7.4047,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,3946.0,1555.0, 470.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = 4.6479377291134423, a2 id = -0.9065150384577076)
- type(meosdata), parameter meos 60 = meosdata(ident = "NC9", name = "nonane", default ref state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 128.2551, tc = 594.55, pc = 2281.0, rhoc = 1.81, ttr = 219.7, ptr = 0.0004444, t nbp = 423.91, tr = 594.55, rhor = 1.81, Rgas = 8.314472, acf = 0.4433, t max = 600.0, p max = 800000.0, n poly eos = 6, n exp eos = 6, n gauss eos = 0, n nona eos = 0, n assoc↔ eos = 0, n eos = (/ 1.1151,-2.7020,0.83416, -0.38828,0.13760,0.00028185, 0.62037,0.015847,-0.61726, -0.15043,-0.012982,0.0044325, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0... $0d0,\ 0.0d0, 0$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 0.25,1.125,1.5, 1.375,0.25,0.875, 0.625,1.75,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0d0, 0.0d0, 0.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), tau exp eos =

- type(meosdata), parameter meos 61 = meosdata(ident = "XE", name = "xenon", default ref state = "NBP", bibref = "DOI: 10.1021/je050186n", mw = 131.293, tc = 289.733, pc = 5842.0, rhoc = 8.4, ttr = 161.405, ptr = 81.77, t nbp = 165.05, tr = 289.733, rhor = 8.4, Rgas = 8.314472, acf = 0.00363, t max = 750.0, p max = 700000.0, n poly eos = 6, n exp eos = 6, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.83115,-2.3553,0.53904, 0.014382,0.066309,0.00019649, 0.14996,-0.035319,-0.15929, -0.027521,-0.↔ 023305, 0.0086941, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.25,1.125,1.↔ 5, 1.375,0.25,0.875, 0.625,1.75,3.625, 3.625,14.5,12.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0.0d0, $0d0, \ 1.0d0, 1.0d0, 1.0d0, \ 0.0d0, 0.0d0$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta eos = (/ 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta eos = (/ 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), epsilon eos = (/ 0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0 /), tau exp eos = 0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0, 0.0d0, 0.0d0 /), big a na = (/ 0.0d0, 0.0d0, 0.0d0 /), big b na = (/ 0.0d0, 0.0d0, 0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 1, c id = (/ 2.↔ 5,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = -3.8227169849622977, a2 id = 3.8416390607135864)
- type(meosdata), parameter meos 62 = meosdata(ident = "NC11", name = "c11", default ref state = "NBP", bibref = "DOI: 10.1134/S0040601511080027", mw = 156.30826, tc = 638.8, pc = 1990.4, rhoc = 1.5149, ttr = 247.541, ptr = 0.0004461, t nbp = 468.934, tr = 638.8, rhor = 1.5149, Rgas = 8.314472, acf = 0.539, t max = 700.0, p max = 500000.0, n poly eos = 6, n exp eos = 8, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ -0.66172706,1.3375396,-2.5608399, 0.10678910,0.↔ 00028873614,0.049587209, 0.55407101e-7,0.99754712,1.5774025, 0.0013108354,-0.59326961,-0.↔ 093001876, -0.17960228,-0.022560853,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 1.5,0.25,1.25, 0.25,0.875,1.375, 0.0,2.375,2.0d0, 2.125,3.5,6.5, 4.75,12.5,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0 0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), eta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), tau exp eos =

0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 4, c_id = (/ 5.9624,20.↔ 584,44.512, 16.520,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t_id = (/ 0.0,323.0,1597.0, 3302.0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0 /), a1_id = 32.12928483616682, a2_id = -10.75942326931605)

- type(meosdata), parameter meos 63 = meosdata(ident = "EBZN", name = "ebenzene", default ref state = "NBP", bibref = "DOI: 10.1063/1.3703506", mw = 106.165, tc = 617.12, pc = 3622.4, rhoc = 2.741016, ttr = 178.2, ptr = 0.000004002, t nbp = 409.314, tr = 617.12, rhor = 2.741016, Rgas = 8.314472, acf = 0.305, t_max = 700.0, p_max = 60000.0, n_poly_eos = 7, n_exp_eos = 5, n_gauss_eos = 4, n_nona_↔ eos = 0, n assoc eos = 0, n eos = (/ 0.0018109418,-0.076824284,0.041823789, 1.5059649,-2.4122441,-0.47788846, 0.18814732, -1.0657412, -0.20797007, 1.1222031, -0.99300799, -0.027300984, 1.3757894, -0.-44477155.-0.07769742, -2.16719.0.0d0.0.0d0, 0.0d0.0.0d0, 0.0d0.0.0d0, 0.0d0.0.0d0, 0.0d0, 0.0 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,1.0,0.92, 0.27,0.↔ 962,1.033, 0.513,2.31,3.21, 1.26,2.29,1.0, 0.6,3.6,2.1, 0.5,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0... 0d0, 0.0d0.0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0, 0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0 /), eta eos = (/ -1.178,-1.07,-1.775,-15.45,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_eos = (/ -2.437,-1.488,-4.0,-418.6,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 1.2667,0.4237,0.8573,1.↔ 15,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.5494,0.7235,0.↔ 0,0,0,0,0,0,0,0/), del exp eos = (/ 2,2,2,2,0,0,0,0,0,0,0,0,0,0/), b assoc eos = (/ 0.0d0,0.0d0 /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0... 0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0... 0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 4, c id = (/ 5.2557889,9.7329909,11.↔ 201832, 25.440749,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), t id = (/ 0.0,585.0,4420.0, 1673.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), a1 id = 5.7040936889063971, a2 id = -0.5241459501533468)
- type(meosdata), parameter meos 64 = meosdata(ident = "R143A", name = "r143a", default ref state = "IIR", bibref = "DOI: 10.1063/1.1318909", mw = 84.041, tc = 345.857, pc = 3761.0, rhoc = 5.↔ 12845, ttr = 161.34, ptr = 1.0749, t nbp = 225.91, tr = 345.857, rhor = 5.12845, Rgas = 8.314472, acf = 0.2615, t_max = 650.0, p_max = 100000.0, n_poly_eos = 5, n_exp_eos = 12, n_gauss_eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ 7.7736443,-8.70185,-0.27779799, 0.14609220,0.↔ 0089581616,-0.20552116, 0.10653258,0.023270816,-0.013247542, -0.04279387,0.36221685,-0.25671899, -0.092326113.0.083774837.0.017128445, -0.01725611.0.0049080492.0.0d0, 0.0d0.0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = $(/\ 0.67, 0.833, 1.7,\ 1.82, 0.35, 3.9,\ 0.95, 0.0, 1.19,\ 7.2, 5.9, 7.65,\ 7.5, 7.45, 15.5,\ 22.0, 19.0, 0.0d0,\ 0.0d0, 0.0d0$ $0d0, \ 0.0d0, 0.0d0,$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... $0d0, \ 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 1.0d0, 0.0d0, 0.0d0,$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta eos = (/ 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0/), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp eos =

0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 3, c_id = (/ 1.0578,4.↔ 4402,3.7515, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), t_id = (/ 0.33,1791.0,823.0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), a1_id = 5.9030332880254637, a2_id = 7.3072591981034742)

- type(meosdata), parameter meos_65 = meosdata(ident = "C3_1", name = "cyclopro", default_ref_ state = "IIR", bibref = "Polt, Platzer and Maurer (1992). Parameter der Thermischen Zustandsgleichung von", mw = 42.081, tc = 398.3, pc = 5579.7, rhoc = 6.1429149, ttr = 145.7, ptr = 0.07, t↔ _nbp = 241.670, tr = 398.3, rhor = 6.1429149, Rgas = 8.3143, acf = 0.1305, t_max = 473.0, p_↔ max = 28000.0, n poly eos = 16, n exp eos = 6, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ -1.37016097588,2.12444673002,-0.578908942724, -1.15633726379,2.52574014413,-2.↔ 82265442929. 0.283576113255.-0.0842718450726.0.931086305879. -1.05296584292.0.432020532920.-0.251108254803, 0.127725582443, 0.0483621161849, -0.0116473795607,0.000334005754773,1. 37016097588,-2.12444673002, 0.578908942724,0.304945770499,-0.184276165165, -0.292111460397,0.↔ 0.0d0.0.0d0.0.0d0. 0.0d0.0.0d0. 0.0d0.0.0d0. 0.0d0.0.0d0. 0.0d0.0.0d0.0.0d0. 0.0d0.0.0d0. 0.0d0.0.0d0 /), t eos $=(/\ 3.0,4.0,5.0,\ 0.0,1.0,2.0,\ 3.0,4.0,0.0,\ 1.0,2.0,0.0,\ 1.0,0.0,1.0,\ 1.0,3.0,4.0,\ 5.0,3.0,4.0,\ 5.0,0.0d0$ 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d eos = (/ 0,0,0,0,0,0 /), g_eos = (/ 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0,1.0d0, 1.0d0,1.0d0, 1.0d0,1.0d 1.0d0, 0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0 /), eta_eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.0d0,0.0d0,0.0d0,0... 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0... na = (/ 0.0d0, 0.0d0, 0.0d0 /), a na = (/ 0.0d0, 0.0d0, 0.0d0 /), b na = (/ 0.0d0, 0.0d0, 0.0d0 /), beta na = (/ 0.0d0, 0.0d0, 0.0d0 /)0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 1, n id = 4, c id = (/ 4.00007687959299,6.↔ 096117164499717,6.262120355002826, 8.638166021481062,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,4380.0,1180.0, 1810.0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0 /), a1_id = -7.346431336306658, a2_id = 5.3030265687291829)
- type(meosdata), parameter meos 66 = meosdata(ident = "PRLN", name = "propylen", default ref state = "IIR", bibref = "Unpublished. Lemmon, McLinden, Overhoff and Wagner (2018). A Reference Equation ", mw = 42.07974, tc = 364.211, pc = 4555.0, rhoc = 5.457, ttr = 87.953, ptr = 0.0000007471, t nbp = 225.531, tr = 364.211, rhor = 5.457, Rgas = 8.314472, acf = 0.146, t max = 575.0, p max = 1000000. 0, n_poly_eos = 6, n_exp_eos = 6, n_gauss_eos = 9, n_nona eos = 0, n assoc eos = 0, n eos = 0150294, -0.03162971,-0.04107194,-1.190241, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.205,0.56, 0.676,1.0,0.5, 1.0,1.94,2.0, 0.000,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.205,0.56, 0.676,1.0,0.5, 1.0,1.94,2.0, 0.000,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.205,0.56, 0.676,1.0,0.5, 1.0,1.94,2.0, 0.000,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.205,0.56, 0.676,1.0,0.5, 1.0,1.94,2.0, 0.000,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), t eos = (/ 1.0,0.205,0.56, 0.676,1.0,0.5, 1.0,1.94,2.0, 0.000,0.0d0,0.0 1.0,2.66,0.83, 1.6,2.5,3.0, 2.5,2.72,4.0, 4.0,1.0,4.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0... 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d eos = (/ 4,1,1,2,2,3, 1,1,3,2,2,8, 1,1,2,3,3,2, 0.0d0, 0.0d0,0d0, 0.0d0, 0.0d0,0.0d0,0.0d0 /), eta_eos = (/ -1.07,-0.66,-1.2,-1.12,-1.47,-1.93, -3.3,-15.4,-6.0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta eos = (/ -0.77,-0.83,-0.607,-0.4,-0.66,-0.07, -3.1,-387.0,-41.0,0.0d0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0 /), gamma eos = (/ 1.21,1.08,0.83,0.56,1.22,1.81, 1.54,1.12,1.4,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0

/), epsilon_eos = (/ 0.78,0.82,1.94,0.69,1.96,1.3, 0.38,0.91,0.7,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), tau_exp⇔ _eos = (/ 2,2,2,2,2,2,2,2,2,2,0,0,0,0,0 /), del_exp_eos = (/ 2,2,2,2,2,2,2,2,2,0,0,0,0,0 /), b_assoc_eos = (/ 0.0d0,0.0d0 /), n_na = (/ 0.0d0,0.0d0,0.0d0 /), a_na = (/ 0.0d0,0.0d0,0.0d0 /), b_na = (/ 0.0d0,0.0d0,0.0d0 /), beta_na = (/ 0.0d0,0.0d0,0.0d0 /), big_a_na = (/ 0.0d0,0.0d0,0.0d0 /), big_b_na = (/ 0.0d0,0.0d0,0.0d0 /), big_c_na = (/ 0.0d0,0.0d0,0.0d0 /), big_d_na = (/ 0.0d0,0.0d0,0.0d0 /), n1_id = 1, n_id = 5, c_id = (/ 4.0,1.544,4.013, 8.923,6.02,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), t_id = (/ 0.0,324.0,973.0, 1932.0,4317.0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), a1_id = -5.1823353913028285, a2_id = 4.3639943544853246)

- type(meosdata), parameter meos 67 = meosdata(ident = "R41", name = "r41", default ref state = "IIR", bibref = "DOI: 10.1021/je050186n", mw = 34.03292, tc = 317.28, pc = 5897.0, rhoc = 9.3, ttr = 129.82, ptr = 0.345, t nbp = 194.84, tr = 317.28, rhor = 9.3, Rgas = 8.314472, acf = 0.2004, t max = 425.0, p \leftrightarrow max = 70000.0, n poly eos = 5, n exp eos = 7, n gauss eos = 0, n nona eos = 0, n assoc eos = 0, n eos = (/ 1.6264,-2.8337,0.0010932, 0.037136,0.00018724,-0.22189, 0.55021,0.0461,-0.056405, -0.↔ $17005, -0.032409, -0.012276, \ 0.0d0, 0.0d$ 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t eos = (/ 0.↔ 52,1.12,4.0, 0.03,0.63,3.4, 2.2,1.5,0.1, 4.8,3.5,15.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.,↔ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ $0d0, \ 1.0d0, 1.0d0, 1.0d0, \ 0.0d0, 0.0d0$ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta eos = (/ 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_eos = (/ 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma eos = (/ 0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0.0.0d0 /), epsilon eos = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), tau exp eos = (/ /), n na = (/ 0.0d0,0.0d0,0.0d0 /), a na = (/ 0.0d0,0.0d0,0.0d0 /), b na = (/ 0.0d0,0.0d0,0.0d0 /), beta na = (/ 0.0d0,0.0d0,0.0d0 /), big a na = (/ 0.0d0,0.0d0,0.0d0 /), big b na = (/ 0.0d0,0.0d0,0.0d0 /), big c na = (/ 0.0d0,0.0d0,0.0d0 /), big d na = (/ 0.0d0,0.0d0,0.0d0 /), n1 id = 2, n id = 4, c id = (/ 4.0,0.00016937,5.↔ 6936, 2.9351,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0 /), t id = (/ 0.0,1.0,1841.0, 4232.↔ 0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), a1 id = -4.8676501221130053, a2 id = 4.↔ 2527989117950007)
- type(meosdata), parameter meos 68 = meosdata(ident = "MXYL", name = "mxylene", default ref state = "NBP", bibref = "DOI: 10.1063/1.3703506", mw = 106.165, tc = 616.89, pc = 3534.6, rhoc = 2.665, ttr = 225.3, ptr = 0.003123, t nbp = 412.214, tr = 616.89, rhor = 2.665, Rgas = 8.314472, acf = 0.326, t \leftrightarrow max = 700.0, p max = 200000.0, n poly eos = 6, n exp eos = 5, n gauss eos = 4, n nona eos = 0, n assoc eos = 0, n eos = (/ 0.000012791017,0.041063111,1.505996, -2.3095875,-0.46969,0.171031, -1.↔ 001728.-0.3945766,0.6970578, -0.3002876,-0.024311,0.815488, -0.330647,-0.123393,-0.54661, 0.0d0,0.↔ 0.0d0, 0.0d0,0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_eos = (/ 1.0,0.91,0.231, 0.772,1.205,0.323, 2.7,3.11,0.768, 4.1,0.818,2.0, $2.9,3.83,0.5,\ 0.0d0,0.0d0,0.0d0,\ 0.0d0,0.0d0,0.0d0,\ 0.0d0,0.0d0,0.0d0,\ 0.0d0,0.0d0,0.0d0,\ 0.0d0,0.0d0$ 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.↔ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0, 0.0d0, 0.0d0,0.0d0,0.0d0 /), eta eos = (/ -1.0244,-1.3788,-0.9806,-6.3563,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.-0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_eos = (/ -1.66,-1.9354,-1.0323,-78.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.-0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_eos = (/ 1.1013,0.6515,0.4975,1.26,0.0d0,0.0d0, 0.0d0,0... 0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon eos = (/ 0.713,0.9169,0.6897,0.7245,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), tau exp eos = (/ 2,2,2,2,0,0, 0,0,0,0,0,0,0,0, /), del ↔

- integer, parameter **maxmeos** = 68
- type(meosdata), dimension(maxmeos), parameter meosdb = (/ meos_1,meos_2,meos_3,meos_4,meos_↔ 5,meos_6, meos_7,meos_8,meos_9,meos_10,meos_11,meos_12, meos_13,meos_14,meos_15,meos, _16,meos_17,meos_18, meos_19,meos_20,meos_21,meos_22,meos_23,meos_24, meos_25,meos, _26,meos_27,meos_28,meos_29,meos_30, meos_31,meos_32,meos_33,meos_34,meos_35,meos_36, meos_37,meos_38,meos_39,meos_40,meos_41,meos_42, meos_43,meos_44,meos_45,meos_46,meos, _47,meos_48, meos_49,meos_50,meos_51,meos_52,meos_53,meos_54, meos_55,meos_56,meos, _57,meos_58,meos_59,meos_60, meos_61,meos_62,meos_63,meos_64,meos_65,meos_66, meos_, _67,meos_68 /)

5.32.1 Detailed Description

Automatically generated file meosdatadb.f90 Time stamp: 2023-03-23T14:18:36.228460.

5.33 meosmixdb Module Reference

Automatically generated file meosmixdb.f90 Time stamp: 2023-03-23T14:50:21.734496.

Data Types

- type meos_mix_data
- type meos_mix_reducing

Variables

- type(meos_mix_reducing), parameter meos_red_1 = meos_mix_reducing(ident1 = "N2", ident2 = "NH3", bibref = "Neumann et al. (2020)", beta_v = 0.739937, gamma_v = 1.447261, beta_T = 1.057512, gamma_T = 0.952705)
- type(meos_mix_reducing), parameter meos_red_2 = meos_mix_reducing(ident1 = "H2", ident2 = "NH3", bibref = "Neumann et al. (2020)", beta_v = 1.0103, gamma_v = 0.7298, beta_T = 0.98824, gamma_T = 1.1266)
- type(meos_mix_reducing), parameter **meos_red_3** = meos_mix_reducing(ident1 = "N2", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.435)
- type(meos_mix_reducing), parameter $meos_red_4 = meos_mix_reducing(ident1 = "CO2", ident2 = "H2", bibref = "Beckmueller et al. (2020) ", beta_v = 1.198000, gamma_v = 0.842000, beta_T = 0.979000, gamma_T = 1.961000)$
- type(meos_mix_reducing), parameter meos_red_5 = meos_mix_reducing(ident1 = "R115", ident2 = "R114", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0021192, beta_T = 1., gamma_T = 1... 0008497)
- type(meos_mix_reducing), parameter meos_red_6 = meos_mix_reducing(ident1 = "NC10", ident2 = "O2", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_7 = meos_mix_reducing(ident1 = "C1", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.954, gamma_T = 1.366)
- type(meos_mix_reducing), parameter **meos_red_8** = meos_mix_reducing(ident1 = "C1", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 1.012599087, gamma_v = 1.040161207, beta_T = 1.↔ 011090031, gamma_T = 0.961155729)
- type(meos_mix_reducing), parameter meos_red_9 = meos_mix_reducing(ident1 = "AR", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.01, gamma_T = 1.397)

- type(meos_mix_reducing), parameter meos_red_10 = meos_mix_reducing(ident1 = "R114", ident2 = "NC6", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.2% from 12 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.003723815355, gamma_T = 0.98179)
- type(meos_mix_reducing), parameter meos_red_11 = meos_mix_reducing(ident1 = "C2", ident2 = "PRLN", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.002)
- type(meos_mix_reducing), parameter meos_red_12 = meos_mix_reducing(ident1 = "R23", ident2 = "IC5", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.02% from 26 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.029261916280, gamma_T = 0.93001)
- type(meos_mix_reducing), parameter meos_red_13 = meos_mix_reducing(ident1 = "NC4", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.02)
- type(meos_mix_reducing), parameter meos_red_14 = meos_mix_reducing(ident1 = "MEOH", ident2 = "NC7", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0533466, beta_T = 1., gamma_T = 0.8586313)
- type(meos_mix_reducing), parameter meos_red_15 = meos_mix_reducing(ident1 = "R23", ident2 = "C3", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.77% from 32 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.012002347845, gamma_T = 0.87585)
- type(meos_mix_reducing), parameter meos_red_16 = meos_mix_reducing(ident1 = "AR", ident2 = "NC10", bibref = "Mixing rules of nitrogen/decane used as an estimate.", beta_v = 1., gamma_v = 1., beta_T = 0.↔ 957934447, gamma_T = 1.822157123)
- type(meos_mix_reducing), parameter meos_red_17 = meos_mix_reducing(ident1 = "R114", ident2 = "NC5", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.12% from 12 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.003552576119, gamma_T = 0.97011)
- type(meos_mix_reducing), parameter meos_red_18 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.82% from 53 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.99896, gamma_T = 1.00464)
- type(meos_mix_reducing), parameter meos_red_19 = meos_mix_reducing(ident1 = "N2", ident2 = "NC6", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.195952177, beta_T = 1., gamma_T = 1.↔ 472607971)
- type(meos_mix_reducing), parameter meos_red_20 = meos_mix_reducing(ident1 = "C2", ident2 = "C3", bibref = "Kunz and Wagner (2007)", beta_v = 0.997607277, gamma_v = 1.00303472, beta_T = 0.996199694, gamma_T = 1.01473019)
- type(meos_mix_reducing), parameter meos_red_21 = meos_mix_reducing(ident1 = "TOLU", ident2 = "NC9", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from trend found in C1-C10)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_22 = meos_mix_reducing(ident1 = "CO2", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 0.973386152, beta_T = 1.00768862, gamma_T = 1.140671202)
- type(meos_mix_reducing), parameter meos_red_23 = meos_mix_reducing(ident1 = "NC7", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.006767176, beta_T = 1., gamma_T = 0...998793111)
- type(meos_mix_reducing), parameter meos_red_24 = meos_mix_reducing(ident1 = "NC8", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.56% from 24 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.9996901, gamma_T = 0.99296)
- type(meos_mix_reducing), parameter meos_red_25 = meos_mix_reducing(ident1 = "NC5", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.6340970, beta_T = 1., gamma_T = 0.9168380)
- type(meos_mix_reducing), parameter meos_red_26 = meos_mix_reducing(ident1 = "NC6", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1.001516371, gamma_v = 1.013511439, beta_T = 0.99764101, gamma_T = 1.028939539)
- type(meos_mix_reducing), parameter meos_red_27 = meos_mix_reducing(ident1 = "R32", ident2 = "PRLN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.36% from 80 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.003673444808, gamma_T = 0.90627)
- type(meos_mix_reducing), parameter meos_red_28 = meos_mix_reducing(ident1 = "NH3", ident2 = "NC5", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.↔ 161980013944, gamma_T = 0.8702)

- type(meos_mix_reducing), parameter meos_red_29 = meos_mix_reducing(ident1 = "CO2", ident2 = "R1234YF", bibref = "E.W. Lemmon, NIST (2013); based on simulation data from Gabriele Raabe", beta_v = 1., gamma_v = 1.015, beta_T = 1.017, gamma_T = 1.)
- type(meos_mix_reducing), parameter **meos_red_30** = meos_mix_reducing(ident1 = "NC4", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010) (estimated from propane and pentane mixed with dodecane)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.15)
- type(meos_mix_reducing), parameter meos_red_31 = meos_mix_reducing(ident1 = "N2", ident2 = "PRLN", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.99, gamma_T = 1.197)
- type(meos_mix_reducing), parameter meos_red_32 = meos_mix_reducing(ident1 = "NH3", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.3341, beta_T = 1.107297087809, gamma_T = 0.8395)
- type(meos_mix_reducing), parameter **meos_red_33** = meos_mix_reducing(ident1 = "NC4", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.019174227, beta_T = 1., gamma_T = 1.↔ 021283378)
- type(meos_mix_reducing), parameter meos_red_34 = meos_mix_reducing(ident1 = "NC10", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.005, beta_T = 1., gamma_T = 0.998)
- type(meos_mix_reducing), parameter meos_red_35 = meos_mix_reducing(ident1 = "CO2", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1.000151132, gamma_v = 1.183394668, beta_T = 1.02002879, gamma_T = 1.145512213)
- type(meos_mix_reducing), parameter meos_red_36 = meos_mix_reducing(ident1 = "C3", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.19)
- type(meos_mix_reducing), parameter meos_red_37 = meos_mix_reducing(ident1 = "R23", ident2 = "R32", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.36% from 16 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.00116, gamma_T = 1.00385)
- type(meos_mix_reducing), parameter **meos_red_38** = meos_mix_reducing(ident1 = "C2", ident2 = "IC4", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.006616886, beta_T = 1., gamma_T = 1.↔ 033283811)
- type(meos_mix_reducing), parameter meos_red_39 = meos_mix_reducing(ident1 = "NE", ident2 = "XE", bibref = "E.W. Lemmon, NIST (2017)", beta_v = 0.894, gamma_v = 1.213, beta_T = 1., gamma_T = 1.283)
- type(meos_mix_reducing), parameter meos_red_40 = meos_mix_reducing(ident1 = "OXYL", ident2 = "NC9", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.15% from 40 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.002908434460, gamma_T = 0.98501)
- type(meos_mix_reducing), parameter meos_red_41 = meos_mix_reducing(ident1 = "ETOH", ident2 = "CY-CLOHEX", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 0.994035785288, gamma_v = 1.2, beta_T = 0.989119683482, gamma_T = 0.961)
- type(meos_mix_reducing), parameter meos_red_42 = meos_mix_reducing(ident1 = "ETOH", ident2 = "NC9", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.048, beta → _T = 1.021450459653, gamma_T = 0.9)
- type(meos_mix_reducing), parameter meos_red_43 = meos_mix_reducing(ident1 = "CO", ident2 = "H2", bibref = "Beckmueller et al. (2020)", beta_v = 1.037000, gamma_v = 1.040000, beta_T = 1.078000, gamma ← _T = 1.105000)
- type(meos_mix_reducing), parameter meos_red_44 = meos_mix_reducing(ident1 = "C2", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.32% from 34 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.98799, gamma_T = 1.17616)
- type(meos_mix_reducing), parameter meos_red_45 = meos_mix_reducing(ident1 = "SO2", ident2 = "CO", bibref = "Herrig (2018) Linear Combining Rules / see Herrig (2018) PhD thesis", beta_v = 1.000000000, gamma_v = 1.007241430, beta_T = 1.000000000, gamma_T = 1.177903242)
- type(meos_mix_reducing), parameter meos_red_46 = meos_mix_reducing(ident1 = "IC4", ident2 = "ACE-TONE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1... 016363451570, gamma_T = 0.9358)
- type(meos_mix_reducing), parameter meos_red_47 = meos_mix_reducing(ident1 = "C2", ident2 = "NC6", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.169701102, beta_T = 1., gamma_T = 1... 092177796)

- type(meos_mix_reducing), parameter **meos_red_48** = meos_mix_reducing(ident1 = "N2", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.927, gamma_T = 1.666)
- type(meos_mix_reducing), parameter meos_red_49 = meos_mix_reducing(ident1 = "R12", ident2 = "NC7", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.43% from 4 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.011920422578, gamma_T = 1.03388)
- type(meos_mix_reducing), parameter meos_red_50 = meos_mix_reducing(ident1 = "NC4", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.0267)
- type(meos_mix_reducing), parameter meos_red_51 = meos_mix_reducing(ident1 = "MEOH", ident2 = "H2↔ O", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.034, beta_T = 0.995024875622, gamma_T = 0.961)
- type(meos_mix_reducing), parameter meos_red_52 = meos_mix_reducing(ident1 = "AR", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.492)
- type(meos_mix_reducing), parameter meos_red_53 = meos_mix_reducing(ident1 = "NC6", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.42% from 11 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.01308, gamma_T = 0.99672)
- type(meos_mix_reducing), parameter meos_red_54 = meos_mix_reducing(ident1 = "IC4", ident2 = "IC5", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.002284353, beta_T = 1., gamma_T = 1.↔ 001835788)
- type(meos_mix_reducing), parameter meos_red_55 = meos_mix_reducing(ident1 = "MEOH", ident2 = "BENZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.978473581213, gamma_T = 0.901)
- type(meos_mix_reducing), parameter **meos_red_56** = meos_mix_reducing(ident1 = "C3", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 0.984104227, gamma_v = 1.053040574, beta_T = 0.↔ 985331233, gamma_T = 1.140905252)
- type(meos_mix_reducing), parameter meos_red_57 = meos_mix_reducing(ident1 = "XE", ident2 = "C3_1", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.05% from 15 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.934273835661, gamma_T = 0.94711)
- type(meos_mix_reducing), parameter meos_red_58 = meos_mix_reducing(ident1 = "H2", ident2 = "H2S", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_59 = meos_mix_reducing(ident1 = "IC4", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.018, gamma_T = 0.965)
- type(meos_mix_reducing), parameter meos_red_60 = meos_mix_reducing(ident1 = "C1", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.95)
- type(meos_mix_reducing), parameter meos_red_61 = meos_mix_reducing(ident1 = "NH3", ident2 = "O2", bibref = "Neumann et al. (2020)", beta_v = 1.000000, gamma_v = 1.000002, beta_T = 1.000000, gamma_T = 1.118566)
- type(meos_mix_reducing), parameter meos_red_62 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "MEG", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.9108, beta_T = 0.9975, gamma_T = 1.0468)
- type(meos_mix_reducing), parameter meos_red_63 = meos_mix_reducing(ident1 = "CO2", ident2 = "R41", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 0.9771864, beta_T = 1., gamma_T = 0.↔ 9941317)
- type(meos_mix_reducing), parameter meos_red_64 = meos_mix_reducing(ident1 = "CO2", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1.044, gamma_v = 1.152, beta_T = 0.99, gamma_T = 0.966)
- type(meos_mix_reducing), parameter **meos_red_65** = meos_mix_reducing(ident1 = "IC4", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010) (estimated from propane and pentane mixed with dodecane)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.16)
- type(meos_mix_reducing), parameter meos_red_66 = meos_mix_reducing(ident1 = "KR", ident2 = "C2", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.↔ 992161920825, gamma_T = 1.0437)
- type(meos_mix_reducing), parameter meos_red_67 = meos_mix_reducing(ident1 = "R23", ident2 = "NC5", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.01% from 26 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.034960981971, gamma_T = 0.94007)

- type(meos_mix_reducing), parameter meos_red_68 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "CYCLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.9903, beta_T = 1., gamma_T = 0.9335)
- type(meos_mix_reducing), parameter meos_red_69 = meos_mix_reducing(ident1 = "C1", ident2 = "NC4", bibref = "Kunz and Wagner (2007)", beta_v = 0.979105972, gamma_v = 1.045375122, beta_T = 0.99417491, gamma_T = 1.171607691)
- type(meos_mix_reducing), parameter meos_red_70 = meos_mix_reducing(ident1 = "ETOH", ident2 = "NC8", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 0.986193293886, gamma_v = 1.036, beta_T = 0.985221674877, gamma_T = 0.887)
- type(meos_mix_reducing), parameter meos_red_71 = meos_mix_reducing(ident1 = "CO", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_72 = meos_mix_reducing(ident1 = "SO2", ident2 = "ACE-TONE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.↔ 990197049213, gamma_T = 1.0959)
- type(meos_mix_reducing), parameter meos_red_73 = meos_mix_reducing(ident1 = "XE", ident2 = "NC6", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.81% from 21 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.980786394531, gamma_T = 1.16656)
- type(meos_mix_reducing), parameter meos_red_74 = meos_mix_reducing(ident1 = "PRLN", ident2 = "H2↔ O", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.931, gamma_T = 0.8775)
- type(meos_mix_reducing), parameter meos_red_75 = meos_mix_reducing(ident1 = "R134A", ident2 = "MEOH", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.↔ 08% from 14 bubble-poin", beta v = 1., gamma v = 1., beta T = 0.992270215025, gamma T = 0.98889)
- type(meos_mix_reducing), parameter meos_red_76 = meos_mix_reducing(ident1 = "MEOH", ident2 = "NC12", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.6% from 52 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.109742428782, gamma_T = 0.79118)
- type(meos_mix_reducing), parameter meos_red_77 = meos_mix_reducing(ident1 = "R14", ident2 = "C2", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.39% from 29 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.985386715016, gamma_T = 0.89216)
- type(meos_mix_reducing), parameter meos_red_78 = meos_mix_reducing(ident1 = "CO2", ident2 = "PRLN", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1.096, gamma_v = 1.014, beta_T = 0.997, gamma_T = 0.945)
- type(meos_mix_reducing), parameter meos_red_79 = meos_mix_reducing(ident1 = "R23", ident2 = "R143↔ A", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.72% from 16 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.008095, gamma_T = 1.00381)
- type(meos_mix_reducing), parameter **meos_red_80** = meos_mix_reducing(ident1 = "IC4", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.060243344, beta_T = 1., gamma_T = 1.↔ 021624748)
- type(meos_mix_reducing), parameter **meos_red_81** = meos_mix_reducing(ident1 = "R32", ident2 = "IC4", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0454476, beta_T = 1., gamma_T = 0.↔ 8573096)
- type(meos_mix_reducing), parameter meos_red_82 = meos_mix_reducing(ident1 = "NH3", ident2 = "SO2", bibref = "Neumann et al. (2020)", beta_v = 1.000000, gamma_v = 1.000000, beta_T = 1.000000, gamma_T = 1.000000)
- type(meos_mix_reducing), parameter **meos_red_83** = meos_mix_reducing(ident1 = "R23", ident2 = "R116", bibref = "E.W. Lemmon, NIST (2004)", beta_v = 1., gamma_v = 1.0229397, beta_T = 1., gamma_T = 0.↔ 9090532)
- type(meos_mix_reducing), parameter meos_red_84 = meos_mix_reducing(ident1 = "F6S", ident2 = "C3", bibref = "E.W. Lemmon, NIST (2008)", beta_v = 1.007559212995, gamma_v = 1.0150842, beta_T = 0.↔ 990884850262, gamma_T = 0.89338144)
- type(meos_mix_reducing), parameter **meos_red_85** = meos_mix_reducing(ident1 = "KR", ident2 = "PRLN", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0390195, beta_T = 1., gamma_T = 1.↔ 0773977)
- type(meos_mix_reducing), parameter **meos_red_86** = meos_mix_reducing(ident1 = "C1", ident2 = "N2", bibref = "Kunz and Wagner (2007)", beta_v = 0.998721377, gamma_v = 1.013950311, beta_T = 0.99809883, gamma_T = 0.979273013)

- type(meos_mix_reducing), parameter **meos_red_87** = meos_mix_reducing(ident1 = "CO2", ident2 = "NC6", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 0.851343711, beta_T = 1., gamma_T = 1.↔ 038675574)
- type(meos_mix_reducing), parameter meos_red_88 = meos_mix_reducing(ident1 = "NC4", ident2 = "IC4", bibref = "Kunz and Wagner (2007)", beta_v = 1.000880464, gamma_v = 1.00041444, beta_T = 1.000077547, gamma_T = 1.001432824)
- type(meos_mix_reducing), parameter **meos_red_89** = meos_mix_reducing(ident1 = "NC6", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.006268954, beta_T = 1., gamma_T = 1.↔ 001633952)
- type(meos_mix_reducing), parameter **meos_red_90** = meos_mix_reducing(ident1 = "C2", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.057666085, beta_T = 1., gamma_T = 1... 134532014)
- type(meos_mix_reducing), parameter meos_red_91 = meos_mix_reducing(ident1 = "C3", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter **meos_red_92** = meos_mix_reducing(ident1 = "NC10", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 0.975187766, gamma_v = 1.171714677, beta_T = 0.↔ 973091413, gamma_T = 1.103693489)
- type(meos_mix_reducing), parameter meos_red_93 = meos_mix_reducing(ident1 = "PRLN", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.03)
- type(meos_mix_reducing), parameter **meos_red_94** = meos_mix_reducing(ident1 = "NC5", ident2 = "NC6", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.002480637, beta_T = 1., gamma_T = 1.↔ 000761237)
- type(meos_mix_reducing), parameter meos_red_95 = meos_mix_reducing(ident1 = "R32", ident2 = "SO2", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.2% from 52 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.002379950717, gamma_T = 0.99968)
- type(meos_mix_reducing), parameter meos_red_96 = meos_mix_reducing(ident1 = "R14", ident2 = "R23", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0002627, beta_T = 1., gamma_T = 0.↔ 9467580)
- type(meos_mix_reducing), parameter meos_red_97 = meos_mix_reducing(ident1 = "PRLN", ident2 = "NC4", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from trend found in C1-C10)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.02)
- type(meos_mix_reducing), parameter meos_red_98 = meos_mix_reducing(ident1 = "MEOH", ident2 = "NC8", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.124, beta⇔ _T = 1.074113856069, gamma_T = 0.881)
- type(meos_mix_reducing), parameter meos_red_99 = meos_mix_reducing(ident1 = "NC8", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.84% from 36 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.99933, gamma_T = 0.99245)
- type(meos_mix_reducing), parameter meos_red_100 = meos_mix_reducing(ident1 = "C3", ident2 = "H2↔ O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.011759763, beta_T = 1., gamma_T = 0.600340961)
- type(meos_mix_reducing), parameter meos_red_101 = meos_mix_reducing(ident1 = "CO2", ident2 = "R143A", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.63% from 61 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.02027, gamma_T = 0.98474)
- type(meos_mix_reducing), parameter meos_red_102 = meos_mix_reducing(ident1 = "R143A", ident2 = "R12", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0007214, beta_T = 1., gamma_T = 0.9484400)
- type(meos_mix_reducing), parameter meos_red_103 = meos_mix_reducing(ident1 = "PRLN", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.3% from 16 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.9934926, gamma_T = 1.09811)
- type(meos_mix_reducing), parameter meos_red_104 = meos_mix_reducing(ident1 = "R23", ident2 = "CO2", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0099333, beta_T = 1., gamma_T = 0.↔ 9797140)
- type(meos_mix_reducing), parameter meos_red_105 = meos_mix_reducing(ident1 = "NC6", ident2 = "H2↔ O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.170217596, beta_T = 1., gamma_T = 0.569681333)

- type(meos_mix_reducing), parameter meos_red_106 = meos_mix_reducing(ident1 = "NC4", ident2 = "IC5", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.002728434, beta_T = 1., gamma_T = 1... 000792201)
- type(meos_mix_reducing), parameter meos_red_107 = meos_mix_reducing(ident1 = "MXYL", ident2 = "NC11", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.1% from 13 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.999100809272, gamma_T = 1.00198)
- type(meos_mix_reducing), parameter meos_red_108 = meos_mix_reducing(ident1 = "CO", ident2 = "PRLN", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from nitrogen and argon)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.184)
- type(meos_mix_reducing), parameter meos_red_109 = meos_mix_reducing(ident1 = "XE", ident2 = "R41", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.08% from 31 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0229865, gamma_T = 0.91395)
- type(meos_mix_reducing), parameter meos_red_110 = meos_mix_reducing(ident1 = "CO2", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.98% from 119 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 1.0034, gamma_T = 1.1043)
- type(meos_mix_reducing), parameter meos_red_111 = meos_mix_reducing(ident1 = "NC4", ident2 = "H2↔ O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.223638763, beta_T = 1., gamma_T = 0.615512682)
- type(meos_mix_reducing), parameter meos_red_112 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "NC12", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0167, beta_T = 1., gamma_T = 1.0548)
- type(meos_mix_reducing), parameter meos_red_113 = meos_mix_reducing(ident1 = "AR", ident2 = "NH3", bibref = "Neumann et al. (2020)", beta_v = 0.756526, gamma_v = 1.041113, beta_T = 1.146326, gamma_T = 0.998353)
- type(meos_mix_reducing), parameter meos_red_114 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "NC6", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.9194)
- type(meos_mix_reducing), parameter meos_red_115 = meos_mix_reducing(ident1 = "IC5", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from trend found in C1-C10)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.99)
- type(meos_mix_reducing), parameter meos_red_116 = meos_mix_reducing(ident1 = "F6S", ident2 = "R32", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.48% from 12 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0017029, gamma_T = 0.86502)
- type(meos_mix_reducing), parameter meos_red_117 = meos_mix_reducing(ident1 = "CO2", ident2 = "R116", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.28% from 77 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.03808, gamma_T = 0.89857)
- type(meos_mix_reducing), parameter meos_red_118 = meos_mix_reducing(ident1 = "N2", ident2 = "C2", bibref = "Kunz and Wagner (2007)", beta_v = 0.978880168, gamma_v = 1.042352891, beta_T = 1.↔ 007671428, gamma_T = 1.098650964)
- type(meos_mix_reducing), parameter meos_red_119 = meos_mix_reducing(ident1 = "R32", ident2 = "MEOH", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.41% from 17 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.007049345418, gamma_T = 1.01175)
- type(meos_mix_reducing), parameter meos_red_120 = meos_mix_reducing(ident1 = "IC5", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 0.835763343, beta_T = 1., gamma_T = 0.982651529)
- type(meos_mix_reducing), parameter meos_red_121 = meos_mix_reducing(ident1 = "NC10", ident2 = "H2O", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 0.551405318, beta_T = 0.897162268, gamma_T = 0.740416402)
- type(meos_mix_reducing), parameter **meos_red_122** = meos_mix_reducing(ident1 = "NC6", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.001508227, beta_T = 1., gamma_T = 0.↔ 999762786)
- type(meos_mix_reducing), parameter **meos_red_123** = meos_mix_reducing(ident1 = "ETOH", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.86% from 190 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 0.97813, gamma_T = 0.9059)
- type(meos_mix_reducing), parameter meos_red_124 = meos_mix_reducing(ident1 = "C2", ident2 = "R116", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.26% from 60 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.03539, gamma_T = 0.89844)

- type(meos_mix_reducing), parameter meos_red_125 = meos_mix_reducing(ident1 = "IC4", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.021668316, beta_T = 1., gamma_T = 1... 00988576)
- type(meos_mix_reducing), parameter meos_red_126 = meos_mix_reducing(ident1 = "C3", ident2 = "R114", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.17% from 12 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.00332, gamma_T = 0.98055)
- type(meos_mix_reducing), parameter meos_red_127 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "NC9", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010) (estimated from octane/cyclohexane and dodecane/cyclohexan", beta_v = 1., gamma_v = 1.009, beta_T = 1., gamma_T = 1.015)
- type(meos_mix_reducing), parameter meos_red_128 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.004, beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_129 = meos_mix_reducing(ident1 = "NC9", ident2 = "O2", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter **meos_red_130** = meos_mix_reducing(ident1 = "C1", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 0.994740603, gamma_v = 1.116549372, beta_T = 0.↔ 957473785, gamma_T = 1.449245409)
- type(meos_mix_reducing), parameter meos_red_131 = meos_mix_reducing(ident1 = "PRLN", ident2 = "NC10", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.956937799043, gamma_T = 1.191)
- type(meos_mix_reducing), parameter **meos_red_132** = meos_mix_reducing(ident1 = "R12", ident2 = "R114", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0085162, beta_T = 1., gamma_T = 0.9983405)
- type(meos_mix_reducing), parameter meos_red_133 = meos_mix_reducing(ident1 = "NC9", ident2 = "HE", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_134 = meos_mix_reducing(ident1 = "NC9", ident2 = "H2", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.342647661, beta_T = 1., gamma_T = 2.↔ 23435404)
- type(meos_mix_reducing), parameter meos_red_135 = meos_mix_reducing(ident1 = "NC4", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.084740904, beta_T = 1., gamma_T = 1.↔ 173916162)
- type(meos_mix_reducing), parameter meos_red_136 = meos_mix_reducing(ident1 = "O2", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from argon/benzene)", beta_v = 1., gamma_v = 1., beta_T = 1.01, gamma_T = 1.397)
- type(meos_mix_reducing), parameter meos_red_137 = meos_mix_reducing(ident1 = "R114", ident2 = "ETOH", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.↔ 63% from 6 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.048646721406, gamma_T = 0.93497)
- type(meos_mix_reducing), parameter meos_red_138 = meos_mix_reducing(ident1 = "NC9", ident2 = "H2O", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_139 = meos_mix_reducing(ident1 = "NC7", ident2 = "TOLU", bibref = "E.W. Lemmon, NIST (2012)", beta_v = 1.0019167, gamma_v = 1.0026789, beta_T = 0.998329, gamma_T = 0.9832346)
- type(meos_mix_reducing), parameter **meos_red_140** = meos_mix_reducing(ident1 = "NC4", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.046905515, beta_T = 1., gamma_T = 1.↔ 033180106)
- type(meos_mix_reducing), parameter meos_red_141 = meos_mix_reducing(ident1 = "O2", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.45)
- type(meos_mix_reducing), parameter **meos_red_142** = meos_mix_reducing(ident1 = "PRLN", ident2 = "R134A", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0007007, beta_T = 1., gamma_T = 0.9364605)
- type(meos_mix_reducing), parameter **meos_red_143** = meos_mix_reducing(ident1 = "C2", ident2 = "NC4", bibref = "Kunz and Wagner (2007)", beta_v = 0.999157205, gamma_v = 1.006179146, beta_T = 0.↔ 999130554, gamma_T = 1.034832749)
- type(meos_mix_reducing), parameter meos_red_144 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "EBZN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.99% from 51 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0043, gamma_T = 0.99414)

- type(meos_mix_reducing), parameter meos_red_145 = meos_mix_reducing(ident1 = "N2", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.927, gamma_T = 1.949)
- type(meos_mix_reducing), parameter meos_red_146 = meos_mix_reducing(ident1 = "NC5", ident2 = "NC16", bibref = "I.H. Bell, NIST (2017)", beta_v = 1., gamma_v = 1., beta_T = 0.9833, gamma_T = 1.1486)
- type(meos_mix_reducing), parameter meos_red_147 = meos_mix_reducing(ident1 = "R114", ident2 = "R21", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0139360, beta_T = 1., gamma_T = 0.9609090)
- type(meos_mix_reducing), parameter meos_red_148 = meos_mix_reducing(ident1 = "C3", ident2 = "NH3", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.9599, gamma_T = 0.7905)
- type(meos_mix_reducing), parameter **meos_red_149** = meos_mix_reducing(ident1 = "NC10", ident2 = "H2", bibref = "Kunz and Wagner (2012)", beta_v = 1.695358382, gamma_v = 1.120233729, beta_T = 1.↔ 064818089, gamma_T = 3.786003724)
- type(meos_mix_reducing), parameter meos_red_150 = meos_mix_reducing(ident1 = "NC5", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.976)
- type(meos_mix_reducing), parameter **meos_red_151** = meos_mix_reducing(ident1 = "NC7", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 0.828967164, gamma_v = 1.087956749, beta_T = 0.↔ 988937417, gamma_T = 1.013453092)
- type(meos_mix_reducing), parameter meos_red_152 = meos_mix_reducing(ident1 = "R32", ident2 = "R143A", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0178106, beta_T = 1., gamma_T = 0.9748252)
- type(meos_mix_reducing), parameter **meos_red_153** = meos_mix_reducing(ident1 = "IC4", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 1.012994431, gamma_v = 0.988591117, beta_T = 0.↔ 974550548, gamma_T = 0.937130844)
- type(meos_mix_reducing), parameter meos_red_154 = meos_mix_reducing(ident1 = "CO2", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1.047, gamma_v = 1.134, beta_T = 1., gamma_T = 1.024)
- type(meos_mix_reducing), parameter meos_red_155 = meos_mix_reducing(ident1 = "IC5", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.016, gamma_T = 0.934)
- type(meos_mix_reducing), parameter meos_red_156 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "NC7", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0198, beta_T = 1., gamma_T = 0.9146)
- type(meos_mix_reducing), parameter meos_red_157 = meos_mix_reducing(ident1 = "H2O", ident2 = "MEG", bibref = "I.H. Bell and E.W. Lemmon, NIST (2018)", beta_v = 1.009003234965, gamma_v = 1.↔ 066166, beta_T = 1.006062026742, gamma_T = 0.9986637)
- type(meos_mix_reducing), parameter meos_red_158 = meos_mix_reducing(ident1 = "NC7", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_159 = meos_mix_reducing(ident1 = "TOLU", ident2 = "NC8", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.996)
- type(meos_mix_reducing), parameter **meos_red_160** = meos_mix_reducing(ident1 = "N2", ident2 = "NC5", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.078877166, beta_T = 1., gamma_T = 1.↔ 419029041)
- type(meos_mix_reducing), parameter meos_red_161 = meos_mix_reducing(ident1 = "NH3", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.7% from 138 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.042500015116, gamma_T = 0.95719)
- type(meos_mix_reducing), parameter meos_red_162 = meos_mix_reducing(ident1 = "N2O", ident2 = "NC12", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 4.99% from 58 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.965763677628, gamma_T = 1.2736)
- type(meos_mix_reducing), parameter meos_red_163 = meos_mix_reducing(ident1 = "NC5", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.008972412, beta_T = 1., gamma_T = 1... 002441051)
- type(meos_mix_reducing), parameter **meos_red_164** = meos_mix_reducing(ident1 = "CO2", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 0.906630564, gamma_v = 1.024085837, beta_T = 1.↔ 016034583, gamma_T = 0.92601888)

- type(meos_mix_reducing), parameter meos_red_165 = meos_mix_reducing(ident1 = "CO", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.56)
- type(meos_mix_reducing), parameter meos_red_166 = meos_mix_reducing(ident1 = "NC6", ident2 = "H2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.243461678, beta_T = 1., gamma_T = 3.↔ 021197546)
- type(meos_mix_reducing), parameter meos_red_167 = meos_mix_reducing(ident1 = "C2", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_168 = meos_mix_reducing(ident1 = "R143A", ident2 = "R134A", bibref = "E.W. Lemmon and R.T Jacobsen, J. Phys. Chem. Ref. Data, 33(2):593-620, 2004.", beta_v = 1., gamma_v = 1.0016349, beta_T = 1., gamma_T = 1.0040047)
- type(meos_mix_reducing), parameter meos_red_169 = meos_mix_reducing(ident1 = "CO", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from nitrogen and oxygen)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.499)
- type(meos_mix_reducing), parameter meos_red_170 = meos_mix_reducing(ident1 = "HE", ident2 = "NE", bibref = "E.W. Lemmon, NIST (2016)", beta_v = 1.0097, gamma_v = 0.899, beta_T = 1.168, gamma_T = 1.371)
- type(meos_mix_reducing), parameter meos_red_171 = meos_mix_reducing(ident1 = "NC8", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.001357085, beta_T = 1., gamma_T = 1... 000235044)
- type(meos_mix_reducing), parameter meos_red_172 = meos_mix_reducing(ident1 = "IC4", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.01)
- type(meos_mix_reducing), parameter meos_red_173 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "NC11", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010) (estimated from octane/cyclohexane and dodecane/cyclohexan", beta_v = 1., gamma_v = 1.014, beta_T = 1., gamma_T = 1.04)
- type(meos_mix_reducing), parameter meos_red_174 = meos_mix_reducing(ident1 = "N2", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 4.99% from 265 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 0.99471, gamma_T = 1.63462)
- type(meos_mix_reducing), parameter meos_red_175 = meos_mix_reducing(ident1 = "HE", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_176 = meos_mix_reducing(ident1 = "CO", ident2 = "H2O", bibref = "Gernert (2013)", beta_v = 0.9404260, gamma_v = 0.7667560, beta_T = 0.956090, gamma_T = 0.8239840)
- type(meos_mix_reducing), parameter meos_red_177 = meos_mix_reducing(ident1 = "CO2", ident2 = "ACE-TONE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.1177, beta_T = 0.978377849525, gamma_T = 1.0433)
- type(meos_mix_reducing), parameter meos_red_178 = meos_mix_reducing(ident1 = "NC9", ident2 = "CO", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.252151449, beta_T = 1., gamma_T = 1.↔ 294070556)
- type(meos_mix_reducing), parameter meos_red_179 = meos_mix_reducing(ident1 = "O2", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_180 = meos_mix_reducing(ident1 = "CO2", ident2 = "AR", bibref = "Neumann (2017) Published in Lovseth et al. (2018) / see also Herrig (2018) PhD thesis", beta_v = 1.0037659, gamma_v = 1.0138330, beta_T = 0.998705, gamma_T = 1.0396748)
- type(meos_mix_reducing), parameter meos_red_181 = meos_mix_reducing(ident1 = "NC8", ident2 = "EBZN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.52% from 76 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.9992206, gamma_T = 0.98584)
- type(meos_mix_reducing), parameter meos_red_182 = meos_mix_reducing(ident1 = "R23", ident2 = "F6S", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.51% from 9 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.994449974691, gamma_T = 0.91843)
- type(meos_mix_reducing), parameter meos_red_183 = meos_mix_reducing(ident1 = "PRLN", ident2 = "R12", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0020049, beta_T = 1., gamma_T = 0.9887079)
- type(meos_mix_reducing), parameter meos_red_184 = meos_mix_reducing(ident1 = "N2", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 0.957934447, gamma_T = 1... 822157123)

- type(meos_mix_reducing), parameter meos_red_185 = meos_mix_reducing(ident1 = "N2", ident2 = "CO2", bibref = "Kunz and Wagner (2006) original GERG-2004 mixture model used in EOS-CG!", beta_v = 0.↔ 977794634, gamma_v = 1.047578256, beta_T = 1.005894529, gamma_T = 1.107654104)
- type(meos_mix_reducing), parameter meos_red_186 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.8% from 53 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.00315, gamma_T = 0.99328)
- type(meos_mix_reducing), parameter meos_red_187 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "NC12", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.5% from 61 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.007170043540, gamma_T = 1.02547)
- type(meos_mix_reducing), parameter meos_red_188 = meos_mix_reducing(ident1 = "R116", ident2 = "C3", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.7% from 61 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.983661384405, gamma_T = 0.89173)
- type(meos_mix_reducing), parameter **meos_red_189** = meos_mix_reducing(ident1 = "C2", ident2 = "NC5", bibref = "Kunz and Wagner (2007)", beta_v = 0.993851009, gamma_v = 1.026085655, beta_T = 0.↔ 998688946, gamma_T = 1.066665676)
- type(meos_mix_reducing), parameter meos_red_190 = meos_mix_reducing(ident1 = "NH3", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.987, gamma_T = 1.117)
- type(meos_mix_reducing), parameter **meos_red_191** = meos_mix_reducing(ident1 = "C1", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 0.962050831, gamma_v = 1.156655935, beta_T = 0.↔ 977431529, gamma_T = 1.379850328)
- type(meos_mix_reducing), parameter meos_red_192 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.8% from 79 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.00112, gamma_T = 1.00639)
- type(meos_mix_reducing), parameter meos_red_193 = meos_mix_reducing(ident1 = "NC7", ident2 = "EBZN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.52% from 151 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 0.9996002, gamma_T = 0.98665)
- type(meos_mix_reducing), parameter **meos_red_194** = meos_mix_reducing(ident1 = "R32", ident2 = "IC5", bibref = "E.W. Lemmon, NIST (2006)", beta_v = 1., gamma_v = 1.0683958, beta_T = 1., gamma_T = 0.↔ 8885477)
- type(meos_mix_reducing), parameter meos_red_195 = meos_mix_reducing(ident1 = "C1", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1.034630259, gamma_v = 1.014678542, beta_T = 0.↔ 990954281, gamma_T = 0.989843388)
- type(meos_mix_reducing), parameter meos_red_196 = meos_mix_reducing(ident1 = "H2O", ident2 = "AR", bibref = "Gernert (2013)", beta_v = 0.9403980, gamma_v = 1.0509520, beta_T = 0.679104, gamma_T = 0.9210000)
- type(meos_mix_reducing), parameter meos_red_197 = meos_mix_reducing(ident1 = "C1", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.982, gamma_T = 1.266)
- type(meos_mix_reducing), parameter meos_red_198 = meos_mix_reducing(ident1 = "R23", ident2 = "R134A", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0141263, beta_T = 1., gamma_T = 1.0105431)
- type(meos_mix_reducing), parameter meos_red_199 = meos_mix_reducing(ident1 = "SO2", ident2 = "MEG", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.148)
- type(meos_mix_reducing), parameter meos_red_200 = meos_mix_reducing(ident1 = "PRLN", ident2 = "IC5", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from trend found in C1-C10)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.035)
- type(meos_mix_reducing), parameter meos_red_201 = meos_mix_reducing(ident1 = "C2", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.081)
- type(meos_mix_reducing), parameter meos_red_202 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "NC7", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.007, beta_T = 1., gamma_T = 0.987)
- type(meos_mix_reducing), parameter **meos_red_203** = meos_mix_reducing(ident1 = "R143A", ident2 = "C3", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0000536, beta_T = 1., gamma_T = 0.9130538)

- type(meos_mix_reducing), parameter meos_red_204 = meos_mix_reducing(ident1 = "AR", ident2 = "KR", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0037297, beta_T = 1., gamma_T = 1.↔ 0025306)
- type(meos_mix_reducing), parameter meos_red_205 = meos_mix_reducing(ident1 = "MEOH", ident2 = "NC11", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.17% from 9 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.105729892302, gamma_T = 0.95529)
- type(meos_mix_reducing), parameter meos_red_206 = meos_mix_reducing(ident1 = "CO", ident2 = "NH3", bibref = "Neumann et al. (2020)", beta_v = 0.739937224, gamma_v = 1.707, beta_T = 1.057511717, gamma_T = 0.952705)
- type(meos_mix_reducing), parameter meos_red_207 = meos_mix_reducing(ident1 = "R41", ident2 = "TOLU", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.19% from 9 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.975390031650, gamma_T = 1.09707)
- type(meos_mix_reducing), parameter meos_red_208 = meos_mix_reducing(ident1 = "C3", ident2 = "H2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.07400611, beta_T = 1., gamma_T = 2.↔ 308215191)
- type(meos_mix_reducing), parameter meos_red_209 = meos_mix_reducing(ident1 = "N2", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0177, beta_T = 1., gamma_T = 1.442)
- type(meos_mix_reducing), parameter meos_red_210 = meos_mix_reducing(ident1 = "NC8", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.219206702, beta_T = 1., gamma_T = 1... 276565536)
- type(meos_mix_reducing), parameter meos_red_211 = meos_mix_reducing(ident1 = "C3", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.88% from 25 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.9965519, gamma_T = 1.08363)
- type(meos_mix_reducing), parameter meos_red_212 = meos_mix_reducing(ident1 = "NC10", ident2 = "HE", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter **meos_red_213** = meos_mix_reducing(ident1 = "O2", ident2 = "PRLN", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from nitrogen and argon)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.155)
- type(meos_mix_reducing), parameter meos_red_214 = meos_mix_reducing(ident1 = "MEOH", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 4.↔ 08% from 11 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.99745, gamma_T = 0.88973)
- type(meos_mix_reducing), parameter meos_red_215 = meos_mix_reducing(ident1 = "R32", ident2 = "NC4", bibref = "E.W. Lemmon, NIST (2006)", beta_v = 1., gamma_v = 0.7952703, beta_T = 1., gamma_T = 0.↔ 8997516)
- type(meos_mix_reducing), parameter **meos_red_216** = meos_mix_reducing(ident1 = "CO2", ident2 = "NC5", bibref = "Kunz and Wagner (2007)", beta_v = 1.024311498, gamma_v = 1.068406078, beta_T = 1.↔ 027000795, gamma_T = 0.979217302)
- type(meos_mix_reducing), parameter meos_red_217 = meos_mix_reducing(ident1 = "H2S", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.33% from 30 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.972370008958, gamma_T = 1.10582)
- type(meos_mix_reducing), parameter meos_red_218 = meos_mix_reducing(ident1 = "R23", ident2 = "IC4", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0362036, beta_T = 1., gamma_T = 0.↔ 9040920)
- type(meos_mix_reducing), parameter meos_red_219 = meos_mix_reducing(ident1 = "PRLN", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.66% from 16 bubble-poin", beta v = 1., gamma v = 1., beta T = 0.99082, gamma T = 1.09426)
- type(meos_mix_reducing), parameter meos_red_220 = meos_mix_reducing(ident1 = "ETOH", ident2 = "NC7", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 4.97% from 597 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 0.980959959569, gamma_T = 0.8981)
- type(meos_mix_reducing), parameter meos_red_221 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "TOLU", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.9962, beta_T = 1., gamma_T = 0.98)
- type(meos_mix_reducing), parameter meos_red_222 = meos_mix_reducing(ident1 = "R134A", ident2 = "R142B", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0011016, beta_T = 1., gamma_T = 0.9869325)

- type(meos_mix_reducing), parameter meos_red_223 = meos_mix_reducing(ident1 = "C2", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.24, beta_T = 0.97, gamma_T = 1.3)
- type(meos_mix_reducing), parameter meos_red_224 = meos_mix_reducing(ident1 = "EBZN", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.↔ 57% from 48 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.001530037438, gamma_T = 0.99924)
- type(meos_mix_reducing), parameter meos_red_225 = meos_mix_reducing(ident1 = "NC5", ident2 = "H2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.188334783, beta_T = 1., gamma_T = 2. \leftrightarrow 013859174)
- type(meos_mix_reducing), parameter meos_red_226 = meos_mix_reducing(ident1 = "IC5", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.028994325, beta_T = 1., gamma_T = 1... 008191499)
- type(meos_mix_reducing), parameter meos_red_227 = meos_mix_reducing(ident1 = "PXYL", ident2 = "NC10", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.89% from 57 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.001011021131, gamma_T = 0.99262)
- type(meos_mix_reducing), parameter **meos_red_228** = meos_mix_reducing(ident1 = "TOLU", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.↔ 35% from 70 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0035123, gamma_T = 0.99601)
- type(meos_mix_reducing), parameter meos_red_229 = meos_mix_reducing(ident1 = "NC7", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.002972346, beta_T = 1., gamma_T = 1.002229938)
- type(meos_mix_reducing), parameter **meos_red_230** = meos_mix_reducing(ident1 = "NC5", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_231 = meos_mix_reducing(ident1 = "ETOH", ident2 = "EBZN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.↔ 38% from 32 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.9898638, gamma_T = 0.90463)
- type(meos_mix_reducing), parameter meos_red_232 = meos_mix_reducing(ident1 = "C2", ident2 = "ACE-TONE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1... 004722194313, gamma_T = 0.9769)
- type(meos_mix_reducing), parameter meos_red_233 = meos_mix_reducing(ident1 = "D2", ident2 = "N2", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.43% from 7 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.015610027687, gamma_T = 1.22898)
- type(meos_mix_reducing), parameter meos_red_234 = meos_mix_reducing(ident1 = "R116", ident2 = "PRLN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.↔ 25% from 13 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.986183568209, gamma_T = 0.87937)
- type(meos_mix_reducing), parameter meos_red_235 = meos_mix_reducing(ident1 = "AR", ident2 = "PRLN", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.158)
- type(meos_mix_reducing), parameter **meos_red_236** = meos_mix_reducing(ident1 = "C3", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 0.936811219, gamma_v = 1.010593999, beta_T = 0.↔ 992573556, gamma_T = 0.905829247)
- type(meos_mix_reducing), parameter meos_red_237 = meos_mix_reducing(ident1 = "R12", ident2 = "R134A", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0003354, beta_T = 1., gamma_T = 0.9404374)
- type(meos_mix_reducing), parameter meos_red_238 = meos_mix_reducing(ident1 = "NC7", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.190354273, beta_T = 1., gamma_T = 1... 256123503)
- type(meos_mix_reducing), parameter **meos_red_239** = meos_mix_reducing(ident1 = "R32", ident2 = "R12", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0256397, beta_T = 1., gamma_T = 0.↔ 9032201)
- type(meos_mix_reducing), parameter meos_red_240 = meos_mix_reducing(ident1 = "NC4", ident2 = "NC5", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.01815965, beta_T = 1., gamma_T = 1.↔ 00214364)
- type(meos_mix_reducing), parameter meos_red_241 = meos_mix_reducing(ident1 = "R143A", ident2 = "IC4", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0064788, beta_T = 1., gamma ← _T = 0.9254452)

- type(meos_mix_reducing), parameter **meos_red_242** = meos_mix_reducing(ident1 = "MXYL", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.↔ 25% from 78 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.00073, gamma_T = 0.99997)
- type(meos_mix_reducing), parameter **meos_red_243** = meos_mix_reducing(ident1 = "C1", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 0.713, gamma_v = 1.↔ 137, beta_T = 0.972, gamma_T = 1.308)
- type(meos_mix_reducing), parameter meos_red_244 = meos_mix_reducing(ident1 = "H2O", ident2 = "NC12", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.5514, beta_T = 1.080146899978, gamma_T = 0.7908)
- type(meos_mix_reducing), parameter meos_red_245 = meos_mix_reducing(ident1 = "N2", ident2 = "O2", bibref = "Kunz and Wagner (2006) original GERG-2004 mixture model used in EOS-CG!", beta_v = 0.↔ 999521770, gamma_v = 0.997082328, beta_T = 0.997190589, gamma_T = 0.995157044)
- type(meos_mix_reducing), parameter meos_red_246 = meos_mix_reducing(ident1 = "NC6", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1.022, gamma_v = 1.026, beta_T = 1.013, gamma_T = 0.901)
- type(meos_mix_reducing), parameter meos_red_247 = meos_mix_reducing(ident1 = "C3", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.199769134, beta_T = 1., gamma_T = 1.↔ 109973833)
- type(meos_mix_reducing), parameter meos_red_248 = meos_mix_reducing(ident1 = "N2", ident2 = "IC4", bibref = "Kunz and Wagner (2007)", beta_v = 0.98641583, gamma_v = 1.100576129, beta_T = 0.99286813, gamma_T = 1.284462634)
- type(meos_mix_reducing), parameter meos_red_249 = meos_mix_reducing(ident1 = "PRLN", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.086, beta_T = 1., gamma_T = 0.979)
- type(meos_mix_reducing), parameter meos_red_250 = meos_mix_reducing(ident1 = "R124", ident2 = "R142B", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0005123, beta_T = 1., gamma_T = 1.0025158)
- type(meos_mix_reducing), parameter meos_red_251 = meos_mix_reducing(ident1 = "H2O", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_252 = meos_mix_reducing(ident1 = "NC4", ident2 = "H2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.232939523, beta_T = 1., gamma_T = 2.↔ 509259945)
- type(meos_mix_reducing), parameter meos_red_253 = meos_mix_reducing(ident1 = "N2", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 0.910394249, gamma_v = 1.256844157, beta_T = 1.↔ 004692366, gamma_T = 0.9601742)
- type(meos_mix_reducing), parameter meos_red_254 = meos_mix_reducing(ident1 = "C2", ident2 = "IC5", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.045439935, beta_T = 1., gamma_T = 1.↔ 021150247)
- type(meos_mix_reducing), parameter meos_red_255 = meos_mix_reducing(ident1 = "C1", ident2 = "H2O", bibref = "Herrig (2018) / see Herrig (2018) PhD thesis", beta_v = 1.176, gamma_v = 1.038, beta_T = 1.263, gamma_T = 0.748)
- type(meos_mix_reducing), parameter meos_red_256 = meos_mix_reducing(ident1 = "NC5", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.016370338, beta_T = 1., gamma_T = 1.049035838)
- type(meos_mix_reducing), parameter meos_red_257 = meos_mix_reducing(ident1 = "KR", ident2 = "CO2", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.↔ 948047023132, gamma_T = 1.0466)
- type(meos_mix_reducing), parameter meos_red_258 = meos_mix_reducing(ident1 = "R12", ident2 = "CY-CLOHEX", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.03% from 2 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.038507871890, gamma_T = 0.989)
- type(meos_mix_reducing), parameter meos_red_259 = meos_mix_reducing(ident1 = "XE", ident2 = "PRLN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.04% from 51 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.009784814856, gamma_T = 1.01223)
- type(meos_mix_reducing), parameter meos_red_260 = meos_mix_reducing(ident1 = "PRLN", ident2 = "R114", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0187337, beta_T = 1., gamma_T = 0.9744438)

- type(meos_mix_reducing), parameter meos_red_261 = meos_mix_reducing(ident1 = "O2", ident2 = "AR", bibref = "Gernert (2013)", beta_v = 1.0065020, gamma_v = 1.0013410, beta_T = 0.999039, gamma_T = 0.9888220)
- type(meos_mix_reducing), parameter meos_red_262 = meos_mix_reducing(ident1 = "NC4", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.03, gamma_T = 0.95)
- type(meos_mix_reducing), parameter **meos_red_263** = meos_mix_reducing(ident1 = "C3", ident2 = "NC5", bibref = "Kunz and Wagner (2007)", beta_v = 1.044919431, gamma_v = 1.019921513, beta_T = 0.↔ 996484021, gamma_T = 1.008344412)
- type(meos_mix_reducing), parameter meos_red_264 = meos_mix_reducing(ident1 = "R23", ident2 = "TOLU", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.65% from 9 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.969090002199, gamma_T = 1.07054)
- type(meos_mix_reducing), parameter meos_red_265 = meos_mix_reducing(ident1 = "OXYL", ident2 = "NC10", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.41% from 16 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.001351824964, gamma_T = 0.99471)
- type(meos_mix_reducing), parameter meos_red_266 = meos_mix_reducing(ident1 = "C3", ident2 = "ETOH", bibref = "E.W. Lemmon, NIST (2015)", beta_v = 1.064, gamma_v = 0.964, beta_T = 1.016, gamma_T = 0.998)
- type(meos_mix_reducing), parameter meos_red_267 = meos_mix_reducing(ident1 = "N2", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.40455409, beta_T = 1., gamma_T = 1.↔ 520975334)
- type(meos_mix_reducing), parameter **meos_red_268** = meos_mix_reducing(ident1 = "IC5", ident2 = "H2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.184340443, beta_T = 1., gamma_T = 1.↔ 996386669)
- type(meos_mix_reducing), parameter **meos_red_269** = meos_mix_reducing(ident1 = "N2", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.186067025, beta_T = 1., gamma_T = 1... 733280051)
- type(meos_mix_reducing), parameter meos_red_270 = meos_mix_reducing(ident1 = "CO2", ident2 = "R1234ZE", bibref = "E.W. Lemmon, NIST (2013); based on simulation data from Gabriele Raabe", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.023)
- type(meos_mix_reducing), parameter meos_red_271 = meos_mix_reducing(ident1 = "MEOH", ident2 = "EBZN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.↔ 04% from 20 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.9989112, gamma_T = 0.89432)
- type(meos_mix_reducing), parameter **meos_red_272** = meos_mix_reducing(ident1 = "C1", ident2 = "IC5", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.343685343, beta_T = 1., gamma_T = 1.↔ 188899743)
- type(meos_mix_reducing), parameter meos_red_273 = meos_mix_reducing(ident1 = "NC10", ident2 = "CO", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 0.87018496, beta_T = 1.049594632, gamma_T = 1.803567587)
- type(meos_mix_reducing), parameter meos_red_274 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "EBZN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.88% from 54 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.99807, gamma_T = 1.01425)
- type(meos_mix_reducing), parameter meos_red_275 = meos_mix_reducing(ident1 = "PRLN", ident2 = "R142B", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0035574, beta_T = 1., gamma_T = 0.9913727)
- type(meos_mix_reducing), parameter meos_red_276 = meos_mix_reducing(ident1 = "CO2", ident2 = "R142B", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0626246, beta_T = 1., gamma_T = 0.9888000)
- type(meos_mix_reducing), parameter meos_red_277 = meos_mix_reducing(ident1 = "NC5", ident2 = "IC5", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.000024335, beta_T = 1., gamma_T = 1.↔ 000050537)
- type(meos_mix_reducing), parameter meos_red_278 = meos_mix_reducing(ident1 = "C1", ident2 = "PRLN", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.998, gamma_T = 1.117)
- type(meos_mix_reducing), parameter meos_red_279 = meos_mix_reducing(ident1 = "PRLN", ident2 = "CY-CLOHEX", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.57% from 12 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.999011, gamma_T = 1.04089)

- type(meos_mix_reducing), parameter meos_red_280 = meos_mix_reducing(ident1 = "C1", ident2 = "C3", bibref = "Kunz and Wagner (2007)", beta_v = 1.00482707, gamma_v = 1.038470657, beta_T = 0.989680305, gamma_T = 1.098655531)
- type(meos_mix_reducing), parameter meos_red_281 = meos_mix_reducing(ident1 = "SO2", ident2 = "N2", bibref = "Neumann and Herrig (2017) / see Herrig (2018) PhD thesis", beta_v = 0.903624500, gamma_v = 1.215580800, beta_T = 1.045874000, gamma_T = 1.194658800)
- type(meos_mix_reducing), parameter meos_red_282 = meos_mix_reducing(ident1 = "PRLN", ident2 = "R115", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0082859, beta_T = 1., gamma_T = 0.9428297)
- type(meos_mix_reducing), parameter meos_red_283 = meos_mix_reducing(ident1 = "R23", ident2 = "PRLN", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0085527, beta_T = 1., gamma_T = 0.9107001)
- type(meos_mix_reducing), parameter meos_red_284 = meos_mix_reducing(ident1 = "NC7", ident2 = "H2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.159131722, beta_T = 1., gamma_T = 3.↔ 169143057)
- type(meos_mix_reducing), parameter meos_red_285 = meos_mix_reducing(ident1 = "R32", ident2 = "ETOH", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.97% from 22 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.025031263454, gamma_T = 1.01657)
- type(meos_mix_reducing), parameter meos_red_286 = meos_mix_reducing(ident1 = "C3", ident2 = "ACE-TONE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.↔ 003109639884, gamma_T = 1.0191)
- type(meos_mix_reducing), parameter meos_red_287 = meos_mix_reducing(ident1 = "C3", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.992, gamma_T = 0.922)
- type(meos_mix_reducing), parameter meos_red_288 = meos_mix_reducing(ident1 = "SO2", ident2 = "O2", bibref = "Neumann and Herrig (2017) / see Herrig (2018) PhD thesis", beta_v = 1.219246300, gamma_v = 1.660631700, beta_T = 0.927961000, gamma_T = 1.035878200)
- type(meos_mix_reducing), parameter meos_red_289 = meos_mix_reducing(ident1 = "NC6", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_290 = meos_mix_reducing(ident1 = "NC6", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_291 = meos_mix_reducing(ident1 = "C2", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.179, beta_T = 0.994, gamma_T = 1.086)
- type(meos_mix_reducing), parameter meos_red_292 = meos_mix_reducing(ident1 = "PRLN", ident2 = "C3", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1... 001001001001, gamma_T = 0.995)
- type(meos_mix_reducing), parameter meos_red_293 = meos_mix_reducing(ident1 = "O2", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.436)
- type(meos_mix_reducing), parameter meos_red_294 = meos_mix_reducing(ident1 = "R116", ident2 = "R134A", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0010759, beta_T = 1., gamma_T = 0.9428520)
- type(meos_mix_reducing), parameter meos_red_295 = meos_mix_reducing(ident1 = "C1", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 0.961, gamma_v = 1.085, beta_T = 0.967, gamma_T = 1.34)
- type(meos_mix_reducing), parameter meos_red_296 = meos_mix_reducing(ident1 = "CO2", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1.026169373, gamma_v = 1.104043935, beta_T = 1.02969078, gamma_T = 1.074455386)
- type(meos_mix_reducing), parameter meos_red_297 = meos_mix_reducing(ident1 = "AR", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.436)
- type(meos_mix_reducing), parameter **meos_red_298** = meos_mix_reducing(ident1 = "CO2", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 1.205469976, gamma_v = 1.164585914, beta_T = 1.↔ 011806317, gamma_T = 1.046169823)
- type(meos_mix_reducing), parameter meos_red_299 = meos_mix_reducing(ident1 = "N2", ident2 = "AR", bibref = "Gernert (2013)", beta_v = 1.0066970, gamma_v = 1.0015490, beta_T = 0.999442, gamma_T = 0.9893110)

- type(meos_mix_reducing), parameter meos_red_300 = meos_mix_reducing(ident1 = "NE", ident2 = "AR", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.051, beta_T = 1.004, gamma_T = 1.0994)
- type(meos_mix_reducing), parameter meos_red_301 = meos_mix_reducing(ident1 = "CO", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.87, beta_T = 0.933, gamma_T = 1.941)
- type(meos_mix_reducing), parameter meos_red_302 = meos_mix_reducing(ident1 = "CO2", ident2 = "R124", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.56% from 19 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.99517, gamma_T = 1.01028)
- type(meos_mix_reducing), parameter meos_red_303 = meos_mix_reducing(ident1 = "NC8", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.2% from 51 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.99788, gamma_T = 0.98651)
- type(meos_mix_reducing), parameter meos_red_304 = meos_mix_reducing(ident1 = "C2", ident2 = "H2", bibref = "Kunz and Wagner (2007)", beta_v = 0.925367171, gamma_v = 1.10607204, beta_T = 0.932969831, gamma_T = 1.902008495)
- type(meos_mix_reducing), parameter meos_red_305 = meos_mix_reducing(ident1 = "H2S", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.994, gamma_T = 1.06)
- type(meos_mix_reducing), parameter meos_red_306 = meos_mix_reducing(ident1 = "C1", ident2 = "NC5", bibref = "Kunz and Wagner (2007)", beta_v = 0.94833012, gamma_v = 1.124508039, beta_T = 0.992127525, gamma_T = 1.249173968)
- type(meos_mix_reducing), parameter meos_red_307 = meos_mix_reducing(ident1 = "IC4", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.032807063, beta_T = 1., gamma_T = 1.↔ 013945424)
- type(meos_mix_reducing), parameter meos_red_308 = meos_mix_reducing(ident1 = "IC4", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.0167)
- type(meos_mix_reducing), parameter meos_red_309 = meos_mix_reducing(ident1 = "C1", ident2 = "NH3", bibref = "Neumann et al. (2020)", beta_v = 1.006058, gamma_v = 1.069834, beta_T = 1.022371, gamma_T = 0.940156)
- type(meos_mix_reducing), parameter **meos_red_310** = meos_mix_reducing(ident1 = "IC4", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.047298475, beta_T = 1., gamma_T = 1.↔ 017817492)
- type(meos_mix_reducing), parameter meos_red_311 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "TOLU", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.9979, beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_312 = meos_mix_reducing(ident1 = "TOLU", ident2 = "EBZN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.↔ 97% from 78 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.9971283, gamma_T = 1.00252)
- type(meos_mix_reducing), parameter meos_red_313 = meos_mix_reducing(ident1 = "R21", ident2 = "ETOH", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.41% from 4 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.020543541490, gamma_T = 0.90692)
- type(meos_mix_reducing), parameter meos_red_314 = meos_mix_reducing(ident1 = "R143A", ident2 = "R1234YF", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD↔ : 0.2% from 35 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.9997601, gamma_T = 0.99523)
- type(meos_mix_reducing), parameter meos_red_315 = meos_mix_reducing(ident1 = "N2", ident2 = "CO", bibref = "Gernert (2013)", beta_v = 1.0000000, gamma_v = 1.0013170, beta_T = 1.002409, gamma_T = 0.9941000)
- type(meos_mix_reducing), parameter meos_red_316 = meos_mix_reducing(ident1 = "C2", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_317 = meos_mix_reducing(ident1 = "IC5", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_318 = meos_mix_reducing(ident1 = "R134A", ident2 = "NC4", bibref = "E.W. Lemmon, NIST (2006)", beta_v = 1., gamma_v = 1.0047311, beta_T = 1., gamma_T = 0.8929711)
- type(meos_mix_reducing), parameter **meos_red_319** = meos_mix_reducing(ident1 = "IC5", ident2 = "H2O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)

- type(meos_mix_reducing), parameter meos_red_320 = meos_mix_reducing(ident1 = "CO", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.435)
- type(meos_mix_reducing), parameter meos_red_321 = meos_mix_reducing(ident1 = "NE", ident2 = "KR", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.02385, gamma_T = 1.1957)
- type(meos_mix_reducing), parameter meos_red_322 = meos_mix_reducing(ident1 = "R134A", ident2 = "IC5", bibref = "E.W. Lemmon, NIST (2006)", beta_v = 1., gamma_v = 1.0146590, beta_T = 1., gamma ← _T = 0.8993586)
- type(meos_mix_reducing), parameter meos_red_323 = meos_mix_reducing(ident1 = "NC4", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.214638734, beta_T = 1., gamma_T = 1... 245039498)
- type(meos_mix_reducing), parameter **meos_red_324** = meos_mix_reducing(ident1 = "C1", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1.033086292, gamma_v = 1.146089637, beta_T = 0.↔ 937777823, gamma_T = 1.568231489)
- type(meos_mix_reducing), parameter meos_red_325 = meos_mix_reducing(ident1 = "R114", ident2 = "NC7", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.24% from 12 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.007912110064, gamma_T = 0.99663)
- type(meos_mix_reducing), parameter meos_red_326 = meos_mix_reducing(ident1 = "H2S", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.214)
- type(meos_mix_reducing), parameter meos_red_327 = meos_mix_reducing(ident1 = "PRLN", ident2 = "NC9", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.970873786408, gamma_T = 1.117)
- type(meos_mix_reducing), parameter meos_red_328 = meos_mix_reducing(ident1 = "O2", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from argon)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.492)
- type(meos_mix_reducing), parameter meos_red_329 = meos_mix_reducing(ident1 = "PRLN", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.024, beta_T = 1.021450459653, gamma_T = 1.039)
- type(meos_mix_reducing), parameter meos_red_330 = meos_mix_reducing(ident1 = "C2", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.9958, gamma_T = 1.1004)
- type(meos_mix_reducing), parameter meos_red_331 = meos_mix_reducing(ident1 = "IC5", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_332 = meos_mix_reducing(ident1 = "C1", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 0.881405683, beta_T = 1., gamma_T = 3...
 159776855)
- type(meos_mix_reducing), parameter meos_red_333 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.27% from 26 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0007, gamma_T = 0.9752)
- type(meos_mix_reducing), parameter meos_red_334 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.58% from 30 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.01414, gamma_T = 1.00329)
- type(meos_mix_reducing), parameter meos_red_335 = meos_mix_reducing(ident1 = "OXYL", ident2 = "NC11", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.14% from 13 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.001903616872, gamma_T = 0.99825)
- type(meos_mix_reducing), parameter meos_red_336 = meos_mix_reducing(ident1 = "C3", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_337 = meos_mix_reducing(ident1 = "TOLU", ident2 = "NC10", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.026)
- type(meos_mix_reducing), parameter meos_red_338 = meos_mix_reducing(ident1 = "O2", ident2 = "KR", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0043319, beta_T = 1., gamma_T = 0.↔ 9729000)
- type(meos_mix_reducing), parameter meos_red_339 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "NC7", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0015, beta_T = 1., gamma_T = 1.)

- type(meos_mix_reducing), parameter meos_red_340 = meos_mix_reducing(ident1 = "IC5", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.2935310, beta_T = 1., gamma_T = 0.8541581)
- type(meos_mix_reducing), parameter meos_red_341 = meos_mix_reducing(ident1 = "NC5", ident2 = "ACE-TONE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1... 005833836250, gamma_T = 0.9221)
- type(meos_mix_reducing), parameter meos_red_342 = meos_mix_reducing(ident1 = "CO2", ident2 = "R32", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0058521, beta_T = 1., gamma_T = 0.↔ 9978225)
- type(meos_mix_reducing), parameter meos_red_343 = meos_mix_reducing(ident1 = "IC4", ident2 = "H2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.147595688, beta_T = 1., gamma_T = 1.↔ 895305393)
- type(meos_mix_reducing), parameter **meos_red_344** = meos_mix_reducing(ident1 = "IC5", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.039372957, beta_T = 1., gamma_T = 1.↔ 010825138)
- type(meos_mix_reducing), parameter meos_red_345 = meos_mix_reducing(ident1 = "MEOH", ident2 = "CY-CLOHEX", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0530481, beta_T = 1., gamma_T = 0.8680742)
- type(meos_mix_reducing), parameter meos_red_346 = meos_mix_reducing(ident1 = "O2", ident2 = "H2O", bibref = "Gernert (2013)", beta_v = 1.0281970, gamma_v = 0.8734600, beta_T = 1.253060, gamma_T = 0.8078420)
- type(meos_mix_reducing), parameter meos_red_347 = meos_mix_reducing(ident1 = "C2", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.14353473, beta_T = 1., gamma_T = 1.↔ 05603303)
- type(meos_mix_reducing), parameter meos_red_348 = meos_mix_reducing(ident1 = "NC4", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 0.976951968, gamma_v = 1.027845529, beta_T = 0.993688386, gamma_T = 1.076466918)
- type(meos_mix_reducing), parameter **meos_red_349** = meos_mix_reducing(ident1 = "MXYL", ident2 = "NC9", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.26% from 12 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.002270041417, gamma_T = 0.98031)
- type(meos_mix_reducing), parameter meos_red_350 = meos_mix_reducing(ident1 = "R32", ident2 = "TOLU", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.49% from 9 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.015980045339, gamma_T = 0.98173)
- type(meos_mix_reducing), parameter meos_red_351 = meos_mix_reducing(ident1 = "R32", ident2 = "R115", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0424065, beta_T = 1., gamma_T = 0.8807734)
- type(meos_mix_reducing), parameter **meos_red_352** = meos_mix_reducing(ident1 = "C3", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.0023, gamma_T = 1.035)
- type(meos_mix_reducing), parameter **meos_red_353** = meos_mix_reducing(ident1 = "NC5", ident2 = "H2↔ O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 0.95667731, beta_T = 1., gamma_T = 0.447666011)
- type(meos_mix_reducing), parameter meos_red_354 = meos_mix_reducing(ident1 = "MEOH", ident2 = "NC6", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.9683251, beta_T = 1., gamma_T = 0.8780631)
- type(meos_mix_reducing), parameter meos_red_355 = meos_mix_reducing(ident1 = "O2", ident2 = "CO", bibref = "Gernert (2013) no adjusted parameters", beta v = 1., gamma v = 1., beta T = 1., gamma T = 1.)
- type(meos_mix_reducing), parameter meos_red_356 = meos_mix_reducing(ident1 = "H2", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_357 = meos_mix_reducing(ident1 = "NC4", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_358 = meos_mix_reducing(ident1 = "SO2", ident2 = "C1", bibref = "Zosimenko and Herrig (2017) / see Herrig (2018) PhD thesis ", beta_v = 1.3155340, gamma_v = 1.1195433, beta_T = 0.999432, gamma_T = 1.1157135)
- type(meos_mix_reducing), parameter meos_red_359 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "NC8", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0069, beta_T = 1., gamma_T = 1.008)

- type(meos_mix_reducing), parameter meos_red_360 = meos_mix_reducing(ident1 = "NC6", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.999, beta_T = 1., gamma_T = 0.991)
- type(meos_mix_reducing), parameter meos_red_361 = meos_mix_reducing(ident1 = "C2", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_362 = meos_mix_reducing(ident1 = "NC9", ident2 = "AR", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_363 = meos_mix_reducing(ident1 = "NC6", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.3% from 12 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.00096, gamma_T = 1.00154)
- type(meos_mix_reducing), parameter meos_red_364 = meos_mix_reducing(ident1 = "NC5", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.119954454, beta_T = 1., gamma_T = 1... 206043295)
- type(meos_mix_reducing), parameter meos_red_365 = meos_mix_reducing(ident1 = "C3", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.102764612, beta_T = 1., gamma_T = 1.↔ 063694129)
- type(meos_mix_reducing), parameter meos_red_366 = meos_mix_reducing(ident1 = "NC5", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.034910633, beta_T = 1., gamma_T = 1.↔ 103421755)
- type(meos_mix_reducing), parameter meos_red_367 = meos_mix_reducing(ident1 = "D2", ident2 = "NE", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.22% from 78 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.98882, gamma_T = 0.83393)
- type(meos_mix_reducing), parameter meos_red_368 = meos_mix_reducing(ident1 = "R32", ident2 = "R134A", bibref = "E.W. Lemmon and R.T Jacobsen, J. Phys. Chem. Ref. Data, 33(2):593-620, 2004.", beta_v = 1., gamma_v = 1.0137207, beta_T = 1., gamma_T = 1.0114076)
- type(meos_mix_reducing), parameter meos_red_369 = meos_mix_reducing(ident1 = "C3", ident2 = "C3_1", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.85% from 13 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0024359, gamma_T = 0.98041)
- type(meos_mix_reducing), parameter meos_red_370 = meos_mix_reducing(ident1 = "PRLN", ident2 = "NH3", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.9721, gamma_T = 0.8483)
- type(meos_mix_reducing), parameter meos_red_371 = meos_mix_reducing(ident1 = "R23", ident2 = "R12", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0187876, beta_T = 1., gamma_T = 0.↔ 9266031)
- type(meos_mix_reducing), parameter meos_red_372 = meos_mix_reducing(ident1 = "NC7", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.37% from 48 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.99846, gamma_T = 0.9896)
- type(meos_mix_reducing), parameter meos_red_373 = meos_mix_reducing(ident1 = "H2S", ident2 = "ACE-TONE", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.01% from 2 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.042122595302, gamma_T = 1.04871)
- type(meos_mix_reducing), parameter **meos_red_374** = meos_mix_reducing(ident1 = "NC4", ident2 = "NC6", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.034995284, beta_T = 1., gamma_T = 1.↔ 00915706)
- type(meos_mix_reducing), parameter meos_red_375 = meos_mix_reducing(ident1 = "NH3", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.101)
- type(meos_mix_reducing), parameter meos_red_376 = meos_mix_reducing(ident1 = "H2S", ident2 = "H2↔ O", bibref = "Herrig and Koerber (2018) / see Herrig (2018) PhD thesis ", beta_v = 0.945818, gamma_v = 1.189702, beta_T = 0.960526, gamma_T = 0.924026)
- type(meos_mix_reducing), parameter meos_red_377 = meos_mix_reducing(ident1 = "IC4", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_378 = meos_mix_reducing(ident1 = "NC8", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.99884, gamma_T = 1.025)
- type(meos_mix_reducing), parameter meos_red_379 = meos_mix_reducing(ident1 = "H2", ident2 = "D2", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.87% from 150 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 1.0087153, gamma_T = 0.99511)

- type(meos_mix_reducing), parameter meos_red_380 = meos_mix_reducing(ident1 = "R12", ident2 = "R11", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0018062, beta_T = 1., gamma_T = 1... 0044593)
- type(meos_mix_reducing), parameter meos_red_381 = meos_mix_reducing(ident1 = "NH3", ident2 = "IC4", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010) (estimated from propane/ammonia and butane/ammonia)", beta_v = 1., gamma_v = 1., beta_T = 1.048657718121, gamma_T = 0.7986)
- type(meos_mix_reducing), parameter meos_red_382 = meos_mix_reducing(ident1 = "O2", ident2 = "N2↔ O", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.9525, gamma_T = 1.1068)
- type(meos_mix_reducing), parameter meos_red_383 = meos_mix_reducing(ident1 = "NH3", ident2 = "R134A", bibref = "I.H. Bell, NIST (2018)", beta_v = 1., gamma_v = 1., beta_T = 1.055547, gamma_T = 0.935232)
- type(meos_mix_reducing), parameter meos_red_384 = meos_mix_reducing(ident1 = "NC10", ident2 = "AR", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter **meos_red_385** = meos_mix_reducing(ident1 = "AR", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from oxygen)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.45)
- type(meos_mix_reducing), parameter meos_red_386 = meos_mix_reducing(ident1 = "CO2", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.93% from 102 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 1.00114, gamma_T = 1.10292)
- type(meos_mix_reducing), parameter meos_red_387 = meos_mix_reducing(ident1 = "C3", ident2 = "R115", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0043338, beta_T = 1., gamma_T = 0.↔ 9432827)
- type(meos_mix_reducing), parameter meos_red_388 = meos_mix_reducing(ident1 = "H2", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_389 = meos_mix_reducing(ident1 = "IC5", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.017880545, beta_T = 1., gamma_T = 1.↔ 00564748)
- type(meos_mix_reducing), parameter meos_red_390 = meos_mix_reducing(ident1 = "H2", ident2 = "H2O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_391 = meos_mix_reducing(ident1 = "H2S", ident2 = "AR", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_392 = meos_mix_reducing(ident1 = "R143A", ident2 = "NC4", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.87% from 112 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 0.999070864096, gamma_T = 0.91912)
- type(meos_mix_reducing), parameter meos_red_393 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "BENZENE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.9826, beta_T = 1., gamma_T = 0.984)
- type(meos_mix_reducing), parameter **meos_red_394** = meos_mix_reducing(ident1 = "C2", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 1.010817909, gamma_v = 1.030988277, beta_T = 0.↔ 990197354, gamma_T = 0.90273666)
- type(meos_mix_reducing), parameter meos_red_395 = meos_mix_reducing(ident1 = "ETOH", ident2 = "MEG", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.9095, beta_T = 1., gamma_T = 1.0174)
- type(meos_mix_reducing), parameter meos_red_396 = meos_mix_reducing(ident1 = "SO2", ident2 = "H2", bibref = "Herrig (2018) Linear Combining Rules / see Herrig (2018) PhD thesis", beta_v = 1.000000000, gamma_v = 1.035170959, beta_T = 1.000000000, gamma_T = 1.940852069)
- type(meos_mix_reducing), parameter meos_red_397 = meos_mix_reducing(ident1 = "NC6", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.988)
- type(meos_mix_reducing), parameter **meos_red_398** = meos_mix_reducing(ident1 = "NC4", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.037, gamma_T = 0.872)
- type(meos_mix_reducing), parameter meos_red_399 = meos_mix_reducing(ident1 = "R114", ident2 = "BENZENE", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.38% from 12 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.998821390759, gamma_T = 0.95788)

- type(meos_mix_reducing), parameter meos_red_400 = meos_mix_reducing(ident1 = "IC4", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_401 = meos_mix_reducing(ident1 = "NC6", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.155145836, beta_T = 1., gamma_T = 1...
 233272781)
- type(meos_mix_reducing), parameter meos_red_402 = meos_mix_reducing(ident1 = "N2", ident2 = "R14", bibref = "E.W. Lemmon, NIST (2014)", beta_v = 1., gamma_v = 1.1693, beta_T = 1., gamma_T = 1.0674)
- type(meos_mix_reducing), parameter meos_red_403 = meos_mix_reducing(ident1 = "ETOH", ident2 = "NC10", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.059, beta_T = 1.004016064257, gamma_T = 0.894)
- type(meos_mix_reducing), parameter meos_red_404 = meos_mix_reducing(ident1 = "NC6", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.28% from 27 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.00071, gamma_T = 0.99711)
- type(meos_mix_reducing), parameter meos_red_405 = meos_mix_reducing(ident1 = "NC6", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.02076168, beta_T = 1., gamma_T = 1.↔ 055369591)
- type(meos_mix_reducing), parameter meos_red_406 = meos_mix_reducing(ident1 = "NC6", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.9979, beta_T = 1., gamma_T = 1.002)
- type(meos_mix_reducing), parameter meos_red_407 = meos_mix_reducing(ident1 = "C1", ident2 = "C2", bibref = "Kunz and Wagner (2007)", beta_v = 0.997547866, gamma_v = 1.006617867, beta_T = 0.↔ 996336508, gamma_T = 1.049707697)
- type(meos_mix_reducing), parameter **meos_red_408** = meos_mix_reducing(ident1 = "NH3", ident2 = "NC6", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1... 130454442686, gamma_T = 0.8776)
- type(meos_mix_reducing), parameter meos_red_409 = meos_mix_reducing(ident1 = "PRLN", ident2 = "NC7", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.008064516129, gamma_T = 1.082)
- type(meos_mix_reducing), parameter meos_red_410 = meos_mix_reducing(ident1 = "NC4", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.049219137, beta_T = 1., gamma_T = 1... 014096448)
- type(meos_mix_reducing), parameter meos_red_411 = meos_mix_reducing(ident1 = "R23", ident2 = "R11", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0321197, beta_T = 1., gamma_T = 0.↔ 9362767)
- type(meos_mix_reducing), parameter **meos_red_412** = meos_mix_reducing(ident1 = "C1", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1.002852287, gamma_v = 1.141895355, beta_T = 0.↔ 947716769, gamma_T = 1.528532478)
- type(meos_mix_reducing), parameter meos_red_413 = meos_mix_reducing(ident1 = "PXYL", ident2 = "NC9", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.22% from 11 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.999390371873, gamma_T = 0.99387)
- type(meos_mix_reducing), parameter **meos_red_414** = meos_mix_reducing(ident1 = "C1", ident2 = "NC6", bibref = "Kunz and Wagner (2007)", beta_v = 0.958015294, gamma_v = 1.052643846, beta_T = 0.↔ 981844797, gamma_T = 1.330570181)
- type(meos_mix_reducing), parameter meos_red_415 = meos_mix_reducing(ident1 = "NC9", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.00081052, beta_T = 1., gamma_T = 1.000182392)
- type(meos_mix_reducing), parameter **meos_red_416** = meos_mix_reducing(ident1 = "NC4", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 0.908113163, gamma_v = 1.033366041, beta_T = 0.↔ 985962886, gamma_T = 0.926156602)
- type(meos_mix_reducing), parameter meos_red_417 = meos_mix_reducing(ident1 = "O2", ident2 = "H2S", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_418 = meos_mix_reducing(ident1 = "NC5", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_419 = meos_mix_reducing(ident1 = "NC8", ident2 = "H2S", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_420 = meos_mix_reducing(ident1 = "MXYL", ident2 = "NC10", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.15% from 44 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.999650122457, gamma_T = 0.99369)

- type(meos_mix_reducing), parameter meos_red_421 = meos_mix_reducing(ident1 = "CO2", ident2 = "R12", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.93% from 25 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.01811, gamma_T = 0.9576)
- type(meos_mix_reducing), parameter meos_red_422 = meos_mix_reducing(ident1 = "R12", ident2 = "R142B", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0002214, beta_T = 1., gamma_T = 0.9777321)
- type(meos_mix_reducing), parameter meos_red_423 = meos_mix_reducing(ident1 = "NC4", ident2 = "ACE-TONE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.8906, beta_T = 1.016156894625, gamma_T = 0.9452)
- type(meos_mix_reducing), parameter meos_red_424 = meos_mix_reducing(ident1 = "R32", ident2 = "C3", bibref = "E.W. Lemmon, NIST (2006)", beta_v = 1., gamma_v = 1.0198058, beta_T = 1., gamma_T = 0.↔ 8616194)
- type(meos_mix_reducing), parameter meos_red_425 = meos_mix_reducing(ident1 = "XE", ident2 = "MEOH", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.63% from 13 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.068855683106, gamma_T = 0.77335)
- type(meos_mix_reducing), parameter meos_red_426 = meos_mix_reducing(ident1 = "NC9", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010) (estimated from octane and decane mixed with dodecane)", beta_v = 1., gamma_v = 1.005, beta_T = 0.999, gamma_T = 1.01)
- type(meos_mix_reducing), parameter meos_red_427 = meos_mix_reducing(ident1 = "C1", ident2 = "KR", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0003826, beta_T = 1., gamma_T = 0.↔ 9930853)
- type(meos_mix_reducing), parameter meos_red_428 = meos_mix_reducing(ident1 = "NE", ident2 = "O2", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0260610, beta_T = 1., gamma_T = 1.↔ 1554168)
- type(meos_mix_reducing), parameter meos_red_429 = meos_mix_reducing(ident1 = "PRLN", ident2 = "NC8", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.979431929481, gamma_T = 1.097)
- type(meos_mix_reducing), parameter **meos_red_430** = meos_mix_reducing(ident1 = "CO2", ident2 = "CO", bibref = "Souza and Herrig (2018) / see Souza et al. (2019) and Herrig (2018) PhD thesis ", beta_v = 1.↔ 0338017, gamma_v = 1.0001623, beta_T = 0.989782, gamma_T = 1.1621298)
- type(meos_mix_reducing), parameter meos_red_431 = meos_mix_reducing(ident1 = "C2", ident2 = "NC11", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.01% from 19 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.9430937, gamma_T = 1.27938)
- type(meos_mix_reducing), parameter meos_red_432 = meos_mix_reducing(ident1 = "IC4", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter **meos_red_433** = meos_mix_reducing(ident1 = "MEOH", ident2 = "NC10", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.957, beta_T = 1.095290251917, gamma_T = 1.047)
- type(meos_mix_reducing), parameter meos_red_434 = meos_mix_reducing(ident1 = "N2", ident2 = "H2O", bibref = "Gernert (2013)", beta_v = 0.9262450, gamma_v = 0.7334430, beta_T = 1.048054, gamma_T = 0.8051470)
- type(meos_mix_reducing), parameter meos_red_435 = meos_mix_reducing(ident1 = "SO2", ident2 = "BEN-ZENE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0266, beta_T = 1.015847216579, gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_436 = meos_mix_reducing(ident1 = "TOLU", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.54% from 53 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0008507, gamma_T = 0.99999)
- type(meos_mix_reducing), parameter meos_red_437 = meos_mix_reducing(ident1 = "C3", ident2 = "R134↔ A", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0000015, beta_T = 1., gamma_T = 0.9002394)
- type(meos_mix_reducing), parameter meos_red_438 = meos_mix_reducing(ident1 = "NH3", ident2 = "NC7", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010) (estimated from hexane/ammonia and octane/ammonia)", beta_v = 1., gamma_v = 1., beta_T = 1.178828244725, gamma_T = 0.9726)
- type(meos_mix_reducing), parameter meos_red_439 = meos_mix_reducing(ident1 = "CO2", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1.026, gamma_v = 1.236, beta_T = 0.996, gamma_T = 1.015)

- type(meos_mix_reducing), parameter meos_red_440 = meos_mix_reducing(ident1 = "EBZN", ident2 = "NC9", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.21% from 50 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.003750010038, gamma_T = 0.98564)
- type(meos_mix_reducing), parameter meos_red_441 = meos_mix_reducing(ident1 = "R14", ident2 = "TOLU", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.69% from 8 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.920319984215, gamma_T = 1.18828)
- type(meos_mix_reducing), parameter meos_red_442 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "NC12", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0915, beta_T = 1.044, gamma_T = 0.995)
- type(meos_mix_reducing), parameter meos_red_443 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "NC10", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.008064516129, gamma_T = 1.052)
- type(meos_mix_reducing), parameter meos_red_444 = meos_mix_reducing(ident1 = "NC5", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.992)
- type(meos_mix_reducing), parameter meos_red_445 = meos_mix_reducing(ident1 = "NH3", ident2 = "BEN-ZENE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.↔ 029654036244, gamma_T = 0.9299)
- type(meos_mix_reducing), parameter meos_red_446 = meos_mix_reducing(ident1 = "IC4", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.992)
- type(meos_mix_reducing), parameter meos_red_447 = meos_mix_reducing(ident1 = "NH3", ident2 = "NC4", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1... 055631795630, gamma_T = 0.8067)
- type(meos_mix_reducing), parameter meos_red_448 = meos_mix_reducing(ident1 = "H2S", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.075)
- type(meos_mix_reducing), parameter **meos_red_449** = meos_mix_reducing(ident1 = "C2", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 0.995676258, gamma_v = 1.098361281, beta_T = 0.↔ 970918061, gamma_T = 1.237191558)
- type(meos_mix_reducing), parameter meos_red_450 = meos_mix_reducing(ident1 = "ETOH", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.↔ 93% from 14 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.98697, gamma_T = 0.90681)
- type(meos_mix_reducing), parameter meos_red_451 = meos_mix_reducing(ident1 = "PRLN", ident2 = "NC6", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.021450459653, gamma_T = 1.068)
- type(meos_mix_reducing), parameter meos_red_452 = meos_mix_reducing(ident1 = "H2S", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.011, gamma_T = 1.0138)
- type(meos_mix_reducing), parameter meos_red_453 = meos_mix_reducing(ident1 = "NC6", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_454 = meos_mix_reducing(ident1 = "NC9", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.082905109, beta_T = 1., gamma_T = 1.086557826)
- type(meos_mix_reducing), parameter meos_red_455 = meos_mix_reducing(ident1 = "CO2", ident2 = "SO2", bibref = "Neumann and Herrig (2017) / see Herrig (2018) PhD thesis", beta_v = 0.8898650, gamma_v = 1.↔ 0057783, beta_T = 1.020063, gamma_T = 1.0079753)
- type(meos_mix_reducing), parameter meos_red_456 = meos_mix_reducing(ident1 = "N2", ident2 = "SO2", bibref = "Bell & Herrig (2015)", beta_v = 1.000000000, gamma_v = 1.000000000, beta_T = 1.004300000, gamma_T = 1.220360000)
- type(meos_mix_reducing), parameter meos_red_457 = meos_mix_reducing(ident1 = "NH3", ident2 = "IC5", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010) (estimated from butane/ammonia and pentane/ammonia)", beta_v = 1., gamma_v = 1., beta_T = 1.106194690265, gamma_T = 0.8385)
- type(meos_mix_reducing), parameter meos_red_458 = meos_mix_reducing(ident1 = "R1234YF", ident2 = "R1234ZE", bibref = "E.W. Lemmon, NIST (2015); fit of data from Honeywell", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.987)

- type(meos_mix_reducing), parameter meos_red_459 = meos_mix_reducing(ident1 = "ETOH", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.982318271120, gamma_T = 0.904)
- type(meos_mix_reducing), parameter **meos_red_460** = meos_mix_reducing(ident1 = "C3", ident2 = "IC5", bibref = "Kunz and Wagner (2007)", beta_v = 1.040459289, gamma_v = 0.999432118, beta_T = 0.↔ 994364425, gamma_T = 1.0032695)
- type(meos_mix_reducing), parameter meos_red_461 = meos_mix_reducing(ident1 = "CO", ident2 = "AR", bibref = "Kunz and Wagner (2006) original GERG-2004 mixture model used in EOS-CG!", beta_v = 1...
 000000000, gamma_v = 1.159720623, beta_T = 1.000000000, gamma_T = 0.954215746)
- type(meos_mix_reducing), parameter meos_red_462 = meos_mix_reducing(ident1 = "IC5", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_463 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "NC8", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.016, beta_T = 1., gamma_T = 0.994)
- type(meos_mix_reducing), parameter meos_red_464 = meos_mix_reducing(ident1 = "R134A", ident2 = "R124", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0031148, beta_T = 1., gamma_T = 0.9874736)
- type(meos_mix_reducing), parameter **meos_red_465** = meos_mix_reducing(ident1 = "NC6", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 0.754473958, gamma_v = 1.339283552, beta_T = 0.↔ 985891113, gamma_T = 0.956075596)
- type(meos_mix_reducing), parameter meos_red_466 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "CYCLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.9933)
- type(meos_mix_reducing), parameter **meos_red_467** = meos_mix_reducing(ident1 = "C2", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1.007469726, gamma_v = 1.071917985, beta_T = 0.↔ 984068272, gamma_T = 1.168636194)
- type(meos_mix_reducing), parameter meos_red_468 = meos_mix_reducing(ident1 = "C2", ident2 = "R23", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.47% from 44 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.00597, gamma_T = 0.87082)
- type(meos_mix_reducing), parameter meos_red_469 = meos_mix_reducing(ident1 = "C3", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.079648053, beta_T = 1., gamma_T = 1.↔ 050044169)
- type(meos_mix_reducing), parameter meos_red_470 = meos_mix_reducing(ident1 = "PRLN", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.011, gamma_T = 1.022)
- type(meos_mix_reducing), parameter meos_red_471 = meos_mix_reducing(ident1 = "NC6", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.038, beta_T = 0.991, gamma_T = 1.027)
- type(meos_mix_reducing), parameter meos_red_472 = meos_mix_reducing(ident1 = "CO2", ident2 = "R134A", bibref = "E.W. Lemmon, NIST (2013)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.008)
- type(meos_mix_reducing), parameter meos_red_473 = meos_mix_reducing(ident1 = "CO2", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.258)
- type(meos_mix_reducing), parameter meos_red_474 = meos_mix_reducing(ident1 = "MEOH", ident2 = "MEG", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1.0723, gamma_v = 0.8637, beta_T = 0.9942, gamma_T = 1.0691)
- type(meos_mix_reducing), parameter meos_red_475 = meos_mix_reducing(ident1 = "IC4", ident2 = "NC6", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.010493989, beta_T = 1., gamma_T = 1.↔ 006018054)
- type(meos_mix_reducing), parameter meos_red_476 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.73% from 39 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.00392, gamma_T = 0.99006)
- type(meos_mix_reducing), parameter meos_red_477 = meos_mix_reducing(ident1 = "R134A", ident2 = "IC4", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0051783, beta_T = 1., gamma ← _T = 0.8937027)

- type(meos_mix_reducing), parameter meos_red_478 = meos_mix_reducing(ident1 = "CO", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.9917, gamma_T = 1.4608)
- type(meos_mix_reducing), parameter meos_red_479 = meos_mix_reducing(ident1 = "SO2", ident2 = "AR", bibref = "Herrig (2018) Linear Combining Rules / see Herrig (2018) PhD thesis", beta_v = 1.000000000, gamma_v = 1.021291140, beta_T = 1.000000000, gamma_T = 1.141020219)
- type(meos_mix_reducing), parameter meos_red_480 = meos_mix_reducing(ident1 = "R116", ident2 = "R143A", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.↔ 38% from 78 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.01003, gamma_T = 0.93499)
- type(meos_mix_reducing), parameter meos_red_481 = meos_mix_reducing(ident1 = "N2", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.524)
- type(meos_mix_reducing), parameter meos_red_482 = meos_mix_reducing(ident1 = "CO2", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 0.846647561, gamma_v = 0.864141549, beta_T = 0.76837763, gamma_T = 3.207456948)
- type(meos_mix_reducing), parameter meos_red_483 = meos_mix_reducing(ident1 = "BENZENE", ident2 = "NC9", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.005025125628, gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_484 = meos_mix_reducing(ident1 = "XE", ident2 = "C2", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0034307, beta_T = 1., gamma_T = 1.↔ 0112641)
- type(meos_mix_reducing), parameter **meos_red_485** = meos_mix_reducing(ident1 = "R134A", ident2 = "R1234ZE", bibref = "E.W. Lemmon, NIST (2015); fit of data from Honeywell", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.992)
- type(meos_mix_reducing), parameter meos_red_486 = meos_mix_reducing(ident1 = "CO2", ident2 = "EBZN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.99% from 95 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.00091, gamma_T = 1.09145)
- type(meos_mix_reducing), parameter meos_red_487 = meos_mix_reducing(ident1 = "IC4", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.087272232, beta_T = 1., gamma_T = 1... 161390082)
- type(meos_mix_reducing), parameter meos_red_488 = meos_mix_reducing(ident1 = "N2", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.100405929, beta_T = 0.95637945, gamma_T = 1.749119996)
- type(meos_mix_reducing), parameter meos_red_489 = meos_mix_reducing(ident1 = "IC5", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010) (estimated from pentane/cyclohexane)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.9961)
- type(meos_mix_reducing), parameter **meos_red_490** = meos_mix_reducing(ident1 = "C3", ident2 = "IC4", bibref = "Kunz and Wagner (2007)", beta_v = 0.999243146, gamma_v = 1.001156119, beta_T = 0.↔ 998012298, gamma_T = 1.005250774)
- type(meos_mix_reducing), parameter meos_red_491 = meos_mix_reducing(ident1 = "C3", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.018)
- type(meos_mix_reducing), parameter meos_red_492 = meos_mix_reducing(ident1 = "IC5", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.116694577, beta_T = 1., gamma_T = 1... 199326059)
- type(meos_mix_reducing), parameter meos_red_493 = meos_mix_reducing(ident1 = "NC7", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_494 = meos_mix_reducing(ident1 = "C3", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_495 = meos_mix_reducing(ident1 = "CO", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.19% from 30 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.981810006018, gamma_T = 1.62153)
- type(meos_mix_reducing), parameter meos_red_496 = meos_mix_reducing(ident1 = "R12", ident2 = "NC8", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.02% from 2 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.003482082827, gamma_T = 1.06084)
- type(meos_mix_reducing), parameter meos_red_497 = meos_mix_reducing(ident1 = "EBZN", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.↔ 35% from 125 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 1.000120014402, gamma_T = 0.99939)

- type(meos_mix_reducing), parameter meos_red_498 = meos_mix_reducing(ident1 = "R32", ident2 = "R1234ZE", bibref = "R. Akasaka, FPE, 2013, DOI:10.1016/j.fluid.2013.07.057", beta_v = 1.00586, gamma ↔ v = 0.982707, beta_T = 1.00343, gamma_T = 0.977857)
- type(meos_mix_reducing), parameter meos_red_499 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "NC10", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0563, beta_T = 1.044, gamma_T = 0.9779)
- type(meos_mix_reducing), parameter meos_red_500 = meos_mix_reducing(ident1 = "C3", ident2 = "NC6", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.057872566, beta_T = 1., gamma_T = 1.↔ 025657518)
- type(meos_mix_reducing), parameter meos_red_501 = meos_mix_reducing(ident1 = "SO2", ident2 = "TOLU", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.74% from 27 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.011330031476, gamma_T = 1.02114)
- type(meos_mix_reducing), parameter **meos_red_502** = meos_mix_reducing(ident1 = "N2", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 0.969501055, gamma_v = 0.932629867, beta_T = 0.↔ 692868765, gamma_T = 1.47183158)
- type(meos_mix_reducing), parameter meos_red_503 = meos_mix_reducing(ident1 = "NC8", ident2 = "H2↔ O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 0.599484191, beta_T = 1., gamma_T = 0.662072469)
- type(meos_mix_reducing), parameter meos_red_504 = meos_mix_reducing(ident1 = "PRLN", ident2 = "IC4", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.971817298348, gamma_T = 1.014)
- type(meos_mix_reducing), parameter meos_red_505 = meos_mix_reducing(ident1 = "MEOH", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.012, beta_T = 1., gamma_T = 0.999)
- type(meos_mix_reducing), parameter meos_red_506 = meos_mix_reducing(ident1 = "IC4", ident2 = "NC5", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.002779804, beta_T = 1., gamma_T = 1.↔ 002495889)
- type(meos_mix_reducing), parameter meos_red_507 = meos_mix_reducing(ident1 = "C1", ident2 = "H2", bibref = "Beckmueller et al. (2020) ", beta_v = 1.086000, gamma_v = 0.804000, beta_T = 1.010000, gamma_T = 1.440000)
- type(meos_mix_reducing), parameter meos_red_508 = meos_mix_reducing(ident1 = "C1", ident2 = "SO2", bibref = "Bell & Herrig (2015)", beta_v = 1.000000000, gamma_v = 1.000000000, beta_T = 1.015760000, gamma_T = 1.084560000)
- type(meos_mix_reducing), parameter meos_red_509 = meos_mix_reducing(ident1 = "NC4", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_510 = meos_mix_reducing(ident1 = "C3_1", ident2 = "R134A", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.↔ 32% from 31 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.01623, gamma_T = 0.91325)
- type(meos_mix_reducing), parameter meos_red_511 = meos_mix_reducing(ident1 = "H2", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_512 = meos_mix_reducing(ident1 = "N2", ident2 = "C3", bibref = "Kunz and Wagner (2007)", beta_v = 0.974424681, gamma_v = 1.081025408, beta_T = 1.↔ 002677329, gamma_T = 1.201264026)
- type(meos_mix_reducing), parameter meos_red_513 = meos_mix_reducing(ident1 = "R1234YF", ident2 = "IC4", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.16% from 49 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.992752903802, gamma_T = 0.93536)
- type(meos_mix_reducing), parameter meos_red_514 = meos_mix_reducing(ident1 = "ETOH", ident2 = "BENZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 0.997008973081, gamma → v = 0.97, beta_T = 0.981354268891, gamma_T = 0.92)
- type(meos_mix_reducing), parameter **meos_red_515** = meos_mix_reducing(ident1 = "CO2", ident2 = "IC4", bibref = "Kunz and Wagner (2007)", beta_v = 1.076551882, gamma_v = 1.081909003, beta_T = 1.↔ 023339824, gamma_T = 0.929982936)
- type(meos_mix_reducing), parameter meos_red_516 = meos_mix_reducing(ident1 = "C1", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0835, beta_T = 1., gamma_T = 1.3145)
- type(meos_mix_reducing), parameter meos_red_517 = meos_mix_reducing(ident1 = "N2", ident2 = "MEOH", bibref = "E.W. Lemmon, NIST (2015)", beta_v = 0.534, gamma_v = 1.529, beta_T = 0.998, gamma_T = 1.5293)

- type(meos_mix_reducing), parameter meos_red_518 = meos_mix_reducing(ident1 = "NC8", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_519 = meos_mix_reducing(ident1 = "SO2", ident2 = "MEOH", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.038637307852, gamma_T = 1.0124)
- type(meos_mix_reducing), parameter **meos_red_520** = meos_mix_reducing(ident1 = "C3", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.108143673, beta_T = 1., gamma_T = 1... 197564208)
- type(meos_mix_reducing), parameter meos_red_521 = meos_mix_reducing(ident1 = "TOLU", ident2 = "NC12", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.82% from 19 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.004944326084, gamma_T = 1.01727)
- type(meos_mix_reducing), parameter meos_red_522 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "H2O", bibref = "I.H. Bell, NIST (2017) autofitting code based on data from TDE", beta_v = 1.008091, gamma_v = 0.923029, beta_T = 0.98882, gamma_T = 0.925278)
- type(meos_mix_reducing), parameter meos_red_523 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "NC9", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0466, beta_T = 1.0246, gamma_T = 0.9409)
- type(meos_mix_reducing), parameter meos_red_524 = meos_mix_reducing(ident1 = "NC7", ident2 = "NC9", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.001370076, beta_T = 1., gamma_T = 1... 001150096)
- type(meos_mix_reducing), parameter meos_red_525 = meos_mix_reducing(ident1 = "CO2", ident2 = "O2", bibref = "Gernert (2013)", beta_v = 1.0000000, gamma_v = 1.0844600, beta_T = 1.000000, gamma_T = 1.0319860)
- type(meos_mix_reducing), parameter meos_red_526 = meos_mix_reducing(ident1 = "SO2", ident2 = "H2↔ O", bibref = "Koerber and Herrig (2018) / see Herrig (2018) PhD thesis ", beta_v = 1.094032, gamma_v = 0.962547, beta_T = 1.019562, gamma_T = 0.916311)
- type(meos_mix_reducing), parameter meos_red_527 = meos_mix_reducing(ident1 = "HE", ident2 = "KR", bibref = "E.W. Lemmon, NIST (2017)", beta_v = 1.052, gamma_v = 2.016, beta_T = 0.790, gamma_T = 2.013)
- type(meos_mix_reducing), parameter meos_red_528 = meos_mix_reducing(ident1 = "F6S", ident2 = "NC5", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0605, beta_T = 1.↔ 0416666666667, gamma_T = 0.9293)
- type(meos_mix_reducing), parameter meos_red_529 = meos_mix_reducing(ident1 = "O2", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.3883)
- type(meos_mix_reducing), parameter meos_red_530 = meos_mix_reducing(ident1 = "IC5", ident2 = "NC6", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.002995876, beta_T = 1., gamma_T = 1... 001204174)
- type(meos_mix_reducing), parameter meos_red_531 = meos_mix_reducing(ident1 = "SO2", ident2 = "ETOH", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.015537727227, gamma_T = 1.0224)
- type(meos_mix_reducing), parameter meos_red_532 = meos_mix_reducing(ident1 = "CO2", ident2 = "NC11", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.25% from 42 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0061476, gamma_T = 1.19119)
- type(meos_mix_reducing), parameter meos_red_533 = meos_mix_reducing(ident1 = "MEOH", ident2 = "NC9", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.118, beta⇔ _T = 1.074113856069, gamma_T = 0.893)
- type(meos_mix_reducing), parameter **meos_red_534** = meos_mix_reducing(ident1 = "ETOH", ident2 = "H2O", bibref = "Eckermann and Lemmon (2018) ", beta_v = 1.0124, gamma_v = 0.9558, beta_T = 0.↔ 9866, gamma_T = 0.9971)
- type(meos_mix_reducing), parameter meos_red_535 = meos_mix_reducing(ident1 = "R23", ident2 = "R114", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0521610, beta_T = 1., gamma_T = 0.9415606)
- type(meos_mix_reducing), parameter meos_red_536 = meos_mix_reducing(ident1 = "NC7", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.27% from 71 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.99904, gamma_T = 0.98672)

- type(meos_mix_reducing), parameter meos_red_537 = meos_mix_reducing(ident1 = "C3", ident2 = "NC4", bibref = "Kunz and Wagner (2007)", beta_v = 0.999795868, gamma_v = 1.003264179, beta_T = 1.↔ 000310289, gamma_T = 1.007392782)
- type(meos_mix_reducing), parameter meos_red_538 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "NC11", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010) (estimated from decane and dodecane)", beta_v = 1., gamma_v = 1.075, beta_T = 1.044, gamma_T = 0.98)
- type(meos_mix_reducing), parameter meos_red_539 = meos_mix_reducing(ident1 = "R23", ident2 = "NC4", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2% from 37 bubble-point p", beta_v = 1., gamma_v = 1., beta_T = 1.024338277473, gamma_T = 0.89836)
- type(meos_mix_reducing), parameter meos_red_540 = meos_mix_reducing(ident1 = "R32", ident2 = "R142B", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0305781, beta_T = 1., gamma_T = 0.9718126)
- type(meos_mix_reducing), parameter meos_red_541 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.007, beta_T = 1., gamma_T = 0.97)
- type(meos_mix_reducing), parameter meos_red_542 = meos_mix_reducing(ident1 = "N2", ident2 = "NC4", bibref = "Kunz and Wagner (2007)", beta_v = 0.99608261, gamma_v = 1.146949309, beta_T = 0.994515234, gamma_T = 1.304886838)
- type(meos_mix_reducing), parameter meos_red_543 = meos_mix_reducing(ident1 = "C1", ident2 = "N2O", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 3.36% from 49 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.98876, gamma_T = 1.02354)
- type(meos_mix_reducing), parameter meos_red_544 = meos_mix_reducing(ident1 = "NE", ident2 = "N2", bibref = "E.W. Lemmon, NIST (2016)", beta_v = 0.915750915751, gamma_v = 0.988, beta_T = 1.↔ 025641025641, gamma_T = 1.148)
- type(meos_mix_reducing), parameter meos_red_545 = meos_mix_reducing(ident1 = "N2", ident2 = "H2", bibref = "Beckmueller et al. (2020) ", beta_v = 0.993000, gamma_v = 0.773000, beta_T = 1.027000, gamma_T = 1.240000)
- type(meos_mix_reducing), parameter **meos_red_546** = meos_mix_reducing(ident1 = "NH3", ident2 = "NC8", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1... 231678778175, gamma_T = 1.0676)
- type(meos_mix_reducing), parameter meos_red_547 = meos_mix_reducing(ident1 = "R134A", ident2 = "ETOH", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.↔ 85% from 15 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.029039494536, gamma_T = 0.98183)
- type(meos_mix_reducing), parameter **meos_red_548** = meos_mix_reducing(ident1 = "C1", ident2 = "IC4", bibref = "Kunz and Wagner (2007)", beta_v = 1.011240388, gamma_v = 1.054319053, beta_T = 0.↔ 980315756, gamma_T = 1.161117729)
- type(meos_mix_reducing), parameter **meos_red_549** = meos_mix_reducing(ident1 = "CO2", ident2 = "C3", bibref = "Kunz and Wagner (2007)", beta_v = 0.996898004, gamma_v = 1.047596298, beta_T = 1.↔ 033620538, gamma_T = 0.908772477)
- type(meos_mix_reducing), parameter meos_red_550 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.87% from 79 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.00184, gamma_T = 0.99198)
- type(meos_mix_reducing), parameter meos_red_551 = meos_mix_reducing(ident1 = "KR", ident2 = "NH3", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.66% from 8 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.011818, gamma_T = 0.92419)
- type(meos_mix_reducing), parameter meos_red_552 = meos_mix_reducing(ident1 = "C2", ident2 = "H2O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_553 = meos_mix_reducing(ident1 = "NC8", ident2 = "AR", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_554 = meos_mix_reducing(ident1 = "EBZN", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.38% from 204 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 0.999479970571, gamma_T = 0.99905)
- type(meos_mix_reducing), parameter meos_red_555 = meos_mix_reducing(ident1 = "IC4", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1.048, gamma_T = 0.89)
- type(meos_mix_reducing), parameter meos_red_556 = meos_mix_reducing(ident1 = "NC5", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.047, beta_T = 1., gamma_T = 1.114)

- type(meos_mix_reducing), parameter meos_red_557 = meos_mix_reducing(ident1 = "P-H2", ident2 = "O-H2", bibref = "ideal mixture", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_558 = meos_mix_reducing(ident1 = "IC5", ident2 = "ACE-TONE", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.9177)
- type(meos_mix_reducing), parameter meos_red_559 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "NC8", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.0352, beta_T = 1.0196, gamma_T = 0.9277)
- type(meos_mix_reducing), parameter meos_red_560 = meos_mix_reducing(ident1 = "NH3", ident2 = "H2↔ O", bibref = "#Note: The TR1 model shows up first below, but the program uses the last set of parameters,", beta_v = 1.044759, gamma_v = 1.189754, beta_T = 0.933585, gamma_T = 1.015826)
- type(meos_mix_reducing), parameter meos_red_561 = meos_mix_reducing(ident1 = "NC7", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_562 = meos_mix_reducing(ident1 = "IC5", ident2 = "O2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_563 = meos_mix_reducing(ident1 = "H2", ident2 = "NE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2016)", beta_v = 0.8285, gamma_v = 1.2007, beta_T = 1.00705, gamma_T = 0.7819)
- type(meos_mix_reducing), parameter meos_red_564 = meos_mix_reducing(ident1 = "C2", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.129)
- type(meos_mix_reducing), parameter meos_red_565 = meos_mix_reducing(ident1 = "CO", ident2 = "MXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 4.78% from 49 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.984390035020, gamma_T = 1.5975)
- type(meos_mix_reducing), parameter meos_red_566 = meos_mix_reducing(ident1 = "NC7", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.02, beta_T = 1., gamma_T = 1.019)
- type(meos_mix_reducing), parameter meos_red_567 = meos_mix_reducing(ident1 = "C1", ident2 = "CO2", bibref = "Kunz and Wagner (2007)", beta_v = 0.999518072, gamma_v = 1.002806594, beta_T = 1.02262449, gamma_T = 0.975665369)
- type(meos_mix_reducing), parameter meos_red_568 = meos_mix_reducing(ident1 = "NC7", ident2 = "H2O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_569 = meos_mix_reducing(ident1 = "R32", ident2 = "R1234YF", bibref = "R. Akasaka, FPE, 2013, DOI:10.1016/j.fluid.2013.07.057", beta_v = 0.993346, gamma_v = 1.02211, beta_T = 1.00052, gamma_T = 0.948538)
- type(meos_mix_reducing), parameter meos_red_570 = meos_mix_reducing(ident1 = "NC8", ident2 = "NC10", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1.002553544, beta_T = 1., gamma_T = 1.007186267)
- type(meos_mix_reducing), parameter meos_red_571 = meos_mix_reducing(ident1 = "H2S", ident2 = "HE", bibref = "Kunz and Wagner (2012)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_572 = meos_mix_reducing(ident1 = "NC8", ident2 = "H2", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.305249405, beta_T = 1., gamma_T = 2... 191555216)
- type(meos_mix_reducing), parameter meos_red_573 = meos_mix_reducing(ident1 = "C1", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.978, beta_T = 0.904, gamma_T = 1.716)
- type(meos_mix_reducing), parameter **meos_red_574** = meos_mix_reducing(ident1 = "CO2", ident2 = "C2", bibref = "Kunz and Wagner (2007)", beta_v = 1.002525718, gamma_v = 1.032876701, beta_T = 1.↔ 013871147, gamma_T = 0.90094953)
- type(meos_mix_reducing), parameter meos_red_575 = meos_mix_reducing(ident1 = "NC5", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_576 = meos_mix_reducing(ident1 = "IC5", ident2 = "NC7", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.009928206, beta_T = 1., gamma_T = 1... 003194615)
- type(meos_mix_reducing), parameter meos_red_577 = meos_mix_reducing(ident1 = "H2S", ident2 = "MEG", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.9877, gamma_T = 1.1981)

- type(meos_mix_reducing), parameter meos_red_578 = meos_mix_reducing(ident1 = "R21", ident2 = "MEOH", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.74% from 4 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 0.969208253777, gamma_T = 0.91282)
- type(meos_mix_reducing), parameter **meos_red_579** = meos_mix_reducing(ident1 = "N2", ident2 = "IC5", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.154135439, beta_T = 1., gamma_T = 1.↔ 38177077)
- type(meos_mix_reducing), parameter meos_red_580 = meos_mix_reducing(ident1 = "CO2", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1.19, gamma_v = 1.0106, beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_581 = meos_mix_reducing(ident1 = "TOLU", ident2 = "OXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 1.↔ 16% from 67 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.001743, gamma_T = 1.00209)
- type(meos_mix_reducing), parameter meos_red_582 = meos_mix_reducing(ident1 = "N2", ident2 = "R12", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0625855, beta_T = 1., gamma_T = 1... 2981559)
- type(meos_mix_reducing), parameter **meos_red_583** = meos_mix_reducing(ident1 = "NC5", ident2 = "NC8", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.069223964, beta_T = 1., gamma_T = 1.↔ 016422347)
- type(meos_mix_reducing), parameter meos_red_584 = meos_mix_reducing(ident1 = "PXYL", ident2 = "NC11", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.14% from 12 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.000190036107, gamma_T = 1.0018)
- type(meos_mix_reducing), parameter meos_red_585 = meos_mix_reducing(ident1 = "H2S", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.042)
- type(meos_mix_reducing), parameter meos_red_586 = meos_mix_reducing(ident1 = "R23", ident2 = "ETOH", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.5% from 9 bubble-point ", beta_v = 1., gamma_v = 1., beta_T = 1.104764850802, gamma_T = 1.05138)
- type(meos_mix_reducing), parameter meos_red_587 = meos_mix_reducing(ident1 = "R1234YF", ident2 = "R134A", bibref = "E.W. Lemmon, NIST (2013)", beta v = 1., gamma v = 1., beta T = 1., gamma T = 0.985)
- type(meos_mix_reducing), parameter meos_red_588 = meos_mix_reducing(ident1 = "ACETONE", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 0.997, beta_T = 1.005, gamma_T = 0.975)
- type(meos_mix_reducing), parameter meos_red_589 = meos_mix_reducing(ident1 = "NC4", ident2 = "BEN-ZENE", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_590 = meos_mix_reducing(ident1 = "R1234ZE", ident2 = "NC5", bibref = "S.L. Outcalt and E.W. Lemmon, NIST (2012)", beta_v = 1., gamma_v = 1., beta_T = 1.↔ 007049345418, gamma_T = 0.937)
- type(meos_mix_reducing), parameter meos_red_591 = meos_mix_reducing(ident1 = "C1", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 0.997340772, gamma_v = 1.006102927, beta_T = 0.↔ 987411732, gamma_T = 0.987473033)
- type(meos_mix_reducing), parameter meos_red_592 = meos_mix_reducing(ident1 = "CO2", ident2 = "H2↔ O", bibref = "Gernert (2013)", beta_v = 1.0213920, gamma_v = 0.8951560, beta_T = 1.030538, gamma_T = 0.8284720)
- type(meos_mix_reducing), parameter **meos_red_593** = meos_mix_reducing(ident1 = "CO2", ident2 = "IC5", bibref = "Kunz and Wagner (2007)", beta_v = 1.060793104, gamma_v = 1.116793198, beta_T = 1.↔ 019180957, gamma_T = 0.961218039)
- type(meos_mix_reducing), parameter meos_red_594 = meos_mix_reducing(ident1 = "NC5", ident2 = "ETOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.025, beta_T = 1.028, gamma_T = 0.923)
- type(meos_mix_reducing), parameter meos_red_595 = meos_mix_reducing(ident1 = "XE", ident2 = "F6S", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.61% from 81 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0366024, gamma_T = 0.92846)
- type(meos_mix_reducing), parameter **meos_red_596** = meos_mix_reducing(ident1 = "C2", ident2 = "MEOH", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 0.977, gamma_T = 1.011)
- type(meos_mix_reducing), parameter meos_red_597 = meos_mix_reducing(ident1 = "XE", ident2 = "C3", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.41% from 22 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 0.995113990308, gamma_T = 1.04133)
- type(meos_mix_reducing), parameter **meos_red_598** = meos_mix_reducing(ident1 = "NC5", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 0.984613203, gamma_v = 1.076539234, beta_T = 0.↔ 962006651, gamma_T = 0.959065662)
- type(meos_mix_reducing), parameter meos_red_599 = meos_mix_reducing(ident1 = "SO2", ident2 = "H2↔ S", bibref = "Herrig (2018) - Lorentz-Berthelot Combining Rules / see Herrig (2018) PhD thesis", beta_v = 1.000000000, gamma_v = 1.000000000, beta_T = 1.000000000, gamma_T = 1.000000000)
- type(meos_mix_reducing), parameter meos_red_600 = meos_mix_reducing(ident1 = "KR", ident2 = "XE", bibref = "E.W. Lemmon, NIST (2002)", beta_v = 1., gamma_v = 1.0054519, beta_T = 1., gamma_T = 1.↔ 0196370)
- type(meos_mix_reducing), parameter meos_red_601 = meos_mix_reducing(ident1 = "CO", ident2 = "H2↔ S", bibref = "Kunz and Wagner (2012)", beta_v = 0.795660392, gamma_v = 1.101731308, beta_T = 1.↔ 025536736, gamma_T = 1.022749748)
- type(meos_mix_reducing), parameter meos_red_602 = meos_mix_reducing(ident1 = "NH3", ident2 = "H2S", bibref = "Neumann et al. (2020)", beta_v = 1.000000, gamma_v = 1.000000, beta_T = 1.000000, gamma_T = 1.000000)
- type(meos_mix_reducing), parameter meos_red_603 = meos_mix_reducing(ident1 = "PRLN", ident2 = "ACETONE", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 2.4% from 33 bubble-point", beta_v = 1., gamma_v = 1., beta_T = 1.019919, gamma_T = 0.99014)
- type(meos_mix_reducing), parameter meos_red_604 = meos_mix_reducing(ident1 = "O2", ident2 = "SO2", bibref = "Bell & Herrig (2015)", beta_v = 1.000000000, gamma_v = 1.000000000, beta_T = 0.991148000, gamma_T = 1.173450000)
- type(meos_mix_reducing), parameter **meos_red_605** = meos_mix_reducing(ident1 = "CO2", ident2 = "NC4", bibref = "Kunz and Wagner (2007)", beta_v = 1.174760923, gamma_v = 1.222437324, beta_T = 1.↔ 018171004, gamma_T = 0.911498231)
- type(meos_mix_reducing), parameter meos_red_606 = meos_mix_reducing(ident1 = "MEOH", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1.183, beta_T = 0.947867298578, gamma_T = 0.764)
- type(meos_mix_reducing), parameter meos_red_607 = meos_mix_reducing(ident1 = "NC5", ident2 = "CY-CLOHEX", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.9961)
- type(meos_mix_reducing), parameter meos_red_608 = meos_mix_reducing(ident1 = "NC7", ident2 = "PXYL", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.25% from 124 bubble-poi", beta_v = 1., gamma_v = 1., beta_T = 0.99936, gamma_T = 0.98957)
- type(meos_mix_reducing), parameter **meos_red_609** = meos_mix_reducing(ident1 = "IC4", ident2 = "H2O", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter **meos_red_610** = meos_mix_reducing(ident1 = "IC5", ident2 = "NC12", bibref = "J. Watanasiri and E.W. Lemmon, NIST (2010) (estimated from propane and pentane mixed with dodecane)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.13)
- type(meos_mix_reducing), parameter meos_red_611 = meos_mix_reducing(ident1 = "C2", ident2 = "CO", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1.201417898, beta_T = 1., gamma_T = 1.↔ 069224728)
- type(meos_mix_reducing), parameter meos_red_612 = meos_mix_reducing(ident1 = "C3", ident2 = "SO2", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 0.8738)
- type(meos_mix_reducing), parameter meos_red_613 = meos_mix_reducing(ident1 = "PRLN", ident2 = "NC5", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010) (estimated from trend found in C1-C10)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.04)
- type(meos_mix_reducing), parameter meos_red_614 = meos_mix_reducing(ident1 = "C3", ident2 = "TOLU", bibref = "T.M. Blackham and E.W. Lemmon, NIST (2010)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.049)
- type(meos_mix_reducing), parameter meos_red_615 = meos_mix_reducing(ident1 = "NC8", ident2 = "HE", bibref = "Kunz and Wagner (2007)", beta_v = 1., gamma_v = 1., beta_T = 1., gamma_T = 1.)
- type(meos_mix_reducing), parameter meos_red_616 = meos_mix_reducing(ident1 = "NC6", ident2 = "EBZN", bibref = "I.H. Bell and E.W. Lemmon, JCED, 2016. DOI:10.1021/acs.jced.6b00257; MAPD: 0.09% from 33 bubble-poin", beta_v = 1., gamma_v = 1., beta_T = 1.0002601, gamma_T = 0.99383)

- type(meos_mix_reducing), parameter meos_red_617 = meos_mix_reducing(ident1 = "CYCLOHEX", ident2 = "NC10", bibref = "I. Cullimore and E.W. Lemmon, NIST (2010) (estimated from octane/cyclohexane and dodecane/cyclohexan", beta_v = 1., gamma_v = 1.012, beta_T = 1., gamma_T = 1.025)
- integer, parameter max_meos_mix_reducing = 617
- type(meos mix reducing), dimension(max meos mix reducing), parameter meos mix reducingdb = (/ meos_red_1,meos_red_2,meos_red_3,meos_red_4,meos_red_5,meos_red_6, meos_red_7,meos_↔ red 8,meos red 9,meos red 10,meos red 11,meos red 12, meos red 13,meos red 14,meos red↩ _15,meos_red_16,meos_red_17,meos_red_18, meos_red_19,meos_red_20,meos_red_21,meos_red_⇔ 22,meos_red_23,meos_red_24, meos_red_25,meos_red_26,meos_red_27,meos_red_28,meos_red_⇔ 29, meos red 30, meos_red_31,meos_red_32,meos_red_33,meos_red_34,meos_red_35,meos_red_↔ 36, meos red 37, meos red 38, meos red 39, meos red 40, meos red 41, meos red 42, meos red \leftrightarrow 43,meos_red_44,meos_red_45,meos_red_46,meos_red_47,meos_red_48, meos_red_49,meos_red_↩ 50,meos_red_51,meos_red_52,meos_red_53,meos_red_54, meos_red_55,meos_red_56,meos_red_↔ 57,meos_red_58,meos_red_59,meos_red_60, meos_red_61,meos_red_62,meos_red_63,meos_red_⇔ 64,meos red 65,meos red 66, meos red 67, meos red 68, meos red 69, meos red 70, meos red ~ 71,meos red 72, meos_red_73,meos_red_74,meos_red_75,meos_red_76,meos_red_77,meos_red_ 78, meos red 79, meos red 80, meos red 81, meos red 82, meos red 83, meos red 84, meos red \leftrightarrow meos_red_91,meos red \leftarrow 85,meos red 86,meos red 87,meos red 88,meos red 89,meos red 90, 92,meos red 93,meos red 94,meos red 95,meos red 96, meos red 97, meos red 98, meos red ~ 99,meos_red_100,meos_red_101,meos_red_102, meos_red_103,meos_red_104,meos_red_105,meos↔ red 106, meos red 107, meos red 108, meos_red_109,meos_red_110,meos_red_111,meos_red_↔ 112,meos red 113,meos red 114, meos red 115,meos red 116,meos red 117,meos red 118,meos↔ _red_119,meos_red_120, meos_red_121,meos_red_122,meos_red_123,meos_red_124,meos_red_⇔ 125,meos_red_126, meos_red_127,meos_red_128,meos_red_129,meos_red_130,meos_red_131,meos↔ _red_132, meos_red_133,meos_red_134,meos_red_135,meos_red_136,meos_red_137,meos_red_138, meos red 139, meos red 140, meos red 141, meos red 142, meos red 143, meos red 144, meos⇔ red 145,meos red 146,meos red 147,meos red 148,meos red 149,meos red 150, meos red ↔ 151,meos_red_152,meos_red_153,meos_red_154,meos_red_155,meos_red_156, meos_red_157,meos↔ _red_158,meos_red_159,meos_red_160,meos_red_161,meos_red_162, meos red 163,meos red ↔ 164, meos red 165, meos red 166, meos red 167, meos red 168, meos red 169, meos red 170, meos ↔ _red_171,meos_red_172,meos_red_173,meos_red_174, meos_red_175,meos_red_176,meos_red_↔ 177,meos_red_178,meos_red_179,meos_red_180, meos_red_181,meos_red_182,meos_red_183,meos↔ red 184, meos red 185, meos red 186, meos_red_187,meos_red_188,meos_red_189,meos_red_ 190,meos red 191,meos red 192, meos red 193,meos red 194,meos red 195,meos red 196,meos↔ $meos_red_199, meos_red_200, meos_red_201, meos_red_202, meos_red_\leftrightarrow$ red 197, meos red 198, 203,meos red 204, meos red 205,meos red 206,meos red 207,meos red 208,meos red 209,meos↔ _red_210, meos red 211, meos red 212, meos red 213, meos red 214, meos red 215, meos red 216, meos red 217, meos red 218, meos red 219, meos red 220, meos red 221, meos red 222, meos⇔ red 223,meos red 224,meos red 225,meos red 226,meos red 227,meos red 228, meos red \leftrightarrow 229,meos red 230,meos red 231,meos red 232,meos red 233,meos red 234, meos red 235,meos↔ red 236,meos red 237,meos red 238,meos red 239,meos red 240, meos red 241,meos red ↔ 242,meos red 243,meos red 244,meos red 245,meos red 246, meos red 247,meos red 248,meos↔ _red_249,meos_red_250,meos_red_251,meos_red_252, meos_red_253,meos_red_254,meos_red_⇔ 255,meos_red_256,meos_red_257,meos_red_258, meos_red_259,meos_red_260,meos_red_261,meos↔ _red_262,meos_red_263,meos_red_264, meos_red_265,meos_red_266,meos_red_267,meos_red_ 268,meos_red_269,meos_red_270, meos_red_271,meos_red_272,meos_red_273,meos_red_274,meos↔ meos_red_277,meos_red_278,meos_red_279,meos_red_280,meos_red_ red 275,meos red 276, 281,meos red 282, meos red 283,meos red 284,meos red 285,meos red 286,meos red 287,meos↔ meos red 289, meos red 290, meos red 291, meos red 292, meos red 293, meos red 294, red 288, meos red 295, meos red 296, meos red 297, meos red 298, meos red 299, meos red 300, meos⇔ _red_301,meos_red_302,meos_red_303,meos_red_304,meos_red_305,meos_red_306, meos_red_↩ 307,meos_red_308,meos_red_309,meos_red_310,meos_red_311,meos_red_312, meos_red_313,meos↔ red 314, meos red 315, meos red 316, meos red 317, meos red 318, meos red 319,meos red ~ $320, meos_red_321, meos_red_322, meos_red_323, meos_red_324, meos_red_325, meos_red_326, meos\leftrightarrow$ _red_327,meos_red_328,meos_red_329,meos_red_330, $meos_red_331,meos_red_332,meos_red_$ 333,meos_red_334,meos_red_335,meos_red_336, meos_red_337,meos_red_338,meos_red_339,meos↔ red 340,meos red 341,meos red 342, meos red 343,meos red 344,meos red 345,meos red ~ 346,meos_red_347,meos_red_348, meos_red_349,meos_red_350,meos_red_351,meos_red_352,meos↔

red 353,meos red 354, meos_red_355,meos_red_356,meos_red_357,meos_red_358,meos_red_⇔ 359,meos red 360, meos red 361,meos red 362,meos red 363,meos red 364,meos red 365,meos \leftrightarrow _red_366, meos_red_367,meos_red_368,meos_red_369,meos_red_370,meos_red_371,meos_red_372, meos_red_373,meos_red_374,meos_red_375,meos_red_376,meos_red_377,meos_red_378, meos⇔ _red_379,meos_red_380,meos_red_381,meos_red_382,meos_red_383,meos_red_384, meos red \hookleftarrow 385,meos red 386,meos red 387,meos red 388,meos red 389,meos red 390, meos red 391,meos↔ red 392,meos red 393,meos red 394,meos red 395,meos red 396, meos red 397,meos red ↔ 398,meos red 399,meos red 400,meos red 401,meos red 402, meos red 403,meos red 404,meos↔ red 405,meos red 406,meos red 407,meos red 408, meos red 409, meos red 410, meos red ~ 411,meos red 412,meos red 413,meos red 414, meos red 415,meos red 416,meos red 417,meos↔ red 418, meos red 419, meos red 420, meos red 421, meos red 422, meos red 423, meos red ~ 424,meos_red_425,meos_red_426, meos_red_427,meos_red_428,meos_red_429,meos_red_430,meos↔ red 431,meos red 432, meos_red_433,meos_red_434,meos_red_435,meos_red_436,meos_red_↔ 437, meos red 438, meos red 439, meos red 440, meos red 441, meos red 442, meos red 443, meos ↔ meos_red_445,meos_red_446,meos_red_447,meos_red_448,meos_red_449,meos_red_450, _red_444, meos_red_451,meos_red_452,meos_red_453,meos_red_454,meos_red_455,meos_red_456, meos⇔ red 457,meos red 458,meos red 459,meos red 460,meos red 461,meos red 462, meos red \leftrightarrow 463,meos red 464,meos red 465,meos red 466,meos red 467,meos red 468, meos red 469,meos↔ _red_470,meos_red_471,meos_red_472,meos_red_473,meos_red_474, meos red 475,meos red ↔ 476,meos red 477,meos red 478,meos red 479,meos red 480, meos red 481,meos red 482,meos↔ red 483,meos red 484,meos red 485,meos red 486, meos red 487, meos red 488, meos red 😔 489,meos red 490,meos red 491,meos red 492, meos red 493,meos red 494,meos red 495,meos↔ meos_red_499,meos_red_500,meos_red_501,meos_red_ red 496, meos red 497, meos red 498, 502,meos_red_503,meos_red_504, meos_red_505,meos_red_506,meos_red_507,meos_red_508,meos↔ red 509,meos red 510, meos red 511,meos red 512,meos red 513,meos red 514,meos red ~ 515,meos_red_516, meos_red_517,meos_red_518,meos_red_519,meos_red_520,meos_red_521,meos↔ red 522. meos_red_523,meos_red_524,meos_red_525,meos_red_526,meos_red_527,meos_red_528, meos red 529, meos red 530, meos red 531, meos red 532, meos red 533, meos red 534, meos⇔ red 535,meos red 536,meos red 537,meos red 538,meos red 539,meos red 540, meos red \leftarrow 541,meos red 542,meos red 543,meos red 544,meos red 545,meos red 546, meos red 547,meos↔ _red_548,meos_red_549,meos_red_550,meos_red_551,meos_red_552, meos_red_553,meos_red_↔ 554,meos_red_555,meos_red_556,meos_red_557,meos_red_558, meos_red_559,meos_red_560,meos↔ red 561, meos red 562, meos red 563, meos red 564, meos red 565, meos red 566, meos red 😔 567,meos_red_568,meos_red_569,meos_red_570, meos_red_571,meos_red_572,meos_red_573,meos↔ _red_574,meos_red_575,meos_red_576, meos_red_577,meos_red_578,meos_red_579,meos_red_↔ 580,meos_red_581,meos_red_582, meos_red_583,meos_red_584,meos_red_585,meos_red_586,meos↔ red 587,meos red 588, meos_red_589,meos_red_590,meos_red_591,meos_red_592,meos_red_↔ 593,meos_red_594, meos_red_595,meos_red_596,meos_red_597,meos_red_598,meos_red_599,meos↔ red 600, meos red 601, meos red 602, meos red 603, meos red 604, meos red 605, meos red 606, meos red 607,meos red 608,meos red 609,meos red 610,meos red 611,meos red 612, meos red ↔ _613,meos_red_614,meos_red_615,meos_red_616,meos_red_617 /)

- type(meos_mix_data), parameter meos_mix1 = meos_mix_data(ident1 = "H2", ident2 = "NH3", bibref = "", Fij = 1.000000, num_mix = 4, n_mix = (/ -3.73558, -7.47092, 1.98413, 1.87191, 0.0d0, 0.

0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), num_exp = 0, num_gauss = 0)

- type(meos_mix_data), parameter meos_mix4 = meos_mix_data(ident1 = "C1", ident2 = "ETOH", bibref = "", Fij = 1.486, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.↔ 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.↔ 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...↔ 0.000,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0
- type(meos_mix_data), parameter meos_mix5 = meos_mix_data(ident1 = "MEOH", ident2 = "NC7", bibref = "", Fij = 9.577000, num_mix = 4, n_mix = (/ -0.013073,0.018259,0.81299e-5, 0.0078496,0.0d0,0.0d0, 0.0d0,0.0
- type(meos_mix_data), parameter meos_mix7 = meos_mix_data(ident1 = "TOLU", ident2 = "NC9", bibref = "", Fij = -1.06, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.↔ 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.↔ 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1.1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...↔ 0.000,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d
- type(meos_mix_data), parameter meos_mix8 = meos_mix_data(ident1 = "NC5", ident2 = "MEOH", bibref = "", Fij = 10.487000, num_mix = 4, n_mix = (/ -0.013073,0.018259,0.81299e-5, 0.0078496,0.0d0,0.0d0, 0.0d0,0.
- type(meos_mix_data), parameter meos_mix9 = meos_mix_data(ident1 = "CO2", ident2 = "R1234YF", bibref = "", Fij = -0.657, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806,

- type(meos_mix_data), parameter meos_mix10 = meos_mix_data(ident1 = "NH3", ident2 = "CYCLOHEX", bibref = "", Fij = -0.08997, num_mix = 10, n_mix = (/ 2.5574776844118, -7.9846357136353, 4.7859131465806, -0.73265392369587, 1.3805471345312, 0.28349603476365, -0.49087385940425, -0.10291888921447, 0.
 11836314681968, 0.000055527385721943, 0.0d0, 0.0d0 /), t_mix = (/ 1.0, 1.55, 1.7, 0.25, 1.35, 0.0, 1.25, 0.
 0,0.7, 5.4, 0.0d0, 0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...
 0,0.0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0

- type(meos_mix_data), parameter **meos_mix13** = meos_mix_data(ident1 = "NE", ident2 = "XE", bibref = "", Fij = 1., num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0. \leftrightarrow 73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0. \leftrightarrow 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1. \leftrightarrow 25,0.0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d
- type(meos_mix_data), parameter meos_mix14 = meos_mix_data(ident1 = "ETOH", ident2 = "CYCLOHEX", bibref = "", Fij = 1., num_mix = 7, n_mix = (/ -2.05560, 1.94512, -0.196687, 0.425412, -1.01883, -0.786737, -0.229943, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), t_mix = (/ 4.5, 4.7, 4.68, 2.5, 4.68, 5.5, 8.2, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), t_mix = (/ 0,0,0,1,1,2,2,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0...) od0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0

3800000000, 0.7730000000,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.↔ 0d0,0.0d0,-0.7510000000, -0.6600000000,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,1.8600000000, 2.230000000,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), num. _exp = 0, num_gauss = 2)

- type(meos_mix_data), parameter meos_mix16 = meos_mix_data(ident1 = "N2", ident2 = "ETOH", bibref = "", Fij = 0.778, num_mix = 10, n_mix = (/ 2.5574776844118, -7.9846357136353, 4.7859131465806, -0.73265392369587, 1.3805471345312, 0.28349603476365, -0.49087385940425, -0.10291888921447, 0.
 11836314681968, 0.000055527385721943, 0.0d0, 0.0d0 /), t_mix = (/ 1.0, 1.55, 1.7, 0.25, 1.35, 0.0, 1.25, 0.
 0,0.7, 5.4, 0.0d0, 0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...
 0,0.0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,
- type(meos_mix_data), parameter meos_mix17 = meos_mix_data(ident1 = "CO2", ident2 = "R41", bibref = "", Fij = -0.5483, num_mix = 4, n_mix = (/ -0.013073, 0.018259, 0.81299e-5, 0.0078496, 0.0d0, 0.

- type(meos_mix_data), parameter meos_mix21 = meos_mix_data(ident1 = "PRLN", ident2 = "H2O", bibref = "", Fij = 0.7604, num_mix = 6, n_mix = (/ 1.09765,1.94679,-2.16809, -0.137077,0.0486690,1.04024, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 0.26,7.3,5.3, 2.3,0.7,3.3, 0.0d0,0.0d0,0.0d0, 0.0d0,0..↔ 0d0,0.0d0 /), d_mix = (/ 2,3,5,5,7,6, 0,0,0,0,0,0 /), l_mix = (/ 1,2,2,1,1,2, 0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0

- type(meos_mix_data), parameter meos_mix22 = meos_mix_data(ident1 = "CO2", ident2 = "PRLN", bibref = "", Fij = -0.362, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.
 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.
 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), I_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.
 0,0.0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,
- type(meos_mix_data), parameter **meos_mix23** = meos_mix_data(ident1 = "C1", ident2 = "N2", bibref = "", Fij = 1., num_mix = 9, n_mix = (/ -0.98038985517335d-2,0.42487270143005d-3,-0.34800214576142d-1, -0. \leftrightarrow 13333813013896,-0.11993694974627d-1,0.69243379775168d-1, -0.31022508148249,0.24495491753226,0. \leftrightarrow 22369816716981, 0.0d0,0.0d0 /), t_mix = (/ 0.0,1.85,7.85, 5.4,0.0,0.75, 2.8,4.45,4.25, 0.0d0,0. \leftrightarrow 0d0,0.0d0 /), d_mix = (/ 1,4,1,2,2,2, 2,2,3,0,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0. \leftrightarrow 0d0,1.0d0, 1.0d0,0.25,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5, 0. \leftrightarrow 0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,1.0d0, 1.0d0,2.5,3.0d0, 3.0d0,3.0d0,3.0d0,0.0d0,0.0d0 /), num_exp = 0, num_gauss = 7)

- type(meos_mix_data), parameter meos_mix26 = meos_mix_data(ident1 = "AR", ident2 = "NH3", bibref = "", Fij = 1., num_mix = 3, n_mix = (/ 0.02350785, -1.913776, 1.624062, 0.0d0, 0.0d0
- type(meos_mix_data), parameter meos_mix27 = meos_mix_data(ident1 = "N2", ident2 = "C2", bibref = "", Fij = 1., num_mix = 6, n_mix = (/ -0.47376518126608,0.48961193461001,-0.57011062090535d-2, -0.↔ 19966820041320,-0.69411103101723,0.69226192739021, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,/), t_mix = (/ 0.0,0.05,0.0, 3.65,4.9,4.45, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_mix = (/ 2,2,3,1,2,2, 0,0,0,0,0,0 /), I_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 1.0d0,1.0d0,0.875, 0.0d0,
- type(meos_mix_data), parameter meos_mix28 = meos_mix_data(ident1 = "CYCLOHEX", ident2 = "NC9", bibref = "", Fij = -0.358, num_mix = 10, n_mix = (/ 2.5574776844118, -7.9846357136353, 4.7859131465806, -0.73265392369587, 1.3805471345312, 0.28349603476365, -0.49087385940425, -0.10291888921447, 0. ← 11836314681968, 0.000055527385721943, 0.0d0, 0.0d0 /), t_mix = (/ 1.0, 1.55, 1.7, 0.25, 1.35, 0.0, 1.25, 0. ←

 $0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0$

- type(meos_mix_data), parameter meos_mix29 = meos_mix_data(ident1 = "BENZENE", ident2 = "TOLU", bibref = "", Fij = 0.068, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.↔ 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.↔ 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0

- type(meos_mix_data), parameter meos_mix32 = meos_mix_data(ident1 = "N2", ident2 = "NC12", bibref = "", Fij = 0.898, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0. \leftarrow 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0. \leftarrow 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...) \leftarrow 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0

0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /, beta_mix = (/ 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), num_exp = 0, num_gauss = 0)

- type(meos_mix_data), parameter meos_mix35 = meos_mix_data(ident1 = "R143A", ident2 = "R134A", bibref = "", Fij = 0.5557, num_mix = 4, n_mix = (/ -0.013073,0.018259,0.81299e-5, 0.0078496,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 7.4,0.35,10.0, 5.3,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.↔ 0d0,0.0d0,0.0d0 /), d_mix = (/ 1,3,11,2,0,0, 0,0,0,0,0 /), l_mix = (/ 1,1,2,3,0,0, 0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), eta_mix = (/ 0.0d0,0.0d
- type(meos_mix_data), parameter meos_mix36 = meos_mix_data(ident1 = "HE", ident2 = "NE", bibref = "", Fij = -3.25, num_mix = 6, n_mix = (/ -0.47376518126608, 0.48961193461001, -0.0057011062090535, -0.↔ 19966820041320, -0.69411103101723, 0.69226192739021, 0.0d0, 0.0d
- type(meos_mix_data), parameter meos_mix37 = meos_mix_data(ident1 = "CYCLOHEX", ident2 = "NC11", bibref = "", Fij = -0.358, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0. \leftarrow 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0. \leftarrow 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1.1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0),), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0. \leftarrow 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0
- type(meos_mix_data), parameter meos_mix38 = meos_mix_data(ident1 = "CO", ident2 = "H2O", bibref = "", Fij = 0.9897000, num_mix = 5, n_mix = (/ 0.401420790000D+01,-0.115739390000D+01,-0...)
 721024250000D+01, -0.532512230000D+01,-0.221558670000D+01,0.0d0, 0.0d0,0.0d0, 0.0d0,0...)
 0d0,0.0d0 /), t_mix = (/ 0.5470000000,0.0550000000,1.9250000000, 0.5520000000,1.0000000000,0...)
 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,4,0, 0,0,0,0,0,0 /), I_mix = (/ 0,1,1,1,1,0, 0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon...
 _mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon...
- type(meos_mix_data), parameter meos_mix39 = meos_mix_data(ident1 = "CO2", ident2 = "ACETONE", bibref = "", Fij = 1.6093, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.
 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.
 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...
 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0

- type(meos_mix_data), parameter meos_mix43 = meos_mix_data(ident1 = "BENZENE", ident2 = "NC7", bibref = "", Fij = -0.675, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.
 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.
 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.
 0,0.0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0
- type(meos_mix_data), parameter meos_mix45 = meos_mix_data(ident1 = "C2", ident2 = "ACETONE", bibref = "", Fij = 2.1862, num_mix = 10, n_mix = (/ 2.5574776844118, -7.9846357136353, 4.7859131465806, -0.73265392369587, 1.3805471345312, 0.28349603476365, -0.49087385940425, -0.10291888921447, 0. <
 11836314681968, 0.000055527385721943, 0.0d0, 0.0d0 /), t_mix = (/ 1.0, 1.55, 1.7, 0.25, 1.35, 0.0, 1.25, 0.
 0,0.7, 5.4, 0.0d0, 0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...
 0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.
- type(meos_mix_data), parameter meos_mix46 = meos_mix_data(ident1 = "C1", ident2 = "MEOH", bibref = "", Fij = 1.276, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.
 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.
 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.
 0,0.0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.
 0,000,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,
- type(meos_mix_data), parameter meos_mix47 = meos_mix_data(ident1 = "C1", ident2 = "H2O", bibref = "", Fij = 1.0000000, num_mix = 6, n_mix = (/ 0.3300000000D+01,0.9600000000D+01,-0.↔ 11700000000D+02, 0.2130000000D+01,-0.5300000000D+00,-0.2880000000D+01, 0.0d0,0.↔ 0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 1.1000000000,0.800000000, 1.000000000, 4.000000000,3.↔ 4000000000,0.8000000000, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), d_mix = (/ 1,1,2,4,1, 0,0,0,0,0,0 /),

$$\begin{split} & |_mix = (/ \ 0.0,1,1,1,0, \ 0.0,0,0,0,0,0/), \ eta_mix = (/ \ 0.0d0,0.0d0,0.0d0, \ 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d$$

- type(meos_mix_data), parameter meos_mix48 = meos_mix_data(ident1 = "KR", ident2 = "CO2", bibref = "", Fij = 0.6362, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0. \leftarrow 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0. \leftarrow 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), I_mix = (/ 0,0,0,0,0,0,0,0,0,0),), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d

- type(meos_mix_data), parameter **meos_mix51** = meos_mix_data(ident1 = "C1", ident2 = "C3", bibref = "", Fij = 1., num_mix = 9, n_mix = (/ 0.13746429958576d-1,-0.74425012129552d-2,-0.45516600213685d-2, -0. \leftrightarrow 54546603350237d-2,0.23682016824471d-2,0.18007763721438, -0.44773942932486,0.19327374888200d-1,-0.30632197804624, 0.0d0,0.0d0,0.0d0/), t_mix = (/ 1.85,3.95,0.0, 1.85,3.85,5.25, 3.85,0.2,6.5, 0.0d0,0. \leftrightarrow 0d0,0.0d0 /), d_mix = (/ 3,3,4,4,1, 1,1,2,0,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0. \leftrightarrow 0d0,0.0d0, 0.0d0,0.0d0,0.25, 0.25,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d
- type(meos_mix_data), parameter meos_mix52 = meos_mix_data(ident1 = "C3", ident2 = "MEOH", bibref = "", Fij = 2.715, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.
 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.
 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.
 0,0.0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0
- type(meos_mix_data), parameter meos_mix53 = meos_mix_data(ident1 = "C1", ident2 = "TOLU", bibref = "", Fij = 1.313, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.↔ 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.↔ 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1.1,1,2,2,3, 3,4,4,4,0,0 /), I_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0..., 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0..., 0.0d0,0.0d

0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), beta_mix = (/ 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), num_exp = 0, num_gauss = 0)

- type(meos_mix_data), parameter meos_mix55 = meos_mix_data(ident1 = "H2S", ident2 = "NC12", bibref = "", Fij = -1.808, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0. \leftarrow 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0. \leftarrow 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0. \leftarrow 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0
- type(meos_mix_data), parameter meos_mix56 = meos_mix_data(ident1 = "TOLU", ident2 = "NC10", bibref = "", Fij = -1.395, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.↔ 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.↔ 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0) /), eta_mix = (/ 0.0d0,
- type(meos_mix_data), parameter meos_mix57 = meos_mix_data(ident1 = "CYCLOHEX", ident2 = "NC7", bibref = "", Fij = -0.2539, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.
 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.
 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0),), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.
 0,0.0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,
- type(meos_mix_data), parameter meos_mix58 = meos_mix_data(ident1 = "IC5", ident2 = "MEOH", bibref = "", Fij = 43.215000, num_mix = 4, n_mix = (/ -0.013073,0.018259,0.81299e-5, 0.0078496,0.0d0,0.0d0, 0.0d0,0
- type(meos_mix_data), parameter meos_mix59 = meos_mix_data(ident1 = "MEOH", ident2 = "CYCLOHEX", bibref = "", Fij = 15.061, num_mix = 4, n_mix = (/ -0.013073,0.018259,0.81299e-5, 0.0078496,0.0d0,0.0d0, 0.0d0,0.0d0
- type(meos_mix_data), parameter meos_mix60 = meos_mix_data(ident1 = "O2", ident2 = "H2O", bibref = "", Fij = 0.6017000, num_mix = 5, n_mix = (/ 0.401420790000D+01,-0.115739390000D+01,-0.↔ 721024250000D+01, -0.532512230000D+01,-0.221558670000D+01,0.0d0, 0.0d0,0.0d0, 0.0d0,0..↔ 0d0,0.0d0 /), t_mix = (/ 0.5470000000,0.0550000000,1.9250000000, 0.5520000000,1.000000000,0.↔

0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,4,0, 0,0,0,0,0,0 /), l_mix = (/ 0,1,1,1,1,0, 0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon⇔ ______mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), num_exp = 4, num_gauss = 0)

- type(meos_mix_data), parameter meos_mix61 = meos_mix_data(ident1 = "MEOH", ident2 = "NC6", bibref = "", Fij = 11.089885, num_mix = 4, n_mix = (/ -0.013073,0.018259,0.81299e-5, 0.0078496,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 0.0d0,

- type(meos_mix_data), parameter meos_mix64 = meos_mix_data(ident1 = "R32", ident2 = "R134A", bibref = "", Fij = 1., num_mix = 4, n_mix = (/ 0.22909,0.094074,0.00039876, 0.021133,0.0d0,0.0d0, 0.0d0,0.0d0,0.
 od0, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 1.9,0.25,0.07, 2.0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0
 /), d_mix = (/ 1,3,8,1,0,0, 0,0,0,0,0,0 /), I_mix = (/ 1,1,1,2,0,0, 0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0
- type(meos_mix_data), parameter meos_mix65 = meos_mix_data(ident1 = "H2S", ident2 = "H2O", bibref = "", Fij = 1.000000, num_mix = 6, n_mix = (/ 0.17000000000D+00,-0.11160000000D+00, ...)
 12100000000D+00, -0.23520000000D-02,-0.43100000000D-01,0.776400000000D+00, 0.0d0,0...)
 0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 0.900000000,4.0400000000,6.8800000000, 8.1500000000,5...)
 3500000000,2.7000000000, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_mix = (/ 1,1,2,4,8,1, 0,0,0,0,0,0 /), l_mix = (/ 0,0,1,1,2,1, 0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0

0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /, beta_mix = (/ 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0, 0.0d0 /), num_exp = 0, num_gauss = 0)

- type(meos_mix_data), parameter meos_mix67 = meos_mix_data(ident1 = "NC6", ident2 = "TOLU", bibref = "", Fij = -0.213, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0. \leftarrow 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0. \leftarrow 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0),), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0. \leftarrow 0.000,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,
- type(meos_mix_data), parameter **meos_mix68** = meos_mix_data(ident1 = "NC4", ident2 = "MEOH", bibref = "", Fij = 1.068, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0. \leftarrow 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0. \leftarrow 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0. \leftarrow 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,

- type(meos_mix_data), parameter meos_mix72 = meos_mix_data(ident1 = "CO2", ident2 = "CO", bibref = "", Fij = 1.0000000, num_mix = 6, n_mix = (/ 0.18610000000D+01,-0.40170000000D+01,0. \leftrightarrow 27340000000D+00, 0.2393000000D+01,0.26460000000D+02,-0.12130000000D+01, 0.0d0,0. \leftrightarrow 0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 2.820000000,3.260000000,0.9400000000, 3.9440000000,2. \leftrightarrow 530000000,4.380000000, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), d_mix = (/ 1,1,2,4,1,1, 0,0,0,0,0,0 /), l_mix = (/ 0,0,1,1,0,0,0,0,0,0,0) /), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d

- type(meos_mix_data), parameter meos_mix74 = meos_mix_data(ident1 = "N2", ident2 = "H2O", bibref = "", Fij = 1.0000000, num_mix = 5, n_mix = (/ 0.401420790000D+01,-0.115739390000D+01,-0...)
 721024250000D+01, -0.532512230000D+01,-0.221558670000D+01,0.0d0, 0.0d0,0.0d0, 0.0d0,0...)
 0d0,0.0d0 /), t_mix = (/ 0.5470000000,0.0550000000,1.9250000000, 0.5520000000,1.000000000,0...)
 0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,4,0, 0,0,0,0,0,0 /), I_mix = (/ 0,1,1,1,1,0, 0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon → [mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon → [mix = (/ 0.0d0,0.

- type(meos_mix_data), parameter meos_mix77 = meos_mix_data(ident1 = "ETOH", ident2 = "TOLU", bibref = "", Fij = 0.282, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.↔ 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.↔ 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1.1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d
- type(meos_mix_data), parameter **meos_mix79** = meos_mix_data(ident1 = "BENZENE", ident2 = "CY-CLOHEX", bibref = "", Fij = -0.6475, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.↔ 7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.↔

- type(meos_mix_data), parameter meos_mix80 = meos_mix_data(ident1 = "NC6", ident2 = "NC12", bibref = "", Fij = 1.14, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, 0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.↔ 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.↔ 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0) /), eta_mix = (/ 0.0d0,

- type(meos_mix_data), parameter meos_mix83 = meos_mix_data(ident1 = "BENZENE", ident2 = "NC9", bibref = "", Fij = -1.193, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.↔ 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.↔ 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0...↔ 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0

/), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.25, 0.25,0.0,0.0, 0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.5, 0.5,0.5,0.5, 0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d

- type(meos_mix_data), parameter meos_mix87 = meos_mix_data(ident1 = "ETOH", ident2 = "BENZENE", bibref = "", Fij = -0.162, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.
 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.
 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.
 0,0.0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,
- type(meos_mix_data), parameter meos_mix89 = meos_mix_data(ident1 = "HE", ident2 = "KR", bibref = "", Fij = 1.41, num_mix = 4, n_mix = (/ -0.25157134971934, -0.0062203841111983, 0.088850315184396, -0.035592212573239, 0.0d0, 0.0
- type(meos_mix_data), parameter meos_mix90 = meos_mix_data(ident1 = "ETOH", ident2 = "H2O", bibref = "", Fij = 1.000000, num_mix = 6, n_mix = (/ -0.27260000000D+00,0.2700000000D-01,-0.14830000000D-01, 0.17730000000D+01,0.690000000D+01,-0.64200000000D+01, 0.0d0,0.
 odo,0.0do,0.0do,0.0do,0.0do /), t_mix = (/ 1.680000000,0.7300000000,4.5500000000, 1.1700000000,0.
 t50000000,0.4300000000, 0.0d0,0.0d0, 0.0d0, 0.0d0,0.0d0,0.0d0 /), d_mix = (/ 1,4,3,2,1,1, 0,0,0,0,0,0 /), l_mix = (/ 0,0,1,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0,0.0d0, -0.58500,-0.51000,-0.70000, 0.0d0,0.cd0,0.cd0,0.0d0,0.0d0,0.0d0, 1.0800,0.7500,1.3400, 0.0d0,0.0d0,0.cd0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0, 1.0800,0.7500,1.3400, 0.0d0,0.0d0

0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), epsilon_↔ mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.↔ 0d0,0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), num_exp = 0, num_gauss = 0)

- type(meos_mix_data), parameter meos_mix92 = meos_mix_data(ident1 = "NE", ident2 = "N2", bibref = "", Fij = 1.7, num_mix = 6, n_mix = (/ -0.47376518126608,0.48961193461001,-0.0057011062090535, -0.↔ 19966820041320,-0.69411103101723,0.69226192739021, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), t_mix = (/ 0.0,0.05,0.0, 3.65,4.9,4.45, 0.0d0,0.0d0, 0.0d0, 0.0d0,0.0d0,0.0d0 /), d_mix = (/ 2,2,3,1,2,2, 0,0,0,0,0,0 /), I_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0 /), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 1.0,1.0,0.875, 0.0d0,0.0d0,0.0d0, 0..↔ 0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0, 0.5,0.5,0.5, 0.5,0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), epsilon_mix = (/ 0.0d0,0.0d0, 0.5,0.5,0.5, 0.0d0,0.0d0, 0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0,1.0,1.0,1.25, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), num_exp = 0, num_gauss = 3)
- type(meos_mix_data), parameter meos_mix93 = meos_mix_data(ident1 = "N2", ident2 = "H2", bibref = "", Fij = 1.000000, num_mix = 8, n_mix = (/ -0.1659000000D+01,-0.2680000000D+00,-0.5020000000D+00, 0.3230000000D+00,0.2976000000D+01,0.5084000000D+01, -0.38660000000D+01,-0.54740000000D+01,0.↔ 0d0, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 0.7240000000,0.0970000000,2.9530000000, 3.5000000000,2.↔ 9390000000,0.6940000000, 2.3290000000,1.0660000000,0.0d0, 0.0d0,0.0d0 /), d_mix = (/ 1,2,1,2,1,1, 1,1,0,0,0,0 /), l_mix = (/ 1,1,2,2,0,0, 0,0,0,0,0,0) /), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,-1.850000000,-0.130000000,0.0d0, 0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.0d0,0.0d0, 0.0d0,2.510000000,0.390000000, 2.510000000,1.220000000,0.0d0, 0.0d0,0.↔
 (/ 0.0d0,0.0d0, 0.0d0,2.510000000,0.390000000, 2.510000000,-0.360000000, -0.990000000,-0.2400000000,0.0d0 /), beta_mix = (/ 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0..↔
 800000000, 1.500000000,0.2300000000,0.0d0, 0.0d0,0.0d0 /), num_exp = 4, num_gauss = 4)

- type(meos_mix_data), parameter meos_mix96 = meos_mix_data(ident1 = "H2", ident2 = "NE", bibref = "", Fij = 0.1617, num_mix = 10, n_mix = (/ 2.5574776844118, -7.9846357136353, 4.7859131465806, -0.73265392369587, 1.3805471345312, 0.28349603476365, -0.49087385940425, -0.10291888921447, 0.
 11836314681968, 0.000055527385721943, 0.0d0, 0.0d0 /), t_mix = (/ 1.0, 1.55, 1.7, 0.25, 1.35, 0.0, 1.25, 0.
 0,0.7, 5.4, 0.0d0, 0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0d0, 0.0d0,0.0
- type(meos_mix_data), parameter meos_mix97 = meos_mix_data(ident1 = "C1", ident2 = "CO2", bibref = "", Fij = 1., num_mix = 6, n_mix = (/ -0.10859387354942,0.80228576727389d-1,-0.93303985115717d-2, 0.40989274005848d-1,-0.24338019772494,0.23855347281124, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0,/), t_mix = (/ 2.6,1.95,0.0, 3.95,7.95,8.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,/), d_mix = (/ 1,2,3,1,2,3, 0,0,0,0,0,0/), I_mix = (/ 0,0,0,0,0,0, 0,0,0,0,0,0/), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 1.0d0,0.5,0.0d0, 0.
 0d0,0.0d0,0.0d0, 0.0d0,0.0d0/), gamma_mix = (/ 0.0d0,0.0d0,0.0d0, 0.5,0.5,0.5, 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0)

/), beta_mix = (/ 0.0d0,0.0d0,0.0d0, 1.0d0,2.0d0,3.0d0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0,0.0d0 /), num_exp = 0, num_gauss = 3)

- type(meos_mix_data), parameter meos_mix98 = meos_mix_data(ident1 = "R32", ident2 = "R1234YF", bibref = "", Fij = -0.277708, num_mix = 6, n_mix = (/ -0.10859387354942,0.080228576727389,-0.↔ 0093303985115717, 0.040989274005848,-0.24338019772494,0.23855347281124, 0.0d0,0.0d0,0.0d0, 0. ↔ 0d0,0.0d0 /), t_mix = (/ 2.6,1.95,0.0, 3.95,7.95,8.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), d_mix = (/ 1,2,3,1,2,3, 0,0,0,0,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0,0.0d0, 1.0,0.5,0.0, 0.0d0,0.0d0,0.0d0, 0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0.
- type(meos_mix_data), parameter meos_mix100 = meos_mix_data(ident1 = "CO2", ident2 = "H2O", bibref = "", Fij = 1.0000000, num_mix = 8, n_mix = (/ 0.394404670000D+00,-0.176347320000D+01,0.↔ 146207550000D+00, 0.875223200000D-02,0.203493980000D+01,-0.90350250000D-01, -0.216388540000D+00,0.↔ 396121700000D-01,0.0d0, 0.0d0,0.0d0,0.0d0 /), t_mix = (/ 0.8800000000,2.9320000000,2.4330000000, 1.330000000,4.4160000000,5.5140000000, 5.2030000000,1.0000000000,0.0d0, 0.0d0,0.0d0 /), d↔ _mix = (/ 1,1,3,0,2,3, 1,5,0,0,0,0 /), l_mix = (/ 0,0,0,1,1,1, 2,2,0,0,0,0 /), eta_mix = (/ 0.0d0,
- type(meos_mix_data), parameter meos_mix101 = meos_mix_data(ident1 = "C2", ident2 = "MEOH", bibref = "", Fij = 2.751, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0.↔ 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0.↔ 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0
- type(meos_mix_data), parameter meos_mix103 = meos_mix_data(ident1 = "CYCLOHEX", ident2 = "NC10", bibref = "", Fij = -0.358, num_mix = 10, n_mix = (/ 2.5574776844118,-7.9846357136353,4.7859131465806, -0.73265392369587,1.3805471345312,0.28349603476365, -0.49087385940425,-0.10291888921447,0. \leftarrow 11836314681968, 0.000055527385721943,0.0d0,0.0d0 /), t_mix = (/ 1.0,1.55,1.7, 0.25,1.35,0.0, 1.25,0. \leftarrow 0,0.7, 5.4,0.0d0,0.0d0 /), d_mix = (/ 1,1,1,2,2,3, 3,4,4,4,0,0 /), l_mix = (/ 0,0,0,0,0,0,0,0,0,0,0), eta_mix = (/ 0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), gamma_mix = (/ 0.0d0,0. \leftarrow 0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0,0.0d0 /), beta_mix = (/ 0.0d0,0.
- integer, parameter max_meos_mix_data = 103

 type(meos_mix_data), dimension(max_meos_mix_data), parameter meos_mix_datadb = (/ meos↔ mix1,meos mix2,meos mix3,meos mix4,meos mix5,meos mix6, meos mix7,meos mix8,meos ↔ mix9,meos mix10,meos mix11,meos mix12, meos mix13,meos mix14,meos mix15,meos mix16,meos↔ _mix17,meos_mix18, meos_mix19,meos_mix20,meos_mix21,meos_mix22,meos_mix23,meos_mix24, meos mix25,meos mix26,meos mix27,meos mix28,meos mix29,meos mix30, meos mix31,meos ↔ mix32,meos mix33,meos mix34,meos mix35,meos mix36, meos mix37,meos mix38,meos mix39,meos↔ mix40,meos mix41,meos mix42, meos mix43,meos mix44,meos mix45,meos mix46,meos mix47,meos↔ meos mix49,meos mix50,meos mix51,meos mix52,meos mix53,meos mix54, mix48, meos ~ mix55,meos mix56,meos mix57,meos mix58,meos mix59,meos mix60, meos mix61,meos mix62,meos↔ _mix63,meos_mix64,meos_mix65,meos_mix66, meos_mix67,meos_mix68,meos_mix69,meos_mix70,meos↩ _mix71,meos_mix72, meos mix73,meos mix74,meos mix75,meos mix76,meos mix77,meos mix78, meos_mix79,meos_mix80,meos_mix81,meos_mix82,meos_mix83,meos_mix84, meos_mix85,meos_↩ mix86,meos_mix87,meos_mix88,meos_mix89,meos_mix90, meos_mix91,meos_mix92,meos_mix93,meos↔ _mix94,meos_mix95,meos_mix96, meos_mix97,meos_mix98,meos_mix99,meos_mix100,meos_mix101,meos↩ _mix102, meos_mix103 /)

5.33.1 Detailed Description

Automatically generated file meosmixdb.f90 Time stamp: 2023-03-23T14:50:21.734496.

5.34 mixdatadb Module Reference

Automatically generated to file mixdatadb.f90 using utility python code pyUtils Time stamp: 2023-02-27T15:11↔ :46.339247.

Variables

- type(kijdatadb), parameter vdw1 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "H2S", kijvalue = 0.09500000)
- type(kijdatadb), parameter vdw2 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "O2", kijvalue = 0.10900000)
- type(kijdatadb), parameter vdw3 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NH3", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw4 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "N2O", kijvalue = 0.01000000)
- type(kijdatadb), parameter vdw5 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "N2O4", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw6 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "C1", kijvalue = 0.10000000)
- type(kijdatadb), parameter vdw7 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "C2", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw8 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "C2_1", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw9 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "C3", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw10 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "H2O", kijvalue = 0.07400000)
- type(kijdatadb), parameter vdw11 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "IC4", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw12 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "IC5", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw13 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC10", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw14 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC11", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw15 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC4", kijvalue = 0.15000000)

•	type(kijdatadb), parameter vdw16 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC5", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw17 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "H2S", kijvalue = 0.10200000)
•	type(kijdatadb), parameter vdw18 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "N2", kijvalue = -0.03600000)
•	type(kijdatadb), parameter vdw19 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "AR", kijvalue = 0.08800000)
•	type(kijdatadb), parameter vdw20 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "SO2", kijvalue = 0.07500000)
•	type(kijdatadb), parameter vdw21 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "H2", kijvalue = 0.12100000)
•	type(kijdatadb), parameter vdw22 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "CO", kijvalue = -0.05900000)
•	type(kijdatadb), parameter vdw23 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NH3", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw24 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC4", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw25 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC4", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw26 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC5", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw27 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC6", kijvalue = 0.05000000)
•	type(kijdatadb), parameter vdw28 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC7", kijvalue = 0.04000000)
•	type(kijdatadb), parameter vdw29 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC8", kijvalue = 0.04000000)
•	type(kijdatadb), parameter vdw30 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC9", kijvalue = 0.03000000)
•	type(kijdatadb), parameter vdw31 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MEG", uid2 = "CO2", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw32 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MEG", uid2 = "H2O", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw33 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MEG", uid2 = "C1", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw34 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MEOH", uid2 = "CO2", kijvalue = 0.01700000)
•	type(kijdatadb), parameter vdw35 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C1", kijvalue = 0.03800000)
•	type(kijdatadb), parameter vdw36 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C2", kijvalue = 0.04100000)
•	type(kijdatadb), parameter vdw37 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C2_1", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw38 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C3", kijvalue = 0.07600000)
•	type(kijdatadb), parameter vdw39 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "IC4", kijvalue = 0.09400000)
•	type(kijdatadb), parameter vdw40 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "IC5", kijvalue = 0.08700000)
•	type(kijdatadb), parameter vdw41 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC10", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw42 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC11", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw43 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC4", kijvalue = 0.07000000)

•	type(kijdatadb), parameter vdw44 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC5", kijvalue = 0.08800000)
•	type(kijdatadb), parameter vdw45 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC6", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw46 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC7", kijvalue = 0.14200000)
•	type(kijdatadb), parameter vdw47 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC8", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw48 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC9", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw49 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "O2", kijvalue = -0.01300000)
•	type(kijdatadb), parameter vdw50 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "BENZENE", kijvalue = 0.01100000)
•	type(kijdatadb), parameter vdw51 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R12", uid2 = "R11", kijvalue = 0.00540000)
•	type(kijdatadb), parameter vdw52 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R12", uid2 = "R114", kijvalue = 0.00150000)
•	type(kijdatadb), parameter vdw53 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R12", uid2 = "R152a", kijvalue = 0.08670000)
•	type(kijdatadb), parameter vdw54 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13", uid2 = "R11", kijvalue = 0.02620000)
•	type(kijdatadb), parameter vdw55 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13", uid2 = "R113", kijvalue = 0.02430000)
•	type(kijdatadb), parameter vdw56 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13", uid2 = "R12", kijvalue = 0.02990000)
•	type(kijdatadb), parameter vdw57 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13B", uid2 = "R12", kijvalue = -0.00320000)
•	type(kijdatadb), parameter vdw58 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13B", uid2 = "R152a", kijvalue = 0.07990000)
•	type(kijdatadb), parameter vdw59 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R14", uid2 = "R13", kijvalue = 0.03040000)
•	type(kijdatadb), parameter vdw60 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R14", uid2 = "R23", kijvalue = 0.10080000)
•	type(kijdatadb), parameter vdw61 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R11", kijvalue = 0.04660000)
•	type(kijdatadb), parameter vdw62 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R114", kijvalue = 0.03990000)
•	type(kijdatadb), parameter vdw63 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R12", kijvalue = 0.05640000)
•	type(kijdatadb), parameter vdw64 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R142b", kijvalue = 0.00570000)
•	type(kijdatadb), parameter vdw65 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R115", kijvalue = 0.08700000)
•	type(kijdatadb), parameter vdw66 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R23", uid2 = "R13", kijvalue = 0.10320000)
•	type(kijdatadb), parameter vdw67 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R218", uid2 = "R152a", kijvalue = 0.12000000)
•	type(kijdatadb), parameter vdw68 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R125", uid2 = "R143a", kijvalue = -0.01110000)
•	type(kijdatadb), parameter vdw69 = kijdatadb(eosid = "CSP-PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R125", uid2 = "R134a", kijvalue = -0.00240000)
•	type(kijdatadb), parameter vdw70 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "H2S", kijvalue = 0.10100000)
•	type(kijdatadb), parameter vdw71 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "C2", kijvalue = -0.00780000)

•	type(kijdatadb), parameter vdw72 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "C2 1", kijvalue = 0.02000000)
•	type(kijdatadb), parameter vdw73 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "C3", kijvalue = 0.00900000)
•	type(kijdatadb), parameter vdw74 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "IC4", kijvalue = 0.02410000)
•	type(kijdatadb), parameter vdw75 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "" uid1 = "C1" uid2 = "NC4" kiivalue = 0.00560000.)
•	type(kijdatadb), parameter vdw76 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "" uid1 = "C1" uid2 = "NC5" kiivalue = 0.01900000.)
•	type(kijdatadb), parameter vdw77 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "" uid1 = "C1" uid2 = "H2S" kiivalue = 0.00000000.)
•	type(kijdatadb), parameter vdw78 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "" uid1 = "C2" uid2 = "C2 1" kiivalue = 0.01120000.)
•	type(kijdatadb), parameter vdw79 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw80 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw81 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw82 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw83 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = """ uid1 = "NC4" uid2 = "C2_1" kiivalue = 0.10000000.)
•	type(kijdatadb), parameter vdw84 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw85 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw86 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw87 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw88 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw89 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw90 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw91 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw92 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw93 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	, uid1 = CO2, uid2 = CO, kijvalde = -0.06800000) type(kijdatadb), parameter vdw94 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw95 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw96 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	type(kijdatadb), parameter vdw97 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
•	, uid i = CO2, uid2 = CO3, kijvalue = 0.15000000) type(kijdatadb), parameter vdw98 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref =
	"", uld1 = "CO2", uld2 = "H2O", kijvalue = 0.07400000) tvpe(kijdatadb) parameter vdw99 - kijdatadb(eosid - "CSP-SRK", mruleid - "vdW", ref - "Default", bib. ref -
2	"", uid1 = "CO2", uid2 = "IC4", kijvalue = 0.15000000)

- type(kijdatadb), parameter vdw100 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "CO2", uid2 = "IC5", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw101 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "CO2", uid2 = "NC10", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw102 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC11", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw103 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC4", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw104 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "CO2", uid2 = "NC5", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw105 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "H2S", kijvalue = 0.09900000)
- type(kijdatadb), parameter vdw106 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "CO2", uid2 = "N2", kijvalue = -0.04200000)
- type(kijdatadb), parameter vdw107 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "CO2", uid2 = "AR", kijvalue = 0.09400000)
- type(kijdatadb), parameter vdw108 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "SO2", kijvalue = 0.08000000)
- type(kijdatadb), parameter vdw109 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "CO2", uid2 = "H2", kijvalue = 0.10800000)
- type(kijdatadb), parameter vdw110 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC4", kijvalue = 0.06000000)
- type(kijdatadb), parameter vdw111 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC5", kijvalue = 0.06000000)
- type(kijdatadb), parameter vdw112 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC6", kijvalue = 0.05000000)
- type(kijdatadb), parameter vdw113 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC7", kijvalue = 0.04000000)
- type(kijdatadb), parameter vdw114 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC8", kijvalue = 0.04000000)
- type(kijdatadb), parameter vdw115 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC9", kijvalue = 0.03000000)
- type(kijdatadb), parameter vdw116 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "MEG", uid2 = "CO2", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw117 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MEG", uid2 = "H2O", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw118 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "MEG", uid2 = "C1", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw119 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MEOH", uid2 = "CO2", kijvalue = 0.01700000)
- type(kijdatadb), parameter vdw120 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C1", kijvalue = 0.04200000)
- type(kijdatadb), parameter vdw121 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C2", kijvalue = 0.06000000)
- type(kijdatadb), parameter vdw122 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C2_1", kijvalue = 0.07500000)
- type(kijdatadb), parameter vdw123 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C3", kijvalue = 0.09000000)
- type(kijdatadb), parameter vdw124 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "IC4", kijvalue = 0.11300000)
- type(kijdatadb), parameter vdw125 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "IC5", kijvalue = 0.08700000)
- type(kijdatadb), parameter vdw126 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "N2", uid2 = "NC10", kijvalue = 0.08000000)
- type(kijdatadb), parameter vdw127 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC11", kijvalue = 0.08000000)

- type(kijdatadb), parameter vdw128 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC4", kijvalue = 0.11300000)
- type(kijdatadb), parameter vdw129 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC5", kijvalue = 0.14000000)
- type(kijdatadb), parameter vdw130 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC6", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw131 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC7", kijvalue = 0.14200000)
- type(kijdatadb), parameter vdw132 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC8", kijvalue = 0.08000000)
- type(kijdatadb), parameter vdw133 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC9", kijvalue = 0.08000000)
- type(kijdatadb), parameter vdw134 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "O2", kijvalue = -0.00800000)
- type(kijdatadb), parameter vdw135 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "BENZENE", kijvalue = 0.01100000)
- type(kijdatadb), parameter vdw136 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "R12", uid2 = "R11", kijvalue = 0.00540000)
- type(kijdatadb), parameter vdw137 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R12", uid2 = "R114", kijvalue = 0.00150000)
- type(kijdatadb), parameter vdw138 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "R12", uid2 = "R152a", kijvalue = 0.08670000)
- type(kijdatadb), parameter vdw139 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13", uid2 = "R11", kijvalue = 0.02620000)
- type(kijdatadb), parameter vdw140 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13", uid2 = "R113", kijvalue = 0.02430000)
- type(kijdatadb), parameter vdw141 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "R13", uid2 = "R12", kijvalue = 0.02990000)
- type(kijdatadb), parameter vdw142 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13B", uid2 = "R12", kijvalue = -0.00320000)
- type(kijdatadb), parameter vdw143 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13B", uid2 = "R152a", kijvalue = 0.07990000)
- type(kijdatadb), parameter vdw144 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "R14", uid2 = "R13", kijvalue = 0.03040000)
- type(kijdatadb), parameter vdw145 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "R14", uid2 = "R23", kijvalue = 0.10080000)
- type(kijdatadb), parameter vdw146 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R11", kijvalue = 0.04660000)
- type(kijdatadb), parameter vdw147 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R114", kijvalue = 0.03990000)
- type(kijdatadb), parameter vdw148 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R12", kijvalue = 0.05640000)
- type(kijdatadb), parameter vdw149 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R142b", kijvalue = 0.00570000)
- type(kijdatadb), parameter vdw150 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "R22", uid2 = "R115", kijvalue = 0.08900000)
- type(kijdatadb), parameter vdw151 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref
 = "", uid1 = "R23", uid2 = "R13", kijvalue = 0.10320000)
- type(kijdatadb), parameter vdw152 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R218", uid2 = "R152a", kijvalue = 0.12000000)
- type(kijdatadb), parameter vdw153 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R125", uid2 = "R143a", kijvalue = -0.01110000)
- type(kijdatadb), parameter vdw154 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R125", uid2 = "R134a", kijvalue = -0.00240000)
- type(kijdatadb), parameter vdw155 = kijdatadb(eosid = "CSP-SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R143a", uid2 = "R134a", kijvalue = 0.00130000)

type(kijdatadb), parameter vdw156 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C1", uid2 = "C2", kijvalue = 1.05200000)	ref
type(kijdatadb), parameter vdw157 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_1 = "10.1021/i260067a020", uid1 = "C1", uid2 = "C2_1", kijvalue = 1.01400000)	ref
type(kijdatadb), parameter vdw158 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C1", uid2 = "C3", kijvalue = 1.11300000)	ref
type(kijdatadb), parameter vdw159 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C1", uid2 = "PRLN", kijvalue = 1.08900000)	ref
type(kijdatadb), parameter vdw160 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_u = "10.1021/i260067a020", uid1 = "C1", uid2 = "IC4", kijvalue = 1.15500000)	ref
type(kijdatadb), parameter vdw161 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_u = "10.1021/i260067a020", uid1 = "C1", uid2 = "NC4", kijvalue = 1.17100000)	ref
type(kijdatadb), parameter vdw162 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_u = "10.1021/i260067a020", uid1 = "C1", uid2 = "NC5", kijvalue = 1.24000000)	ref
type(kijdatadb), parameter vdw163 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_u = "10.1021/i260067a020", uid1 = "C1", uid2 = "IC5", kijvalue = 1.22800000)	ref
type(kijdatadb), parameter vdw164 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_u = "10.1021/i260067a020", uid1 = "C1", uid2 = "NC6", kijvalue = 1.30400000)	ref
type(kijdatadb), parameter vdw165 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C1", uid2 = "NC7", kijvalue = 1.36700000)	ref
type(kijdatadb), parameter vdw166 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C1", uid2 = "NC8", kijvalue = 1.42300000)	ref
type(kijdatadb), parameter vdw167 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_1 = "10.1021/i260067a020", uid1 = "C1", uid2 = "NC9", kijvalue = 1.48400000)	ref
type(kijdatadb), parameter vdw168 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_1 = "10.1021/i260067a020", uid1 = "C1", uid2 = "NC10", kijvalue = 1.53300000)	ref
type(kijdatadb), parameter vdw169 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_1 = "10.1021/i260067a020", uid1 = "C1", uid2 = "BENZENE", kijvalue = 1.23400000)	ref
type(kijdatadb), parameter vdw170 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_1 = "10.1021/i260067a020", uid1 = "C2", uid2 = "C2_1", kijvalue = 0.99100000)	ref
type(kijdatadb), parameter vdw171 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C2", uid2 = "C3", kijvalue = 1.01000000)	ref
type(kijdatadb), parameter vdw172 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C2", uid2 = "PRLN", kijvalue = 1.00200000)	ref
type(kijdatadb), parameter vdw173 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C2", uid2 = "IC4", kijvalue = 1.03600000)	ref
type(kijdatadb), parameter vdw174 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C2", uid2 = "NC4", kiivalue = 1.02900000)	ref
type(kijdatadb), parameter vdw175 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C2", uid2 = "NC5", kijvalue = 1.06400000)	ref
type(kijdatadb), parameter vdw176 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C2", uid2 = "IC5", kijvalue = 1.07000000)	ref
type(kijdatadb), parameter vdw177 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C2", uid2 = "NC6", kijvalue = 1.10600000)	ref
type(kijdatadb), parameter vdw178 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C2", uid2 = "NC7", kijvalue = 1.14300000)	ref
type(kijdatadb), parameter vdw179 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_r = "10.1021/i260067a020", uid1 = "C2", uid2 = "NC8", kiivalue = 1.16500000)	ref
type(kijdatadb), parameter vdw180 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_i = "10.1021/i260067a020", uid1 = "C2", uid2 = "NC9", kiivalue = 1.21400000.)	ref
type(kiidatadb), parameter vdw181 = kiidatadb(eosid = "I K", mruleid = "vdW", ref = "Plocker1982(+)" bib	ref

type(kijdatadb), parameter vdw181 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C2", uid2 = "NC10", kijvalue = 1.23700000)

- type(kijdatadb), parameter vdw182 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C2", uid2 = "BENZENE", kijvalue = 1.06600000)
- type(kijdatadb), parameter vdw183 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C2_1", uid2 = "NC4", kijvalue = 0.99800000)

•

- type(kijdatadb), parameter vdw184 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C2_1", uid2 = "BENZENE", kijvalue = 1.09400000)
- type(kijdatadb), parameter vdw185 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C2_1", uid2 = "NC7", kijvalue = 1.16300000)
- type(kijdatadb), parameter vdw186 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "PRLN", kijvalue = 0.99200000)
- type(kijdatadb), parameter vdw187 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "NC4", kijvalue = 1.00300000)
- type(kijdatadb), parameter vdw188 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "IC4", kijvalue = 1.00300000)
- type(kijdatadb), parameter vdw189 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "NC5", kijvalue = 1.00600000)
- type(kijdatadb), parameter vdw190 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "IC5", kijvalue = 1.00900000)
- type(kijdatadb), parameter vdw191 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "NC6", kijvalue = 1.04700000)
- type(kijdatadb), parameter vdw192 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "BENZENE", kijvalue = 1.01100000)
- type(kijdatadb), parameter vdw193 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "NC7", kijvalue = 1.06700000)
- type(kijdatadb), parameter vdw194 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "NC8", kijvalue = 1.09000000)
- type(kijdatadb), parameter vdw195 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "NC9", kijvalue = 1.01150000)
- type(kijdatadb), parameter vdw196 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "C3", uid2 = "NC10", kijvalue = 1.13900000)
- type(kijdatadb), parameter vdw197 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "PRLN", uid2 = "NC4", kijvalue = 1.01000000)
- type(kijdatadb), parameter vdw198 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "PRLN", uid2 = "IC4", kijvalue = 1.00900000)
- type(kijdatadb), parameter vdw199 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC4", uid2 = "IC4", kijvalue = 1.00100000)
- type(kijdatadb), parameter vdw200 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC4", uid2 = "NC5", kijvalue = 0.99400000)
- type(kijdatadb), parameter vdw201 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC4", uid2 = "IC5", kijvalue = 0.99800000)
- type(kijdatadb), parameter vdw202 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC4", uid2 = "NC6", kijvalue = 1.01800000)
- type(kijdatadb), parameter vdw203 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC4", uid2 = "BENZENE", kijvalue = 0.99900000)
- type(kijdatadb), parameter vdw204 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC4", uid2 = "NC7", kijvalue = 1.02700000)
- type(kijdatadb), parameter vdw205 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC4", uid2 = "NC8", kijvalue = 1.04600000)
- type(kijdatadb), parameter vdw206 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC4", uid2 = "NC9", kijvalue = 1.06400000)
- type(kijdatadb), parameter vdw207 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC4", uid2 = "NC10", kijvalue = 1.07800000)
- type(kijdatadb), parameter vdw208 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC5", uid2 = "IC5", kijvalue = 0.98700000)
- type(kijdatadb), parameter vdw209 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC5", uid2 = "NC6", kijvalue = 0.99600000)
- type(kijdatadb), parameter vdw210 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC5", uid2 = "BENZENE", kijvalue = 0.97700000)
- type(kijdatadb), parameter vdw211 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC5", uid2 = "NC7", kijvalue = 1.00400000)

- type(kijdatadb), parameter vdw212 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC5", uid2 = "NC8", kijvalue = 1.02000000)
- type(kijdatadb), parameter vdw213 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC5", uid2 = "NC9", kijvalue = 1.03300000)
- type(kijdatadb), parameter vdw214 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC5", uid2 = "NC10", kijvalue = 1.04500000)
- type(kijdatadb), parameter vdw215 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC6", uid2 = "BENZENE", kijvalue = 0.97800000)
- type(kijdatadb), parameter vdw216 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC6", uid2 = "NC7", kijvalue = 1.00800000)
- type(kijdatadb), parameter vdw217 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC6", uid2 = "NC8", kijvalue = 1.00500000)
- type(kijdatadb), parameter vdw218 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC6", uid2 = "NC9", kijvalue = 1.01500000)
- type(kijdatadb), parameter vdw219 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC6", uid2 = "NC10", kijvalue = 1.02500000)
- type(kijdatadb), parameter vdw220 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "BENZENE", uid2 = "NC7", kijvalue = 0.98500000)
- type(kijdatadb), parameter vdw221 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "BENZENE", uid2 = "NC8", kijvalue = 0.98700000)
- type(kijdatadb), parameter vdw222 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "BENZENE", uid2 = "NC9", kijvalue = 1.03400000)
- type(kijdatadb), parameter vdw223 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "BENZENE", uid2 = "NC10", kijvalue = 1.04700000)
- type(kijdatadb), parameter vdw224 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC7", uid2 = "NC8", kijvalue = 0.99300000)
- type(kijdatadb), parameter vdw225 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC7", uid2 = "NC9", kijvalue = 1.00200000)
- type(kijdatadb), parameter vdw226 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC7", uid2 = "NC10", kijvalue = 1.01000000)
- type(kijdatadb), parameter vdw227 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC8", uid2 = "NC9", kijvalue = 0.99300000)
- type(kijdatadb), parameter vdw228 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC8", uid2 = "NC10", kijvalue = 0.99900000)
- type(kijdatadb), parameter vdw229 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "NC9", uid2 = "NC10", kijvalue = 0.99100000)
- type(kijdatadb), parameter vdw230 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "C1", kijvalue = 0.97700000)
- type(kijdatadb), parameter vdw231 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "C2_1", kijvalue = 1.03200000)
- type(kijdatadb), parameter vdw232 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "C2", kijvalue = 1.08200000)
- type(kijdatadb), parameter vdw233 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "C3", kijvalue = 1.17700000)
- type(kijdatadb), parameter vdw234 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "PRLN", kijvalue = 1.15100000)
- type(kijdatadb), parameter vdw235 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "NC4", kijvalue = 1.27600000)
- type(kijdatadb), parameter vdw236 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "NC5", kijvalue = 1.37200000)
- type(kijdatadb), parameter vdw237 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "NC6", kijvalue = 1.44200000)
- type(kijdatadb), parameter vdw238 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "O2", kijvalue = 0.99700000)
- type(kijdatadb), parameter vdw239 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "CO", kijvalue = 0.98700000)

	type(kijdatadb), parameter vdw240 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref
	= "10.1021/i260067a020", uid1 = "N2", uid2 = "H2S", kijvalue = 0.98300000)
•	type(kijdatadb), parameter vdw241 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "CO2", kijvalue = 1.11000000)
•	type(kijdatadb), parameter vdw242 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "N2O", kijvalue = 1.07300000)
•	type(kijdatadb), parameter vdw243 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2", uid2 = "NH3", kijvalue = 1.03300000)
•	type(kijdatadb), parameter vdw244 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020" uid1 = "CO2" uid2 = "C1" kiivalue = 0.97500000.)
•	type(kijdatadb), parameter vdw245 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "C2", kijvalue = 0.93800000.)
•	type(kijdatadb), parameter vdw246 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i2600672020", uid1 = " $CO2$ ", uid2 = "C2", kijvalue = 0.92500000)
•	= 10.1021/1260067a020, und = CO2, und = C
•	= "10.1021/i26006/a020", uid1 = "CO2", uid2 = "NC4", Kijvaiue = 0.95500000) type(kiidatadb) parameter ydw248 = kiidatadb(eosid = "LK" mruleid = "ydW" ref = "Plocker1982(+)" bib ref
	= "10.1021/i260067a020", uid1 = "CO2", uid2 = "IC4", kijvalue = 0.94600000)
•	type(kijdatadb), parameter vdw249 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "NC5", kijvalue = 1.00200000)
•	type(kijdatadb), parameter vdw250 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "NC6", kijvalue = 1.01800000)
•	type(kijdatadb), parameter vdw251 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "BENZENE", kijvalue = 1.01800000)
•	type(kijdatadb), parameter vdw252 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "NC7", kiivalue = 1.05800000)
•	type(kijdatadb), parameter vdw253 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "NC8", kiivalue = 1.09000000.)
•	type(kijdatadb), parameter vdw254 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "NC9", kiivalue = 1.12600000.)
•	type(kijdatadb), parameter vdw255 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i2600672020", uid1 = "CO2", uid2 = "NC10", kiivalue = 1.16000000, $)$
•	type(kijdatadb), parameter vdw256 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref
	$type(kijdatadb)$, parameter vdw257 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref
•	
•	= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000)
•	= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000)
•	= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000)
•	<pre>= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000)</pre>
• • •	<pre>= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000)</pre>
• • •	<pre>= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.49800000) type(kijdatadb), parameter vdw262 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.49800000) type(kijdatadb), parameter vdw262 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.49800000)</pre>
• • • •	<pre>= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.49800000) type(kijdatadb), parameter vdw262 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.82600000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.82600000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref</pre>
• • • • • •	<pre>= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.49800000) type(kijdatadb), parameter vdw262 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.49800000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.82600000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.82600000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 2.09300000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC4", kijvalue = 2.09300000) type(kijdatadb), parameter vdw264 = kiidatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/</pre>
• • • •	<pre>= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.49800000) type(kijdatadb), parameter vdw262 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.82600000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.82600000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC4", kijvalue = 2.09300000) type(kijdatadb), parameter vdw264 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC4", kijvalue = 2.09300000) type(kijdatadb), parameter vdw264 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC5", kijvalue = 2.33500000)</pre>
• • • •	<pre>= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.49800000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.82600000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.82600000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 2.09300000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC4", kijvalue = 2.09300000) type(kijdatadb), parameter vdw264 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC5", kijvalue = 2.33500000) type(kijdatadb), parameter vdw265 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC5", kijvalue = 2.45600000)</pre>
· · · ·	<pre>= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.6040000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "PRLN", kijvalue = 1.49800000) type(kijdatadb), parameter vdw262 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.82600000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC4", kijvalue = 2.09300000) type(kijdatadb), parameter vdw264 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC5", kijvalue = 2.33500000) type(kijdatadb), parameter vdw265 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC5", kijvalue = 2.33500000) type(kijdatadb), parameter vdw265 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC5", kijvalue = 2.45600000) type(kijdatadb), parameter vdw265 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC5", kijvalue = 2.45600000) type(kijdatadb), parameter vdw265 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.</pre>
• • • • • • •	<pre>= "10.1021/i260067a020", uid1 = "CO2", uid2 = "R12", kijvalue = 0.96900000) type(kijdatadb), parameter vdw258 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO2", uid2 = "MEOH", kijvalue = 1.06900000) type(kijdatadb), parameter vdw259 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C1", kijvalue = 1.21600000) type(kijdatadb), parameter vdw260 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C2", kijvalue = 1.60400000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "PRLN", kijvalue = 1.49800000) type(kijdatadb), parameter vdw261 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 1.49800000) type(kijdatadb), parameter vdw262 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "C3", kijvalue = 2.0930000) type(kijdatadb), parameter vdw263 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC4", kijvalue = 2.0930000) type(kijdatadb), parameter vdw264 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC5", kijvalue = 2.3350000) type(kijdatadb), parameter vdw265 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC5", kijvalue = 2.4560000) type(kijdatadb), parameter vdw265 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "NC6", kijvalue = 2.63400000) type(kijdatadb), parameter vdw265 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021</pre>

type(kijdatadb), parameter vdw268 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref
type(kijdatadb), parameter vdw269 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2", uid2 = "CO2", kiivalue = 1.62400000)
type(kijdatadb), parameter vdw270 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "O2", uid2 = "N2O", kijvalue = 1.05700000)
type(kijdatadb), parameter vdw271 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "CO", uid2 = "C1", kijvalue = 0.97400000)
type(kijdatadb), parameter vdw272 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2S", uid2 = "IC4", kijvalue = 0.94700000)
type(kijdatadb), parameter vdw273 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "N2O", uid2 = "C1", kijvalue = 1.01700000)
type(kijdatadb), parameter vdw274 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2O", uid2 = "CO2", kijvalue = 0.92000000)
type(kijdatadb), parameter vdw275 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2O", uid2 = "NH3", kijvalue = 1.15200000)
type(kijdatadb), parameter vdw276 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.1021/i260067a020", uid1 = "H2O", uid2 = "MEOH", kijvalue = 0.97900000)
type(kijdatadb), parameter vdw277 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "10.3303/CET1332311", uid1 = "CO2", uid2 = "AR", kijvalue = 0.99200000)
type(kijdatadb), parameter vdw278 = kijdatadb(eosid = "LK", mruleid = "vdW", ref = "Plocker1982(+)", bib_ref = "", uid1 = "CO2", uid2 = "O2", kijvalue = 1.03200000)
type(kijdatadb), parameter vdw279 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "H2S", kijvalue = 0.09300000)
type(kijdatadb), parameter vdw280 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "O2", kijvalue = 0.10200000)
type(kijdatadb), parameter vdw281 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NH3", kijvalue = 0.00000000)
type(kijdatadb), parameter vdw282 = kijdatadb(eosid = "PR", mruleid = "vdW", ret = "Default", bib_ret = "", uid1 = "CO2", uid2 = "N2O", kijvalue = 0.00700000)
type(kijdatadb), parameter vdw283 = kijdatadb(eosid = "PR", mruleid = "vdw", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "N2O4", kijvalue = 0.00000000) two (kijdatadb), parameter vdw284 = kijdatadb(eosid = "PR", mruleid = "vdw", ref = "Default", bib_ref = "",
type(kijdatadb), parameter vdw284 = kijdatadb(eosid = "PR", mruleid = "vdw", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "C1", kijvalue = 0.09200000) tyre(kijdatadb), parameter vdw285 _ kijdatadb(eosid = "DD", mruleid = "vdW", ref = "Default", bib_ref = "",
type(kijdatadb), parameter vdw265 = kijdatadb(eosid = PR, mruleid = vdw, ref = Default, bib_ref = , uid1 = "CO2", uid2 = "C2", kijvalue = 0.15000000) type(kijdatadb), parameter vdw266 _ kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = ""
uid1 = "CO2", uid2 = "C2_1", kijvalue = 0.15000000) tvpe(kijdatadb), parameter vdw287 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib. ref = ""
uid1 = "CO2", uid2 = "C3", kijvalue = 0.15000000) type(kijdatadb), parameter vdw288 - kijdatadb(eosid - "PB", mruleid - "vdW", ref - "Default", bib, ref - ""
uid1 = "CO2", uid2 = "H2O", kijvalue = 0.07400000)

- type(kijdatadb), parameter vdw289 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "IC4", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw290 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "IC5", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw291 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC10", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw292 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC11", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw293 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC4", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw294 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC5", kijvalue = 0.15000000)
- type(kijdatadb), parameter vdw295 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "H2S", kijvalue = 0.09900000)

•

•	type(kijdatadb), parameter vdw296 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "N2", kijvalue = -0.03600000)
•	type(kijdatadb), parameter vdw297 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "AR", kijvalue = 0.08600000)
•	type(kijdatadb), parameter vdw298 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "SO2", kijvalue = 0.07200000)
•	type(kijdatadb), parameter vdw299 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "H2", kijvalue = 0.10400000)
•	type(kijdatadb), parameter vdw300 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "CO", kijvalue = -0.06600000)
•	type(kijdatadb), parameter vdw301 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NH3", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw302 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "CO2", kijvalue = -0.06500000)
•	type(kijdatadb), parameter vdw303 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC4", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw304 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC4", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw305 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC5", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw306 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC6", kijvalue = 0.05000000)
•	type(kijdatadb), parameter vdw307 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC7", kijvalue = 0.04000000)
•	type(kijdatadb), parameter vdw308 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC8", kijvalue = 0.04000000)
•	type(kijdatadb), parameter vdw309 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC9", kijvalue = 0.03000000)
•	type(kijdatadb), parameter vdw310 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MEOH", uid2 = "CO2", kijvalue = 0.01700000)
•	type(kijdatadb), parameter vdw311 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C1", kijvalue = 0.03500000)
•	type(kijdatadb), parameter vdw312 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C2", kijvalue = 0.04100000)
•	type(kijdatadb), parameter vdw313 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C2_1", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw314 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C3", kijvalue = 0.07600000)
•	type(kijdatadb), parameter vdw315 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "IC4", kijvalue = 0.09400000)
•	type(kijdatadb), parameter vdw316 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "IC5", kijvalue = 0.08700000)
•	type(kijdatadb), parameter vdw317 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC10", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw318 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC11", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw319 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC4", kijvalue = 0.07000000)
•	type(kijdatadb), parameter vdw320 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC5", kijvalue = 0.08800000)
•	type(kijdatadb), parameter vdw321 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC6", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw322 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC7", kijvalue = 0.14200000)
•	type(kijdatadb), parameter vdw323 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC8", kiivalue = 0.08000000)

•	type(kijdatadb), parameter vdw324 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC9", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw325 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "O2", kijvalue = -0.01400000)
•	type(kijdatadb), parameter vdw326 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R12", uid2 = "R11", kijvalue = 0.00540000)
•	type(kijdatadb), parameter vdw327 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R12", uid2 = "R114", kijvalue = 0.00150000)
•	type(kijdatadb), parameter vdw328 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R12", uid2 = "R152a", kijvalue = 0.08670000)
•	type(kijdatadb), parameter vdw329 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13", uid2 = "R11", kijvalue = 0.02620000)
•	type(kijdatadb), parameter vdw330 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13", uid2 = "R12", kijvalue = 0.02990000)
•	type(kijdatadb), parameter vdw331 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R14", uid2 = "R13", kijvalue = 0.03040000)
•	type(kijdatadb), parameter vdw332 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R14", uid2 = "R23", kijvalue = 0.10080000)
•	type(kijdatadb), parameter vdw333 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R11", kijvalue = 0.04660000)
•	type(kijdatadb), parameter vdw334 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R114", kijvalue = 0.03990000)
•	type(kijdatadb), parameter vdw335 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R12", kijvalue = 0.05640000)
•	type(kijdatadb), parameter vdw336 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R142b", kijvalue = 0.00570000)
•	type(kijdatadb), parameter vdw337 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R115", kijvalue = 0.08700000)
•	type(kijdatadb), parameter vdw338 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R23", uid2 = "R13", kijvalue = 0.10320000)
•	type(kijdatadb), parameter vdw339 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R218", uid2 = "R152a", kijvalue = 0.12000000)
•	type(kijdatadb), parameter vdw340 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R125", uid2 = "R143a", kijvalue = -0.01110000)
•	type(kijdatadb), parameter vdw341 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R125", uid2 = "R134a", kijvalue = -0.00240000)
•	type(kijdatadb), parameter vdw342 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R143a", uid2 = "R134a", kijvalue = 0.00130000)
•	type(kijdatadb), parameter vdw343 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R1234yf", uid2 = "R32", kijvalue = 0.03700000)
•	type(kijdatadb), parameter vdw344 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R1234yf", uid2 = "R125", kijvalue = 0.00400000)
•	type(kijdatadb), parameter vdw345 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R1234yf", uid2 = "R134a", kijvalue = 0.02000000)
•	type(kijdatadb), parameter vdw346 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R1234yf", uid2 = "CO2", kijvalue = 0.02000000)
•	type(kijdatadb), parameter vdw347 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "C3", kijvalue = 0.01400000)
•	type(kijdatadb), parameter vdw348 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC6", kijvalue = 0.04220000)
•	type(kijdatadb), parameter vdw349 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "C2", kijvalue = -0.00260000)
•	type(kijdatadb), parameter vdw350 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "H2O", kijvalue = 0.50000000)
•	type(kijdatadb), parameter vdw351 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC4", kijvalue = 0.01330000)

•	type(kijdatadb), parameter vdw352 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "IC4", kijvalue = 0.02560000)
•	type(kijdatadb), parameter vdw353 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC5", kijvalue = 0.02300000)
•	type(kijdatadb), parameter vdw354 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC7", kiivalue = 0.03520000)
•	type(kijdatadb), parameter vdw355 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC8", kijvalue = 0.04960000.)
•	type(kijdatadb), parameter vdw356 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", vid1 = "C1" vid2 = "IC5" kijvalva = 0.00560000.)
•	type(kijdatadb), parameter vdw357 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
•	type(kijdatadb), parameter vdw358 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
•	type(kijdatadb), parameter vdw359 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "C3", uid2 = "H2S", kijvalue = 0.07500000)
•	type(kijdatadb), parameter vdw360 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "H2O", kijvalue = 0.48000000)
•	type(kijdatadb), parameter vdw361 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC4", kijvalue = 0.00330000)
•	type(kijdatadb), parameter vdw362 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "IC4", kijvalue = -0.00780000)
•	type(kijdatadb), parameter vdw363 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC5", kijvalue = 0.02670000)
•	type(kijdatadb), parameter vdw364 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC7", kijvalue = 0.00560000)
•	type(kijdatadb), parameter vdw365 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC8", kiivalue = 0.00000000)
•	type(kijdatadb), parameter vdw366 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "IC5", kiivalue = 0.01110000)
•	type(kijdatadb), parameter vdw367 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "C2", kiivalue = -0.01000000)
•	type(kijdatadb), parameter vdw368 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "CO2", kiivalue = 0,11000000.)
•	type(kijdatadb), parameter vdw369 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "H2O", kijvalue = 0.48000000.)
•	type(kijdatadb), parameter vdw370 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
•	type(kijdatadb), parameter vdw371 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
•	uid1 = "NC6", uid2 = "IC4", kijvalue = 0.00000000) type(kijdatadb), parameter vdw372 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "NC6", uid2 = "NC5", kijvalue = 0.00000000)
•	uid1 = "NC6", uid2 = "NC7", kijvalue = -0.00780000)
•	type(kijdatadb), parameter vdw374 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "NC8", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw375 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "IC5", kiivalue = 0.00000000.)
•	type(kijdatadb), parameter vdw376 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
•	type(kijdatadb), parameter vdw377 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "C2", uid2 = "H2O", kijvalue = 0.50000000)
•	uid1 = "C2", $uid2 = "NC4"$, $kijvalue = 0.00960000$)
•	type(kıjdatadb), parameter vdw379 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "IC4", kijvalue = -0.00670000)

•	type(kijdatadb), parameter vdw380 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "NC5", kijvalue = 0.00780000)
•	type(kijdatadb), parameter vdw381 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "NC7", kijvalue = 0.00740000)
•	type(kijdatadb), parameter vdw382 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "NC8", kijvalue = 0.01850000)
•	type(kijdatadb), parameter vdw383 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "IC5", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw384 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC7", kijvalue = 0.10000000)
•	type(kijdatadb), parameter vdw385 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC8", kijvalue = 0.10700000)
•	type(kijdatadb), parameter vdw386 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "H2O", kijvalue = 0.16400000)
•	type(kijdatadb), parameter vdw387 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "IC4", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw388 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "IC5", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw389 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "NC4", kijvalue = 0.48000000)
•	type(kijdatadb), parameter vdw390 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "IC4", kijvalue = 0.48000000)
•	type(kijdatadb), parameter vdw391 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "NC5", kijvalue = 0.48000000)
•	type(kijdatadb), parameter vdw392 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "NC7", kijvalue = 0.48000000)
•	type(kijdatadb), parameter vdw393 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "NC8", kijvalue = 0.48000000)
•	type(kijdatadb), parameter vdw394 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "IC5", kijvalue = 0.48000000)
•	type(kijdatadb), parameter vdw395 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "IC4", kijvalue = -0.00040000)
•	type(kijdatadb), parameter vdw396 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC5", kijvalue = 0.01740000)
•	type(kijdatadb), parameter vdw397 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC7", kijvalue = 0.00330000)
•	type(kijdatadb), parameter vdw398 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC8", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw399 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "IC5", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw400 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC5", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw401 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC7", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw402 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC8", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw403 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "IC5", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw404 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC7", kijvalue = 0.00740000)
•	type(kijdatadb), parameter vdw405 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC8", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw406 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "IC5", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw407 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC7", uid2 = "NC8", kijvalue = 0.00000000)

•	type(kijdatadb), parameter vdw408 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC7", uid2 = "IC5", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw409 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC8", uid2 = "IC5", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw410 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "NC5", kijvalue = 0.00000123)
•	type(kijdatadb), parameter vdw411 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "NC7", kijvalue = 0.00137330)
•	type(kijdatadb), parameter vdw412 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "NC8", kijvalue = 0.00276186)
•	type(kijdatadb), parameter vdw413 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "BENZENE", kijvalue = 0.08060000)
•	type(kijdatadb), parameter vdw414 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "TOLU", kijvalue = 0.09360000)
•	type(kijdatadb), parameter vdw415 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "EBZN", kijvalue = 0.10100000)
•	type(kijdatadb), parameter vdw416 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "MXYL", kijvalue = 0.08790000)
•	type(kijdatadb), parameter vdw417 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "OXYL", kijvalue = 0.09000000)
•	type(kijdatadb), parameter vdw418 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC9", kijvalue = 0.10100000)
•	type(kijdatadb), parameter vdw419 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "H2S", kijvalue = 0.16760000)
•	type(kijdatadb), parameter vdw420 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "BENZENE", kijvalue = 0.15970000)
•	type(kijdatadb), parameter vdw421 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "TOLU", kijvalue = 0.19320000)
•	type(kijdatadb), parameter vdw422 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "EBZN", kijvalue = 0.10000000)
•	type(kijdatadb), parameter vdw423 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "MXYL", kijvalue = 0.21690000)
•	type(kijdatadb), parameter vdw424 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "OXYL", kijvalue = 0.21400000)
•	type(kijdatadb), parameter vdw425 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "H2O", kijvalue = -0.31560000)
•	type(kijdatadb), parameter vdw426 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C3_1", kijvalue = 0.06730000)
•	type(kijdatadb), parameter vdw427 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "BENZENE", kijvalue = 0.00900000)
•	type(kijdatadb), parameter vdw428 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "TOLU", kijvalue = 0.00810000)
•	type(kijdatadb), parameter vdw429 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "EBZN", kijvalue = 0.04500000)
•	type(kijdatadb), parameter vdw430 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "MXYL", kijvalue = 0.01710000)
•	type(kijdatadb), parameter vdw431 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "OXYL", kijvalue = -0.02310000)
•	type(kijdatadb), parameter vdw432 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC10", kijvalue = 0.04500000)
•	type(kijdatadb), parameter vdw433 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC11", kijvalue = 0.04500000)
•	type(kijdatadb), parameter vdw434 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "BENZENE", kijvalue = 0.04000000)
•	type(kijdatadb), parameter vdw435 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "TOLU", kijvalue = 0.06490000)

•	type(kijdatadb), parameter vdw436 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "EBZN", kijvalue = 0.02404000)
•	type(kijdatadb), parameter vdw437 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "MXYL", kijvalue = 0.04910000)
•	type(kijdatadb), parameter vdw438 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "OXYL", kijvalue = 0.05000000)
•	type(kijdatadb), parameter vdw439 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC9", kiivalue = 0.03893000.)
•	type(kijdatadb), parameter vdw440 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC10", kiivalue = 0.04361000)
•	type(kijdatadb), parameter vdw441 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC11", kiivalue = 0.04799000.)
•	type(kijdatadb), parameter vdw442 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "BENZENE", kijvalue = 0.02000000.)
•	type(kijdatadb), parameter vdw443 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "TOLU", kiivalue = 0.03440000)
•	type(kijdatadb), parameter vdw444 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "EBZN", kijvalue = 0.01182000)
•	type(kijdatadb), parameter vdw445 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "MXYL", kijvalue = 0.02950000.)
•	type(kijdatadb), parameter vdw446 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "OXYL", kiivalue = 0.03300000)
•	type(kijdatadb), parameter vdw447 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "NC9", kijvalue = 0.02302000)
•	type(kijdatadb), parameter vdw448 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "NC10", kijvalue = 0.02673000)
•	type(kijdatadb), parameter vdw449 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "NC11", kijvalue = 0.03026000)
•	type(kijdatadb), parameter vdw450 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "BENZENE", kijvalue = 0.02000000)
•	type(kijdatadb), parameter vdw451 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "TOLU", kijvalue = 0.03100000)
•	type(kijdatadb), parameter vdw452 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "EBZN", kijvalue = 0.00542000)
•	type(kijdatadb), parameter vdw453 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "MXYL", kijvalue = 0.03000000)
•	type(kijdatadb), parameter vdw454 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "OXYL", kijvalue = 0.03000000)
•	type(kijdatadb), parameter vdw455 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC9", kijvalue = 0.01370000)
•	type(kijdatadb), parameter vdw456 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC10", kijvalue = 0.01663000)
•	type(kijdatadb), parameter vdw457 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC11", kiivalue = 0,01948000.)
•	type(kijdatadb), parameter vdw458 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "BENZENE", kijvalue = 0.00000180)
•	type(kijdatadb), parameter vdw459 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "TOLU", kiivalue = 0.00047000.)
•	type(kijdatadb), parameter vdw460 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "FBZN", kiivalue = 0.00172000.)
•	type(kijdatadb), parameter vdw461 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "MXXI ", kiivalue = 0.00176000.)
•	type(kijdatadb), parameter vdw462 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "OXYL", kiivalue = 0.00159000.)
•	type(kijdatadb), parameter vdw463 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC9", kijvalue = 0.00725000)
•	type(kijdatadb), parameter vdw464 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC10", kijvalue = 0.00945000)
---	---
•	type(kijdatadb), parameter vdw465 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC11", kijvalue = 0.01164000)
•	type(kijdatadb), parameter vdw466 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "BENZENE", kijvalue = 0.00001000)
•	type(kijdatadb), parameter vdw467 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "TOLU", kijvalue = 0.00064000)
•	type(kijdatadb), parameter vdw468 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "EBZN", kijvalue = 0.00203000)
•	type(kijdatadb), parameter vdw469 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "MXYL", kijvalue = 0.00208000)
•	type(kijdatadb), parameter vdw470 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "OXYL", kijvalue = 0.00190000)
•	type(kijdatadb), parameter vdw471 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC9", kijvalue = 0.00788000)
•	type(kijdatadb), parameter vdw472 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC10", kijvalue = 0.01016000)
•	type(kijdatadb), parameter vdw473 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC11", kijvalue = 0.01243000)
•	type(kijdatadb), parameter vdw474 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "NC5", kijvalue = 0.00000130)
•	type(kijdatadb), parameter vdw475 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "BENZENE", kijvalue = 0.00040000)
•	type(kijdatadb), parameter vdw476 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "TOLU", kijvalue = 0.00001000)
•	type(kijdatadb), parameter vdw477 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "EBZN", kijvalue = 0.00052000)
•	type(kijdatadb), parameter vdw478 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "MXYL", kijvalue = 0.00055000)
•	type(kijdatadb), parameter vdw479 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "OXYL", kijvalue = 0.00046000)
•	type(kijdatadb), parameter vdw480 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "NC9", kijvalue = 0.00445000)
•	type(kijdatadb), parameter vdw481 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "NC10", kijvalue = 0.00621000)
•	type(kijdatadb), parameter vdw482 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC5", uid2 = "NC11", kijvalue = 0.00801000)
•	type(kijdatadb), parameter vdw483 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "BENZENE", kijvalue = 0.01600000)
•	type(kijdatadb), parameter vdw484 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "TOLU", kijvalue = 0.00000360)
•	type(kijdatadb), parameter vdw485 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "EBZN", kijvalue = 0.00047000)
•	type(kijdatadb), parameter vdw486 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "MXYL", kijvalue = 0.00050000)
•	type(kijdatadb), parameter vdw487 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "OXYL", kijvalue = 0.00041000)
•	type(kijdatadb), parameter vdw488 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "NC7", kijvalue = 0.00137000)
•	type(kijdatadb), parameter vdw489 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "NC8", kijvalue = 0.00276000)
•	type(kijdatadb), parameter vdw490 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "NC9", kijvalue = 0.00430000)
•	type(kijdatadb), parameter vdw491 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "NC10", kijvalue = 0.00603000)

•	 type(kijdatadb), parameter vdw492 = kijdatadb(eosid = "PR", m uid1 = "NC5", uid2 = "NC11", kijvalue = 0.00781000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw493 = kijdatadb(eosid = "PR", muid1 = "BENZENE", uid2 = "TOLU", kijvalue = 0.00053000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw494 = kijdatadb(eosid = "PR", muid1 = "BENZENE", uid2 = "EBZN", kijvalue = 0.00183000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw495 = kijdatadb(eosid = "PR", muid1 = "BENZENE", uid2 = "MXYL", kijvalue = 0.00188000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw496 = kijdatadb(eosid = "PR", muid1 = "BENZENE", uid2 = "OXYL", kijvalue = 0.00170000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw497 = kijdatadb(eosid = "PR", m uid1 = "BENZENE", uid2 = "NC6", kijvalue = 0.00700000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw498 = kijdatadb(eosid = "PR", m uid1 = "BENZENE", uid2 = "NC7", kijvalue = -0.00200000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw499 = kijdatadb(eosid = "PR", m uid1 = "BENZENE", uid2 = "NC8", kijvalue = 0.00300000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw500 = kijdatadb(eosid = "PR", m uid1 = "BENZENE", uid2 = "NC9", kijvalue = 0.00749000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw501 = kijdatadb(eosid = "PR", muid1 = "BENZENE", uid2 = "NC10", kijvalue = 0.01000000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw502 = kijdatadb(eosid = "PR", m uid1 = "BENZENE", uid2 = "NC11", kijvalue = 0.01193000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw503 = kijdatadb(eosid = "PR", m uid1 = "BENZENE", uid2 = "H2O", kijvalue = 0.50000000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw504 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "EBZN", kijvalue = 0.00039000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw505 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "MXYL", kijvalue = 0.00042000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw506 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "OXYL", kijvalue = 0.00034000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw507 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "NC6", kijvalue = 0.00032000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw508 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "NC7", kijvalue = 0.00600000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw509 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "NC8", kijvalue = 0.01000000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw510 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "NC9", kijvalue = 0.00406000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw511 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "NC10", kijvalue = 0.01000000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw512 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "NC11", kijvalue = 0.00749000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw513 = kijdatadb(eosid = "PR", m uid1 = "TOLU", uid2 = "H2O", kijvalue = 0.50000000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw514 = kijdatadb(eosid = "PR", m uid1 = "EBZN", uid2 = "MXYL", kijvalue = 0.00000020) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw515 = kijdatadb(eosid = "PR", m uid1 = "EBZN", uid2 = "OXYL", kijvalue = 0.00000020) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw516 = kijdatadb(eosid = "PR", m uid1 = "EBZN", uid2 = "NC6", kijvalue = 0.00000400) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw517 = kijdatadb(eosid = "PR", m uid1 = "EBZN", uid2 = "NC7", kijvalue = 0.00024000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw518 = kijdatadb(eosid = "PR", m uid1 = "EBZN", uid2 = "NC8", kijvalue = -0.00180000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""
•	 type(kijdatadb), parameter vdw519 = kijdatadb(eosid = "PR", m uid1 = "EBZN", uid2 = "NC9", kijvalue = 0.00193000) 	nruleid =	"vdW", ref =	"Default",	bib_ref = ""

	the solution of the second s
•	uid1 = "EBZN", uid2 = "NC10", kijvalue = 0.00314000)
•	type(kijdatadb), parameter vdw521 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "EBZN", uid2 = "NC11", kijvalue = 0.00446000)
•	type(kijdatadb), parameter vdw522 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
•	type(kijdatadb), parameter vdw523 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "MXYL", uid2 = "OXYL", kijvalue = 0.00000400)
•	type(kijdatadb), parameter vdw524 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MXYL", uid2 = "NC6", kijvalue = 0.00001000)
•	type(kijdatadb), parameter vdw525 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MXYI ", uid2 = "NC7", kiivalue = 0.00022000.)
•	type(kiidatadb), parameter vdw526 = kiidatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib ref = "".
	uid1 = "MXYL", uid2 = "NC8", kijvalue = 0.00092000)
•	type(kijdatadb), parameter vdw527 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MXYL", uid2 = "NC9", kiivalue = 0.00188000)
•	type(kijdatadb), parameter vdw528 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib ref = "",
	uid1 = "MXYL", uid2 = "NC10", kijvalue = 0.00308000)
•	type(kijdatadb), parameter vdw529 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "MXYL", uid2 = "NC11", kijvalue = 0.00439000)
•	type(kijdatadb), parameter vdw530 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MXYL", uid2 = "H2O", kijvalue = 0.50000000)
•	type(kijdatadb), parameter vdw531 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib ref = "",
	uid1 = "OXYL", uid2 = "NC6", kijvalue = 0.00000020)
•	type(kijdatadb), parameter vdw532 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	type/kiidatadh) parameter ydw533 – kiidatadh(eosid – "PB", mruleid – "ydW", ref – "Default", hib. ref – ""
	uid1 = "OXYL", $uid2 = "NC8"$, $kijvalue = 0.00105000$)
•	type(kijdatadb), parameter vdw534 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "OXYL", uid2 = "NC9", kiivalue = 0.00207000.)
•	type(kiidatadb), parameter vdw535 = kiidatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib ref = "".
	uid1 = "OXYL", uid2 = "NC10", kijvalue = 0.00331000)
•	type(kijdatadb), parameter vdw536 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "OXYL", uid2 = "NC11", kijvalue = 0.00467000)
•	type(kijdatadb), parameter Vdw53 7 = kijdatadb(eosid = "PR", mruleid = "Vdw", ref = "Default", bib_ref = ", uid1 = "OXYL", uid2 = "H2O", kijvalue = 0.50000000)
•	type(kijdatadb), parameter vdw538 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "NC6", uid2 = "NC9", kijvalue = 0.00210000)
•	type(kijdatadb), parameter vdw539 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "NC10", kiivalue = 0.00335000.)
	type(kiidatadh) parameter ydw540 – kiidatadh(eosid – "PB", mruleid – "ydW", ref – "Default", hib. ref – ""
	uid1 = "NC6", $uid2 = "NC11"$, $kijvalue = 0.00472000$)
•	type(kijdatadb), parameter vdw541 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	type(kiidatadh) parameter ydw542 – kiidatadh(eosid – "PR" mruleid – "ydW" ref – "Default" bib ref – ""
	uid1 = "NC7", uid2 = "NC10", kijvalue = 0.00166000)
•	type(kijdatadb), parameter vdw543 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "NC7", uid2 = "NC11", kijvalue = 0.00266000)
•	type(kijdatadb), parameter vdw544 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC8", uid2 = "NC9", kijvalue = 0.00017000)
•	type(kijdatadb), parameter vdw545 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "",
	u(u) = 1000, $u(u) = 10010$, $u(u) = 0.00004000$) type(kiidatadh) parameter ydw546 - kiidatadh(epsid - "PR" mruleid - "ydW/" ref - "Default" hib ref - ""
•	uid1 = "NC8", $uid2 = "NC11"$, $kijvalue = 0.00130000$)
•	type(kijdatadb), parameter vdw547 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC9", uid2 = "NC10", kijvalue = 0.00130000)

- type(kijdatadb), parameter vdw548 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC9", uid2 = "NC11", kijvalue = 0.00053000)
- type(kijdatadb), parameter vdw549 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC9", uid2 = "H2O", kijvalue = 0.50000000)
- type(kijdatadb), parameter vdw550 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC10", uid2 = "NC11", kijvalue = 0.00012000)
- type(kijdatadb), parameter vdw551 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC10", uid2 = "H2O", kijvalue = 0.50000000)
- type(kijdatadb), parameter vdw552 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC11", uid2 = "H2O", kijvalue = 0.50000000)
- type(kijdatadb), parameter vdw553 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "QuantumCubic", bib_ref = "10.1016/j.fluid.2020.112790", uid1 = "H2", uid2 = "D2", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw554 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "QuantumCubic", bib_ref = "10.1016/j.fluid.2020.112790", uid1 = "H2", uid2 = "NE", kijvalue = 0.18000000)
- type(kijdatadb), parameter vdw555 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "QuantumCubic", bib_ref = "10.1016/j.fluid.2020.112790", uid1 = "H2", uid2 = "HE", kijvalue = 0.17000000)
- type(kijdatadb), parameter vdw556 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "QuantumCubic", bib_ref = "10.1016/j.fluid.2020.112790", uid1 = "HE", uid2 = "NE", kijvalue = -0.17000000)
- type(kijdatadb), parameter vdw557 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "QuantumCubic", bib_ref = "10.1016/j.fluid.2020.112790", uid1 = "HE", uid2 = "D2", kijvalue = 0.45000000)
- type(kijdatadb), parameter vdw558 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "QuantumCubic", bib_ref = "10.1016/j.fluid.2020.112790", uid1 = "NE", uid2 = "D2", kijvalue = 0.18000000)
- type(kijdatadb), parameter vdw559 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O2", uid2 = "H2O", kijvalue = -0.05000000)
- type(kijdatadb), parameter vdw560 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "tcPR-ENGINEERING", bib_ref = "", uid1 = "H2O2", uid2 = "O2", kijvalue = -0.75000000)
- type(kijdatadb), parameter vdw561 = kijdatadb(eosid = "PR", mruleid = "vdW", ref = "tcPR-ENGINEERING", bib_ref = "", uid1 = "H2O", uid2 = "O2", kijvalue = -0.26000000)
- type(kijdatadb), parameter vdw562 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C1", uid2 = "C2", kijvalue = 0.00500000)
- type(kijdatadb), parameter vdw563 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C1", uid2 = "IC4", kijvalue = -0.00800000)
- type(kijdatadb), parameter vdw564 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C1", uid2 = "NC4", kijvalue = 0.01500000)
- type(kijdatadb), parameter vdw565 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C1", uid2 = "NC5", kijvalue = 0.02000000)
- type(kijdatadb), parameter vdw566 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C1", uid2 = "NC6", kijvalue = 0.01000000)
- type(kijdatadb), parameter vdw567 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C2", uid2 = "C3", kijvalue = 0.00600000)
- type(kijdatadb), parameter vdw568 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C2", uid2 = "PRLN", kijvalue = 0.00400000)
- type(kijdatadb), parameter vdw569 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C2", uid2 = "NC4", kijvalue = 0.00100000)
- type(kijdatadb), parameter vdw570 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C2", uid2 = "NC5", kijvalue = -0.00100000)
- type(kijdatadb), parameter vdw571 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C2", uid2 = "NC7", kijvalue = -0.01500000)
- type(kijdatadb), parameter vdw572 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C2 1", uid2 = "C1", kijvalue = 0.02600000)
- type(kijdatadb), parameter vdw573 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C2_1", uid2 = "C2", kijvalue = 0.01800000)
- type(kijdatadb), parameter vdw574 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C2_1", uid2 = "C3", kijvalue = 0.01900000)
- type(kijdatadb), parameter vdw575 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C2_1", uid2 = "NC4", kijvalue = 0.06200000)

•	type(kijdatadb), parameter vdw576 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C3", uid2 = "NC4", kiivalue = 0.01300000)
•	type(kijdatadb), parameter vdw577 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "C3", uid2 = "NC5", kijvalue = 0.01300000)
•	type(kijdatadb), parameter vdw578 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009.2509(82)80099.7", uid1 = "C3", uid2 = "IC5", kiivalue = 0.02100000.)
•	type(kijdatadb), parameter vdw579 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref =
	"10.1016/0009-2509(82)80099-7", uid1 = "PRLN", uid2 = "C3", kijvalue = 0.03000000)
•	type(kijdatadb), parameter VdW580 = kijdatadb(eosid = "P1", mruleid = "VdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "NC4", uid2 = "NC10", kijvalue = 0.00500000)
•	type(kijdatadb), parameter vdw581 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "IC4", uid2 = "NC4", kijvalue = -0.00300000)
•	type(kijdatadb), parameter vdw582 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "CO2", uid2 = "C1", kijvalue = 0.09300000)
•	type(kijdatadb), parameter vdw583 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "CO2", uid2 = "C2", kiivalue = 0.12800000)
•	type(kijdatadb), parameter vdw584 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "CO2", uid2 = "C2_1", kiivalue = 0.05700000.)
•	type(kijdatadb), parameter vdw585 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009.2509/82)80099.7", uid = " $CO2$ ", uid = "C2", kijvalue = 0.12100000.)
•	type(kijdatadb), parameter vdw586 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = $\frac{1}{2}$
•	"10.1016/0009-2509(82)80099-7", uid1 = "CO2", uid2 = "NC4", kijvalue = 0.10900000) type(kijdatadb), parameter vdw587 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib ref =
	"10.1016/0009-2509(82)80099-7", uid1 = "CO2", uid2 = "IC4", kijvalue = 0.12700000)
•	type(kijdatadb), parameter Vdw588 = kijdatadb(eosid = "P1", mruleid = "Vdw", ref = "Patel 1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "CO2", uid2 = "NC5", kijvalue = 0.13500000)
•	type(kijdatadb), parameter vdw589 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "H2S", uid2 = "C1", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw590 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "H2S", uid2 = "C2", kijvalue = 0.08900000)
•	type(kijdatadb), parameter vdw591 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "H2S", uid2 = "IC4", kijvalue = 0.04600000)
•	type(kijdatadb), parameter vdw592 = kijdatadb(eosid = "PT", mruleid = "vdW", ref = "Patel1982", bib_ref = "10.1016/0009-2509(82)80099-7", uid1 = "H2S", uid2 = "NC7", kiivalue = 0.05300000)
•	type(kijdatadb), parameter vdw593 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
•	type(kijdatadb), parameter vdw594 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "C1", uid2 = "C2_1", kijvalue = 0.02000000)
•	uid1 = "C1", uid2 = "C3", kijvalue = 0.00900000)
•	type(kijdatadb), parameter vdw596 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "IC4", kijvalue = 0.02410000)
•	type(kijdatadb), parameter vdw597 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC4", kijvalue = 0.00560000)
•	type(kijdatadb), parameter vdw598 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC5", kijvalue = 0.01900000)
•	type(kijdatadb), parameter vdw599 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
•	uia i = 0 i , ulaz = "H25", Kijvalue = 0.09100000)
	type(kijdatadb), parameter vdw600 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
	type(kijdatadb), parameter vdw600 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "C2_1", kijvalue = 0.01120000)
•	<pre>type(kijdatadb), parameter vdw600 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "C2_1", kijvalue = 0.01120000) type(kijdatadb), parameter vdw601 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "C3", kijvalue = -0.00220000)</pre>
•	<pre>type(kijdatadb), parameter vdw600 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "C2_1", kijvalue = 0.01120000) type(kijdatadb), parameter vdw601 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "C3", kijvalue = -0.00220000) type(kijdatadb), parameter vdw602 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "IC4", kijvalue = -0.01000000)</pre>

•	type(kijdatadb), parameter vdw604 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2", uid2 = "NC5", kijvalue = 0.00560000)
•	type(kijdatadb), parameter vdw605 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "C2 1", kiivalue = 0.10000000)
•	type(kijdatadb), parameter vdw606 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "IC4", kiivalue = -0.01000000)
•	type(kijdatadb), parameter vdw607 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC5", kiivalue = 0.02300000.)
•	type(kijdatadb), parameter vdw608 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC4", kiivalue = 0.00110000)
•	type(kijdatadb), parameter vdw609 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC5", kiivalue = 0.02040000)
•	type(kijdatadb), parameter vdw610 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "C1", kiivalue = 0.00000000)
•	type(kijdatadb), parameter vdw611 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "MEG", kiivalue = -0.06300000)
•	type(kijdatadb), parameter vdw612 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "MEG", kiivalue = 0.05000000)
•	type(kijdatadb), parameter vdw613 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "O2", kijvalue = 0.10400000)
•	type(kijdatadb), parameter vdw614 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NH3", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw615 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "N2O", kijvalue = 0.00400000)
•	type(kijdatadb), parameter vdw616 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "N2O4", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw617 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "CO", kijvalue = -0.08000000)
•	type(kijdatadb), parameter vdw618 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "C1", kijvalue = 0.09500000)
•	type(kijdatadb), parameter vdw619 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "C2", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw620 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "C2_1", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw621 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "C3", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw622 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "H2O", kijvalue = 0.07400000)
•	type(kijdatadb), parameter vdw623 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "IC4", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw624 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "IC5", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw625 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC10", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw626 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC11", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw627 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC4", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw628 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "NC5", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw629 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "H2S", kijvalue = 0.10000000)
•	type(kijdatadb), parameter vdw630 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "N2", kijvalue = -0.05100000)
•	type(kijdatadb), parameter vdw631 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "AR", kijvalue = 0.08800000)

•	type(kijdatadb), parameter vdw632 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "SO2", kiivalue = 0.07100000)
•	type(kijdatadb), parameter vdw633 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "CO2", uid2 = "H2", kijvalue = 0.00900000)
•	type(kijdatadb), parameter vdw634 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC4", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw635 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC5", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw636 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC6", kijvalue = 0.05000000)
•	type(kijdatadb), parameter vdw637 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC7", kijvalue = 0.04000000)
•	type(kijdatadb), parameter vdw638 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC8", kijvalue = 0.04000000)
•	type(kijdatadb), parameter vdw639 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "NC9", kijvalue = 0.03000000)
•	type(kijdatadb), parameter vdw640 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "MEOH", uid2 = "CO2", kijvalue = 0.01700000)
•	type(kijdatadb), parameter vdw641 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C1", kijvalue = 0.03400000)
•	type(kijdatadb), parameter vdw642 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C2", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw643 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C2_1", kijvalue = 0.07500000)
•	type(kijdatadb), parameter vdw644 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "C3", kijvalue = 0.09000000)
•	type(kijdatadb), parameter vdw645 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "IC4", kijvalue = 0.11300000)
•	type(kijdatadb), parameter vdw646 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "IC5", kijvalue = 0.08700000)
•	type(kijdatadb), parameter vdw647 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC10", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw648 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC11", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw649 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC4", kijvalue = 0.11300000)
•	type(kijdatadb), parameter vdw650 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC5", kijvalue = 0.14000000)
•	type(kijdatadb), parameter vdw651 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC6", kijvalue = 0.15000000)
•	type(kijdatadb), parameter vdw652 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC7", kijvalue = 0.14200000)
•	type(kijdatadb), parameter vdw653 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC8", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw654 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "NC9", kijvalue = 0.08000000)
•	type(kijdatadb), parameter vdw655 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "O2", kijvalue = -0.01100000)
•	type(kijdatadb), parameter vdw656 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R12", uid2 = "R11", kijvalue = 0.00540000)
•	type(kijdatadb), parameter vdw657 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "B12", uid2 = "B114", kiivalue = 0.00150000)
•	type(kijdatadb), parameter vdw658 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "B12", uid2 = "B152a", kiivalue = 0.08670000.)
•	type(kijdatadb), parameter vdw659 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13", uid2 = "R11", kijvalue = 0.02620000)

•	type(kijdatadb), parameter vdw660 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R13", uid2 = "R12", kijvalue = 0.02990000)
•	type(kijdatadb), parameter vdw661 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R14", uid2 = "R13", kijvalue = 0.03040000)
•	type(kijdatadb), parameter vdw662 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R14", uid2 = "R23", kijvalue = 0.10080000)
•	type(kijdatadb), parameter vdw663 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R11", kijvalue = 0.04660000)
•	type(kijdatadb), parameter vdw664 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R114", kijvalue = 0.03990000)
•	type(kijdatadb), parameter vdw665 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R12", kijvalue = 0.05640000)
•	type(kijdatadb), parameter vdw666 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R142b", kijvalue = 0.00570000)
•	type(kijdatadb), parameter vdw667 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R22", uid2 = "R115", kijvalue = 0.08900000)
•	type(kijdatadb), parameter vdw668 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R23", uid2 = "R13", kijvalue = 0.10320000)
•	type(kijdatadb), parameter vdw669 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R218", uid2 = "R152a", kijvalue = 0.12000000)
•	type(kijdatadb), parameter vdw670 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R125", uid2 = "R143a", kijvalue = -0.01110000)
•	type(kijdatadb), parameter vdw671 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R125", uid2 = "R134a", kijvalue = -0.00240000)
•	type(kijdatadb), parameter vdw672 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "R143a", uid2 = "R134a", kijvalue = 0.00130000)
•	type(kijdatadb), parameter vdw673 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC6", kijvalue = 0.03740000)
•	type(kijdatadb), parameter vdw674 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC7", kijvalue = 0.03070000)
•	type(kijdatadb), parameter vdw675 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "NC8", kijvalue = 0.04480000)
•	type(kijdatadb), parameter vdw676 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C1", uid2 = "IC5", kijvalue = -0.00780000)
•	type(kijdatadb), parameter vdw677 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC6", kijvalue = -0.00220000)
•	type(kijdatadb), parameter vdw678 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "H2S", kijvalue = 0.07600000)
•	type(kijdatadb), parameter vdw679 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "H2O", kijvalue = 0.53000000)
•	type(kijdatadb), parameter vdw680 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC4", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw681 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC7", kijvalue = 0.00440000)
•	type(kijdatadb), parameter vdw682 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "NC8", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw683 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C3", uid2 = "IC5", kijvalue = 0.00780000)
•	type(kijdatadb), parameter vdw684 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "C2", kijvalue = -0.01560000)
•	type(kijdatadb), parameter vdw685 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "CO2", kijvalue = 0.11200000)
•	type(kijdatadb), parameter vdw686 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "H2O", kijvalue = 0.50000000)
•	type(kijdatadb), parameter vdw687 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "NC4", kijvalue = -0.01110000)

•	type(kijdatadb), parameter vdw688 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "IC4", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw689 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "NC5", kijvalue = 0.00000000)
•	type(kijdatadb), parameter vdw690 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "NC7", kijvalue = -0.00110000)
•	type(kijdatadb), parameter vdw691 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "NC8", kiivalue = 0,00000000)
•	type(kijdatadb), parameter vdw692 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC6", uid2 = "IC5", kiivalue = 0.00000000.)
•	type(kijdatadb), parameter vdw693 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "C2" uid2 = "H2S", kiivelue = 0.08500000.)
•	type(kijdatadb), parameter vdw694 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", vid1 = "C2" vid2 = "H2O" kijvalue = 0.55000000)
•	type(kijdatadb), parameter vdw695 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
•	type(kijdatadb), parameter vdw696 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
•	uid1 = "C2", uid2 = "NC8", kijvalue = 0.01700000) type(kijdatadb), parameter vdw697 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
•	uid1 = "C2", uid2 = "IC5", kijvalue = 0.00000000) type(kijdatadb), parameter vdw698 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
•	uid1 = "CO2", uid2 = "NC7", kijvalue = 0.11000000) type(kijdatadb), parameter vdw699 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
•	uid1 = "CO2", uid2 = "NC8", kijvalue = 0.12000000) type(kijdatadb), parameter vdw700 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
•	uid1 = "H2S", uid2 = "N2", kijvalue = 0.17000000) type(kijdatadb), parameter vdw701 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
•	uid1 = "H2S", uid2 = "H2O", kijvalue = 0.13500000) type(kijdatadb), parameter vdw702 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "",
	uid1 = "H2S", uid2 = "IC4", kijvalue = 0.06000000)
•	type(kijdatadb), parameter vdw703 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2S", uid2 = "IC5", kijvalue = 0.06500000)
•	type(kijdatadb), parameter vdw704 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "N2", uid2 = "H2O", kijvalue = 0.53000000)
•	type(kijdatadb), parameter vdw705 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "NC4", kijvalue = 0.52000000)
•	type(kijdatadb), parameter vdw706 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "IC4", kijvalue = 0.52000000)
•	type(kijdatadb), parameter vdw707 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "NC5", kijvalue = 0.50000000)
•	type(kijdatadb), parameter vdw708 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "NC7", kijvalue = 0.50000000)
•	type(kijdatadb), parameter vdw709 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "NC8", kiivalue = 0.50000000)
•	type(kijdatadb), parameter vdw710 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "H2O", uid2 = "IC5", kiivalue = 0.50000000)
•	type(kijdatadb), parameter vdw711 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC7", kiivalue = -0.00040000.)
•	type(kijdatadb), parameter vdw712 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4", uid2 = "NC8", kiivalue = 0.00000000)
•	type(kijdatadb), parameter vdw713 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC4" uid2 = "IC5" kiivalue = 0.00000000.)
•	type(kijdatadb), parameter vdw714 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC5", kijvalue = 0.00000000.)
•	type(kijdatadb), parameter vdw715 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC7", kijvalue = 0.00000000)

- type(kijdatadb), parameter vdw716 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "NC8", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw717 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "IC4", uid2 = "IC5", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw718 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "NC7", kijvalue = 0.00190000)
- type(kijdatadb), parameter vdw719 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "NC8", kijvalue = -0.00220000)
- type(kijdatadb), parameter vdw720 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC5", uid2 = "IC5", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw721 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC7", uid2 = "NC8", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw722 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC7", uid2 = "IC5", kijvalue = 0.00000000)
- type(kijdatadb), parameter vdw723 = kijdatadb(eosid = "SRK", mruleid = "vdW", ref = "Default", bib_ref = "", uid1 = "NC8", uid2 = "IC5", kijvalue = 0.00000000)
- type(intergedatadb), parameter ge1 = interGEdatadb(eosid = "PR", mruleid = "HV1", ref = "Hemmingsen2011", bib_ref = "10.1016/j.fluid.2011.05.010", uid1 = "H2O", uid2 = "MEG", kijvalue = -0.↔ 06500000, correlation = 1, alphaijvalue = (/4.00000000e-01, 4.00000000e-01/), polyij = (/0.00000000e+00, 2.18300000e+02, 0.0/), polyji = (/0.00000000e+00, 7.20200000e+01, 0.0/))
- type(intergedatadb), parameter ge2 = interGEdatadb(eosid = "PR", mruleid = "NRTL", ref = "Dicko2012", bib_ref = "10.1021/je300111m", uid1 = "H2S", uid2 = "C3", kijvalue = 0.07500000, correlation = 1, alphaijvalue = (/3.00000000e-01, 3.00000000e-01/), polyij = (/3.45712000e+02, 0.00000000e+00, 0.0000000e+00/), polyji = (/-2.93377000e+01, 0.00000000e+00, 0.00000000e+00/))
- type(intergedatadb), parameter **ge3** = interGEdatadb(eosid = "SRK", mruleid = "HV1", ref = "Default", bib_↔ ref = "10.1205/cherd05023", uid1 = "C1", uid2 = "H2O", kijvalue = 0.52000000, correlation = 1, alphaijvalue = (/1.5000000e-01, 1.5000000e-01/), polyij = (/5.03570000e+03, -7.15000000e+00, 0.0/), polyji = (/-1.↔ 62800000e+02, 2.16000000e+00, 0.0/))
- type(intergedatadb), parameter ge4 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default", bib_ref = "10.1205/cherd05023", uid1 = "C1", uid2 = "H2O", kijvalue = 0.52000000, correlation = 1, alphaijvalue = (/1.5000000e-01, 1.5000000e-01/), polyij = (/8.40400000e+03, -2.80310000e+01, 3.14200000e-02/), polyji = (/-1.14900000e+03, 8.0190000e+00, -8.61000000e-03/))
- type(intergedatadb), parameter ge5 = interGEdatadb(eosid = "SRK", mruleid = "HV1", ref = "Default", bib_ref = "10.1016/j.fluid.2006.08.021", uid1 = "C1", uid2 = "MEG", kijvalue = 0.13400000, correlation = 1, alphai-jvalue = (/7.00000000e-02, 7.00000000e-02/), polyij = (/2.27400000e+03, 0.0000000e+00, 0.0/), polyji = (/1.81000000e+02, 0.0000000e+00, 0.0/))
- type(intergedatadb), parameter ge6 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default", bib_ref = "10.1016/j.fluid.2006.08.021", uid1 = "C1", uid2 = "MEG", kijvalue = 0.13400000, correlation = 1, alphaijvalue = (/7.0000000e-02, 7.0000000e-02/), polyij = (/2.27400000e+03, 0.0000000e+00, 0.↔ 00000000e+00/), polyji = (/1.81000000e+02, 0.0000000e+00, 0.0000000e+00/))
- type(intergedatadb), parameter **ge7** = interGEdatadb(eosid = "SRK", mruleid = "HV1", ref = "Default", bib_ref = "10.1205/cherd05023", uid1 = "CO2", uid2 = "H2O", kijvalue = 0.19300000, correlation = 1, alphaijvalue = (/3.00000000e-02, 3.0000000e-02/), polyij = (/6.56300000e+03, -5.12000000e+00, 0.0/), polyji = (/-3.↔ 74100000e+03, 1.55000000e+00, 0.0/))
- type(intergedatadb), parameter ge8 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default", bib_ref = "10.1205/cherd05023", uid1 = "CO2", uid2 = "H2O", kijvalue = 0.19300000, correlation = 1, alphaijvalue = (/3.0000000e-02, 3.0000000e-02/), polyij = (/5.85839000e+03, 2.41120000e+00, -1.71300000e-02/), polyji = (/-1.23741000e+03, -1.55058000e+01, 2.89600000e-02/))
- type(intergedatadb), parameter ge9 = interGEdatadb(eosid = "SRK", mruleid = "HV1", ref = "Default", bib_ref = "10.1016/j.fluid.2006.08.021", uid1 = "H2O", uid2 = "MEG", kijvalue = -0.06300000, correlation = 1, alphai-jvalue = (/9.50000000e-01, 9.50000000e-01/), polyij = (/5.90000000e+01, 0.0000000e+00, 0.0/), polyji = (/1.05000000e+02, 0.0000000e+00, 0.0/))
- type(intergedatadb), parameter ge10 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default", bib⇔ _ref = "10.1016/j.fluid.2006.08.021", uid1 = "H2O", uid2 = "MEG", kijvalue = -0.06300000, correlation = 1, alphaijvalue = (/9.50000000e-01, 9.50000000e-01/), polyij = (/5.90000000e+01, 0.0000000e+00, 0.↔ 00000000e+00/), polyji = (/1.05000000e+02, 0.0000000e+00, 0.0000000e+00/))

- type(intergedatadb), parameter ge11 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default/Maribo-Mogensen", bib_ref = "10.1002/aic.14829", uid1 = "H2O", uid2 = "NA+", kijvalue = 0.00000000, correlation = 2, alphaijvalue = (/0.0000000e+00, 0.0000000e+00/), polyij = (/-2.23150000e+02, 1.57300000e+03, 3.↔ 40000000e+02/), polyji = (/-2.23150000e+02, 1.57300000e+03, 3.40000000e+02/))
- type(intergedatadb), parameter ge12 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default/Maribo-Mogensen", bib_ref = "10.1002/aic.14829", uid1 = "H2O", uid2 = "CL-", kijvalue = 0.00000000, correlation = 2, alphaijvalue = (/0.0000000e+00, 0.0000000e+00/), polyij = (/-2.23150000e+02, 1.57300000e+03, 3.↔ 40000000e+02/), polyji = (/-2.23150000e+02, 1.57300000e+03, 3.40000000e+02/))
- type(intergedatadb), parameter ge13 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default/Maribo-Mogensen", bib_ref = "10.1002/aic.14829", uid1 = "MEOH", uid2 = "NA+", kijvalue = 0.00000000, correlation = 2, alphaijvalue = (/0.0000000e+00, 0.0000000e+00/), polyij = (/3.22400000e+02, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/3.22400000e+02, 0.0000000e+00, 1.00000000e+00/))
- type(intergedatadb), parameter ge14 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default/Maribo-Mogensen", bib_ref = "10.1002/aic.14829", uid1 = "MEOH", uid2 = "CL-", kijvalue = 0.00000000, correlation = 2, alphaijvalue = (/0.0000000e+00, 0.0000000e+00/), polyij = (/3.22400000e+02, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/3.22400000e+02, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/3.22400000e+02, 0.0000000e+00, 1.↔
- type(intergedatadb), parameter ge15 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default/Maribo-Mogensen", bib_ref = "10.1002/aic.14829", uid1 = "NA+", uid2 = "CL-", kijvalue = 0.00000000, correlation = 2, alphaijvalue = (/0.0000000e+00, 0.0000000e+00/), polyij = (/0.0000000e+00, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/0.00000000e+00, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/0.00000000e+00, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/0.00000000e+00, 0.0000000e+00, 1.↔
- type(intergedatadb), parameter ge16 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default/Maribo-Mogensen", bib_ref = "10.1002/aic.14829", uid1 = "CO2", uid2 = "NA+", kijvalue = 0.00000000, correlation = 2, alphaijvalue = (/0.0000000e+00, 0.0000000e+00/), polyij = (/7.24800000e+02, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/7.24800000e+02, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/7.24800000e+02, 0.0000000e+00, 1.↔
- type(intergedatadb), parameter ge17 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default/Maribo-Mogensen", bib_ref = "10.1002/aic.14829", uid1 = "CO2", uid2 = "CL-", kijvalue = 0.00000000, correlation = 2, alphaijvalue = (/0.0000000e+00, 0.0000000e+00/), polyij = (/7.24800000e+02, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/7.24800000e+02, 0.0000000e+00, 1.↔
- type(intergedatadb), parameter ge18 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default/Maribo-Mogensen", bib_ref = "10.1002/aic.14829", uid1 = "C1", uid2 = "NA+", kijvalue = 0.00000000, correlation = 2, alphaijvalue = (/0.0000000e+00, 0.0000000e+00/), polyij = (/1.12800000e+03, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/1.12800000e+03, 0.0000000e+00, 1.00000000e+00/))
- type(intergedatadb), parameter ge19 = interGEdatadb(eosid = "SRK", mruleid = "HV2", ref = "Default/Maribo-Mogensen", bib_ref = "10.1002/aic.14829", uid1 = "C1", uid2 = "CL-", kijvalue = 0.00000000, correlation = 2, alphaijvalue = (/0.0000000e+00, 0.0000000e+00/), polyij = (/1.12800000e+03, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/1.12800000e+03, 0.0000000e+00, 1.↔ 00000000e+00/), polyji = (/1.12800000e+03, 0.0000000e+00, 1.↔
- type(lijdatadb), parameter lij1 = lijdatadb(eosid = "PR", mruleid = "vdW", ref = "QuantumCubic", bib_ref = "10.1016/j.fluid.2020.112790", uid1 = "H2", uid2 = "HE", lijvalue = -0.16000000)
- type(cpakijdata), parameter cpa1 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "C3", uid2 = "H2O", kij_a = 0.11350000, kij_eps = 0.000000000, kij_beta = 0.000000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa2 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "NC4", uid2 = "H2O", kij_a = 0.08750000, kij_eps = 0.000000000, kij_beta = 0.000000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa3 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "NC5", uid2 = "H2O", kij_a = 0.06150000, kij_eps = 0.000000000, kij_beta = 0.000000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa4 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "NC6", uid2 = "H2O", kij_a = 0.03550000, kij_eps = 0.00000000, kij_beta = 0.00000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa5 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "NC7", uid2 = "H2O", kij_a = 0.00950000, kij_eps = 0.000000000, kij_beta = 0.000000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa6 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "NC8", uid2 = "H2O", kij_a = -0.01650000, kij_eps = 0.000000000, kij_beta = 0.000000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)

- type(cpakijdata), parameter cpa7 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "NC10", uid2 = "H2O", kij_a = -0.06850000, kij_eps = 0.00000000, kij_beta = 0.00000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa8 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "C3", uid2 = "MEOH", kij_a = 0.05900000, kij_eps = 0.000000000, kij_beta = 0.000000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa9 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "MEOH", uid2 = "H2O", kij_a = -0.09000000, kij_eps = 0.00000000, kij_beta = 0.00000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa10 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "ETOH", uid2 = "H2O", kij_a = -0.11000000, kij_eps = 0.00000000, kij_beta = 0.00000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa11 = CPAkijdata(eosid = "CPA-SRK", ref = "DEFAULT", bib_ref = "", uid1 = "CO2", uid2 = "H2O", kij_a = 0.04626056, kij_eps = 0.06022255, kij_beta = 0.000000000, eps_comb_rule = ariComb, beta_comb_rule = geoComb)
- type(cpakijdata), parameter cpa12 = CPAkijdata(eosid = "CPA-PR", ref = "DEFAULT", bib_ref = "", uid1 = "CO2", uid2 = "H2O", kij_a = 0.03000000, kij_eps = 0.000000000, kij_beta = 0.000000000, eps_comb_rule = geoComb, beta_comb_rule = geoComb)
- integer, parameter maxkij =723
- type(kijdatadb), dimension(maxkij), parameter kijdb = (/ vdw1,vdw2,vdw3,vdw4,vdw5, vdw6,vdw7,vdw8,vdw9,vdw10, vdw11,vdw12,vdw13,vdw14,vdw15, vdw16,vdw17,vdw18,vdw19,vdw20, vdw21,vdw22,vdw23,vdw24,vdw25, vdw26,vdw27,vdw28,vdw29,vdw30, vdw31,vdw32,vdw33,vdw34,vdw35, vdw36,vdw37,vdw38,vdw39,vdw40, vdw41,vdw42,vdw43,vdw44,vdw45, vdw46,vdw47,vdw48,vdw49,vdw50, vdw51,vdw52,vdw53,vdw54,vdw55, vdw56,vdw57,vdw58,vdw59,vdw60, vdw61,vdw62,vdw63,vdw64,vdw65, vdw66,vdw67,vdw68,vdw69,vdw70, vdw71,vdw72,vdw73,vdw74,vdw75, vdw76,vdw77,vdw78,vdw79,vdw80, vdw81,vdw82,vdw83,vdw84,vdw85, vdw86,vdw87,vdw88,vdw89,vdw90, vdw91,vdw92,vdw93,vdw94,vdw95, vdw96,vdw97,vdw98,vdw99,vdw100, vdw101,vdw102,vdw103,vdw104,vdw105, vdw106,vdw107,vdw108,vdw109,vdw110, vdw111,vdw112,vdw113,vdw114,vdw111 vdw116,vdw117,vdw118,vdw119,vdw120, vdw121,vdw122,vdw123,vdw124,vdw125, vdw126,vdw127,vdw128,vdw129,vdw130,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vdw120,vd vdw131,vdw132,vdw133,vdw134,vdw135, vdw136,vdw137,vdw138,vdw139,vdw140, vdw141,vdw142,vdw143,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144,vdw144, vdw146,vdw147,vdw148,vdw149,vdw150, vdw151,vdw152,vdw153,vdw154,vdw155, vdw156,vdw157,vdw158,vdw159,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw160,vdw vdw161,vdw162,vdw163,vdw164,vdw165, vdw166,vdw167,vdw168,vdw169,vdw170, vdw171,vdw172,vdw173,vdw174,vdw175,vdw174,vdw174,vdw175,vdw174,vdw174,vdw175,vdw174,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw174,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175,vdw175, vdw176,vdw177,vdw178,vdw179,vdw180, vdw181,vdw182,vdw183,vdw184,vdw185, vdw186,vdw187,vdw188,vdw189,vdw199,vdw199,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw189,vdw1 vdw191,vdw192,vdw193,vdw194,vdw195, vdw196,vdw197,vdw198,vdw199,vdw200, vdw201,vdw202,vdw203,vdw204,vdw205,vdw204,vdw205,vdw204,vdw205,vdw204,vdw205,vdw204,vdw205,vdw204,vdw205,vdw204,vdw205,vdw204,vdw205,vdw205,vdw204,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205,vdw205, vdw206,vdw207,vdw208,vdw209,vdw210, vdw211,vdw212,vdw213,vdw214,vdw215, vdw216,vdw217,vdw218,vdw219,vdw220,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw210,vdw vdw221,vdw222,vdw223,vdw224,vdw225,vdw226,vdw227,vdw228,vdw229,vdw230,vdw231,vdw232,vdw233,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw234,vdw23 vdw236,vdw237,vdw238,vdw239,vdw240, vdw241,vdw242,vdw243,vdw244,vdw245, vdw246,vdw247,vdw248,vdw249,vdw250, vdw240, vdw vdw251,vdw252,vdw253,vdw254,vdw255, vdw256,vdw257,vdw258,vdw259,vdw260, vdw261,vdw262,vdw263,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264,vdw264, vdw266,vdw267,vdw268,vdw269,vdw270, vdw271,vdw272,vdw273,vdw274,vdw275, vdw276,vdw277,vdw278,vdw279,vdw280,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw270,vdw vdw281,vdw282,vdw283,vdw284,vdw285, vdw286,vdw287,vdw288,vdw289,vdw290, vdw291,vdw292,vdw293,vdw294,vdw295, vdw294,vdw295, vdw294,vdw294,vdw295, vdw294,vdw295 vdw296,vdw297,vdw298,vdw299,vdw300, vdw301,vdw302,vdw303,vdw304,vdw305, vdw306,vdw307,vdw308,vdw309,vdw310,vdw302,vdw304,vdw304,vdw305, vdw306,vdw307,vdw308,vdw309,vdw310,vdw304,vdw304,vdw305, vdw306,vdw307,vdw308,vdw309,vdw304,vdw304,vdw305, vdw306,vdw307,vdw308,vdw309,vdw304,vdw304,vdw304,vdw305, vdw306,vdw307,vdw308,vdw309,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw304,vdw30 vdw311,vdw312,vdw313,vdw314,vdw315, vdw316,vdw317,vdw318,vdw319,vdw320, vdw321,vdw322,vdw323,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw324,vdw3 vdw326,vdw327,vdw328,vdw329,vdw330, vdw331,vdw332,vdw333,vdw334,vdw335, vdw336,vdw337,vdw338,vdw339,vdw344 vdw341,vdw342,vdw343,vdw344,vdw345,vdw346,vdw347,vdw348,vdw349,vdw350,vdw351,vdw352,vdw353,vdw354,vdw355 vdw356,vdw357,vdw358,vdw359,vdw360, vdw361,vdw362,vdw363,vdw364,vdw365, vdw366,vdw367,vdw368,vdw369,vdw369,vdw370,vdw368,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw369,vdw vdw371,vdw372,vdw373,vdw374,vdw375,vdw376,vdw377,vdw378,vdw379,vdw380,vdw381,vdw382,vdw383,vdw384,vdw388 vdw386,vdw387,vdw388,vdw389,vdw390, vdw391,vdw392,vdw393,vdw394,vdw395, vdw396,vdw397,vdw398,vdw399,vdw400 vdw401,vdw402,vdw403,vdw404,vdw405, vdw406,vdw407,vdw408,vdw409,vdw410, vdw411,vdw412,vdw413,vdw414,vdw415, vdw414,vdw415, vdw414,vdw415, vdw414,vdw415, vdw414,vdw415, vdw414,vdw415, vdw414, vdw415, vdw415, vdw414, vdw415, vdw414, vdw415, vdw415, vdw414, vdw415, vdw vdw416,vdw417,vdw418,vdw419,vdw420, vdw421,vdw422,vdw423,vdw424,vdw425, vdw426,vdw427,vdw428,vdw429,vdw430,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw420,vdw vdw431,vdw432,vdw433,vdw434,vdw435, vdw436,vdw437,vdw438,vdw439,vdw440, vdw441,vdw442,vdw443,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444,vdw444, vdw446,vdw447,vdw448,vdw449,vdw450, vdw451,vdw452,vdw453,vdw454,vdw455, vdw456,vdw457,vdw458,vdw459,vdw460, vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw450,vdw vdw461,vdw462,vdw463,vdw464,vdw465, vdw466,vdw467,vdw468,vdw469,vdw470, vdw471,vdw472,vdw473,vdw474,vdw472 vdw476,vdw477,vdw478,vdw479,vdw480, vdw481,vdw482,vdw483,vdw484,vdw485, vdw486,vdw487,vdw488,vdw489,vdw490,vdw490,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw480,vdw vdw491,vdw492,vdw493,vdw494,vdw495, vdw496,vdw497,vdw498,vdw499,vdw500, vdw501,vdw502,vdw503,vdw504,vdw505 vdw506,vdw507,vdw508,vdw509,vdw510,vdw511,vdw512,vdw513,vdw514,vdw515,vdw516,vdw517,vdw518,vdw519,vdw520,vdw520 vdw521,vdw522,vdw523,vdw524,vdw525, vdw526,vdw527,vdw528,vdw529,vdw530, vdw531,vdw532,vdw533,vdw534,vdw532 vdw536,vdw537,vdw538,vdw539,vdw540, vdw541,vdw542,vdw543,vdw544,vdw545, vdw546,vdw547,vdw548,vdw549,vdw550,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw540,vdw5 vdw551,vdw552,vdw553,vdw554,vdw555, vdw556,vdw557,vdw558,vdw559,vdw560, vdw561,vdw562,vdw563,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vdw564,vd vdw566,vdw567,vdw568,vdw569,vdw570,vdw571,vdw572,vdw573,vdw574,vdw575,vdw576,vdw577,vdw578,vdw579,vdw580,vdw579,vdw580,vdw579,vdw580,vdw579,vdw580,vdw579,vdw580,vdw579,vdw580,vdw579,vdw580,vdw579,vdw580,vdw570,vdw580,vdw570,vdw580,vdw570,vdw580,vdw570,vdw580,vdw570,vdw580,vdw570,vdw580,vdw570,vdw580,vdw570,vdw580,vdw570,vdw580,vdw570,vdw580,vdw570,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw580,vdw58

vdw581,vdw582,vdw583,vdw584,vdw585, vdw586,vdw587,vdw588,vdw589,vdw590, vdw591,vdw592,vdw593,vdw594,vdw599,vdw596,vdw597,vdw598,vdw599,vdw600, vdw601,vdw602,vdw603,vdw604,vdw605, vdw606,vdw607,vdw608,vdw609,vdw611,vdw612,vdw613,vdw614,vdw615, vdw616,vdw617,vdw618,vdw619,vdw620, vdw621,vdw622,vdw623,vdw624,vdw629,vdw626,vdw627,vdw628,vdw629,vdw630, vdw631,vdw632,vdw633,vdw634,vdw635, vdw636,vdw637,vdw638,vdw639,vdw644,vdw645, vdw644,vdw645, vdw642,vdw648,vdw649,vdw650, vdw651,vdw652,vdw653,vdw654,vdw655,vdw657,vdw658,vdw659,vdw660, vdw661,vdw662,vdw663,vdw664,vdw665, vdw666,vdw667,vdw668,vdw669,vdw669,vdw667,vdw668,vdw667,vdw668,vdw667,vdw668,vdw687,vdw688,vdw669,vdw671,vdw672,vdw673,vdw674,vdw675, vdw676,vdw677,vdw678,vdw679,vdw680, vdw681,vdw682,vdw683,vdw689,vdw699,vdw700,vdw701,vdw702,vdw703,vdw704,vdw705, vdw706,vdw707,vdw708,vdw709,vdw710, vdw711,vdw712,vdw713,vdw714,vdw715,vdw716,vdw716,vdw717,vdw718,vdw719,vdw720, vdw721,vdw722,vdw723 /)

- integer, parameter maxintergeij =19
- type(intergedatadb), dimension(maxintergeij), parameter intergedb = (/ ge1,ge2,ge3,ge4,ge5, ge6,ge7,ge8,ge9,ge10, ge11,ge12,ge13,ge14,ge15, ge16,ge17,ge18,ge19 /)
- integer, parameter maxlij =1
- type(lijdatadb), dimension(maxlij), parameter lijdb = (/ lij1 /)
- integer, parameter cpamaxkij =12
- type(cpakijdata), dimension(cpamaxkij), parameter cpakijdb = (/ cpa1,cpa2,cpa3,cpa4,cpa5, cpa6,cpa7,cpa8,cpa9,cpa10, cpa11,cpa12 /)

5.34.1 Detailed Description

Automatically generated to file mixdatadb.f90 using utility python code pyUtils Time stamp: 2023-02-27T15:11↔ :46.339247.

5.35 multiparameter_base Module Reference

Definitions of adimensional variables: delta = rho/rho_c tau = T_c/T alpha0 = $A^{i}=A^{i$

Data Types

- interface alpha0_hd_intf
- interface alpha0derivs_intf
- interface alphares hd intf
- · interface alpharesderivs intf
- interface assign meos intf
- interface init_intf
- type meos

Base class for multiparameter equations of state.

- type nist_meos_ptr
- interface satdeltaestimate_intf

Functions/Subroutines

- real function cv (this, t, v)
 - Isochoric heat capacity.
- real function cp (this, t, v) Isobaric heat capacity.
- real function speed_of_sound (this, t, v)

Speed of sound.

- subroutine **getcritpoint** (this, tcrit, pcrit, rhocrit)
- subroutine calc_zfac (this, t, p, n, phase, z, z_t, z_p, z_n)
- subroutine calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- subroutine **calc_entropy** (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- subroutine calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)

- subroutine **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_n)
- subroutine calc_f (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- subroutine **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn) *Calculate reduced ideal Helmholtz energy and differentials.*
- subroutine calc_resgibbs (this, t, p, n, phase, g, g_t, g_p, g_n)
- subroutine alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- subroutine alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- subroutine alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- subroutine densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)
- subroutine **mp_pressure** (this, rho, t, p, p_rho, p_t)

Pressure and (optionally) its derivatives.

- subroutine assign_meos_base (this, other)
- subroutine get_ref_state_spec_default (this, ref_state, t, p, phase, solve)
- subroutine set_ref_state_default (this, t, p, v, h, s)

Variables

- real, parameter releps_p = machine_prec*1e8
- real, parameter releps_rho = machine_prec*1e6
- integer, parameter ref_no_solve =1
- integer, parameter ref_evaluate_id =2
- integer, parameter ref_solve_for_t =3
- integer, parameter ref_solve_for_p =4

5.35.1 Detailed Description

Definitions of adimensional variables: delta = rho/rho_c tau = T_c/T alpha0 = $A^{i}=A^{i$

5.35.2 Function/Subroutine Documentation

5.35.2.1 alphaderivs_tv()

```
subroutine multiparameter_base::alphaderivs_tv (
        class(meos) this,
        real, intent(in) t,
        real, intent(in) v,
        real, intent(out), optional alp,
        real, intent(out), optional alp_t,
        real, intent(out), optional alp_tv,
        real, intent(out), optional alp_tv,
        real, intent(out), optional alp_tv,
        real, intent(out), optional alp_tv,
        real, intent(out), optional alp_vv,
        logical, intent(in), optional residual)
```

	this	Calling class
in	v	Temperature (K) and molar volume (m 3 /mol)
out	alp	A/(nRT)

5.35.2.2 alphaidderivs_tv()

```
subroutine multiparameter_base::alphaidderivs_tv (
        class(meos) this,
        real, intent(in) t,
        real, intent(in) v,
        real, intent(out), optional alp,
        real, intent(out), optional alp_t,
        real, intent(out), optional alp_tv,
        real, intent(out), optional alp_n,
        re
```

Parameters

	this	Calling class
in	v	Temperature (K) and molar volume (m 3 /mol)
out	alp	A/(nRT)

5.35.2.3 alpharesderivs_tv()

```
subroutine multiparameter_base::alpharesderivs_tv (
```

```
class(meos) this,
real, intent(in) t,
real, intent(in) v,
real, intent(out), optional alpr,
real, intent(out), optional alpr_t,
real, intent(out), optional alpr_v,
real, intent(out), optional alpr_tv,
real, intent(out), optional alpr_tv,
real, intent(out), optional alpr_v,
real, intent(out), optional alpr_n,
real, intent(out), optional alpr_tn,
real, intent(out), optional alpr_v,
real, intent(out), optional alpr_v,
real, intent(out), optional alpr_v,
```

Parameters

	this	Calling class
in	v	Temperature (K) and molar volume (m 3 /mol)
out	alpr	A/(nRT)

5.35.2.4 cp()

	this	Calling class
in	V	Temperature (K) and molar volume (m 3 /mol)

Returns

[J/(mol*K)]

5.35.2.5 cv()

Isochoric heat capacity.

Parameters

		this	Calling class
	in	v	Temperature (K) and molar volume (m 3 /mol)

Returns

[J/(mol*K)]

5.35.2.6 densitysolver()

```
subroutine multiparameter_base::densitysolver (
    class(meos) this,
    real, intent(in) t_spec,
    real, intent(in) p_spec,
    integer, intent(in) phase_spec,
    real, intent(out) rho,
    integer, intent(out), optional phase_found,
    integer, intent(out), optional ierr )
```

Parameters

	this	The calling class.
in	p_spec	Temperature (K) and pressure (Pa)
in	phase_spec	Phase flag.
out	rho	Density (mol/m [^] 3)

5.35.2.7 speed_of_sound()

```
real, intent(in) t,
real, intent(in) v )
```

Speed of sound.

in v Temperature (K) and molar volume (m^{Λ}3/mol)

Returns

[m/s]

5.36 multiparameter_idealmix Module Reference

This module mixes multiparameter EoS through an ideal mixing rule. It relies heavily on the multiparameter EoS framwork and the methodology implemented by Ailo Aasen. 2018-10-01 Oivind Wilhelmsen.

Functions/Subroutines

- subroutine, public calc_multiparameter_idealmix_zfac (nc, meos, t, p, z, phase, zfac, dzdt, dzdp, dzdz)
 Initialize framework for computing thermodynamic properties with an ideal mixture of multiparameter EoS. NB: Only
 expected to give reasonable results in the single-phase regions, two-phase regions should be avoided due to possible
 multiple maxwell loops ++.
- subroutine, public calc_multiparameter_idealmix_enthalpy (nc, meos, t, p, z, phase, h, dhdt, dhdp, dhdz)
- subroutine, public calc_multiparameter_idealmix_entropy (nc, meos, t, p, z, phase, s, dsdt, dsdp, dsdz) *This function calculates the residual Entropy and the derivatives.*
- subroutine, public calc_multiparameter_idealmix_fugacity (nc, meos, t, p, z, phase, fug, dlnfdt, dlnfdp, dlnfdz) This function calculates the Fugacity coefficient and the derivatives.
- subroutine, public calc_multiparameter_idealmix_gres (nc, meos, t, p, z, phase, gr, dgrdt, dgrdp) This subroutine calculates the residual gibbs energy and the derivatives.

5.36.1 Detailed Description

This module mixes multiparameter EoS through an ideal mixing rule. It relies heavily on the multiparameter EoS framwork and the methodology implemented by Ailo Aasen. 2018-10-01 Oivind Wilhelmsen.

5.36.2 Function/Subroutine Documentation

5.36.2.1 calc_multiparameter_idealmix_enthalpy()

This function calculates the residual Enthalpy and the derivatives.

Т	The temperature [K]	
Р	The pressure [Pa]	
Ζ	The mole fraction [-]	
phase	The phase, 1=liquid, 2=vapour	
enthalpy	h [J/mol]	

dhdt	Temperature derivative [J/mole K]	
dhdp	Pressure derivative [J/mole Pa]	
dhdz	Composition derivative [J/mole^2]	

5.36.2.2 Author: OW, date: 2018-10-02

Set to zero We extract only the residual values (Excluding ideal gas terms) Check if the optionals are present

5.36.2.3 calc_multiparameter_idealmix_entropy()

```
subroutine, public multiparameter_idealmix::calc_multiparameter_idealmix_entropy (
    integer, intent(in) nc,
    class(meos_idealmix), intent(in) meos,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) s,
    real, intent(out), optional dsdt,
    real, intent(out), optional dsdp,
    real, dimension(nc), intent(out), optional dsdz )
This function calculates the residual Entropy and the derivatives
```

This function calculates the residual Entropy and the derivatives.

Parameters

Т	The temperature [K]	
Р	The pressure [Pa]	
Z The overall mole fraction [-]		
phase	The phase, 1=liquid, 2=vapour	
dsdt	Temperature derivative [J/kmoleK]	
dsdp	Pressure derivative [J/kmolePa]	
dsdz	Composition derivative [J/kmole^2]	
numder Analytical derivatives if true (default		

Return values

entropy The entropy [J/kmole K]

5.36.2.4 Author: OW, date: 2018-10-09

Set to zero We extract only the residual values (Excluding ideal gas terms) Check if the optionals are present ! NB: S_mix=sum_i^N N_iS_i

5.36.2.5 calc_multiparameter_idealmix_fugacity()

```
class(meos_idealmix), intent(in) meos,
real, intent(in) t,
real, intent(in) p,
real, dimension(nc), intent(in) z,
integer, intent(in) phase,
real, dimension(nc), intent(out) fug,
real, dimension(nc), intent(out), optional dlnfdt,
real, dimension(nc), intent(out), optional dlnfdp,
real, dimension(nc,nc), intent(out), optional dlnfdz )
```

This function calculates the Fugacity coefficient and the derivatives.

Parameters

Т	The temperature [K]		
Р	The pressure [Pa]		
Ζ	The overall mole fraction [-]		
phase	The phase, 1=liquid, 2=vapour		
fug,Fugacity	coefficient []		
dlnfdt	Temperature derivative [1/K] (dlog(f)/dT)		
dlnfdp	Pressure derivative [1/Pa] (dlog(f)/dP)		
dlnfdz	Composition derivative [1/kmole] (dlog(f)/dNi)		

5.36.2.6 Author: OW, date: 2018-10-09

Check if the optionals are present, if they are, call subroutines with optionals

5.36.2.7 calc_multiparameter_idealmix_gres()

Parameters

Т	The temperature [K]	
Р	The pressure [Pa]	
Z The overall mole fraction [-]		
phase	The phase, 1=liquid, 2=vapour	
gr	Residual gibbs energy [J/kmol]	
dgrdt	Temperature derivative [J/kmol/K]	
dgrdp	Pressure derivative [J/kmol/Pa]	

5.36.2.8 Author: OW, date: 2018-10-09

Check if the optionals are present

5.36.2.9 calc_multiparameter_idealmix_zfac()

```
subroutine, public multiparameter_idealmix::calc_multiparameter_idealmix_zfac (
```

```
integer, intent(in) nc,
class(meos_idealmix), intent(in) meos,
real, intent(in) t,
real, intent(in) p,
real, dimension(nc), intent(in) z,
integer, intent(in) phase,
real, intent(out) zfac,
real, intent(out), optional dzdt,
real, intent(out), optional dzdp,
real, dimension(nc), intent(out), optional dzdz )
```

Initialize framework for computing thermodynamic properties with an ideal mixture of multiparameter EoS. NB → : Only expected to give reasonable results in the single-phase regions, two-phase regions should be avoided due to possible multiple maxwell loops ++.

\AUTHOR OW, date:2018-10-01 This function calculates the Compressibility factor with derivatives.

Parameters

Т	The temperature [K]		
Р	The pressure [Pa]		
Ζ	The mole fraction [-]		
phase	The phase, 1=liquid, 2=vapour		
Zfac	The Z-factor [-]		
dZdt	Temperature derivative [1/K]		
dZdp	Pressure derivative [1/Pa]		
dZdz	Composition derivative [-]		

5.36.2.10 Author: OW, date: 2018-10-02

Set to zero Check if the optionals are present

5.37 multipol Module Reference

Residual reduced Helmholtz energies from dipol amd quadrupol interactions: Gross 2005: 10.1002/aic.10502 Gross and Vrabec 2006: 10.1002/aic.10683 Vrabec and Gross 2008: 10.1021/jp072619u.

Functions/Subroutines

- type(hyperdual) function, dimension(nce) hyperdual_calc_d_hs_pc_saft (eos, nce, t) Calculate the PC-SAFT hard-sphere segment diameter d_i.
- type(hyperdual) function hyperdual_packing_fraction_pc_saft (eos, nce, v, n, d_hs)
 Calculate the PC-SAFT packing fraction using the hard-sphere diameter.
- type(hyperdual) function, public hyperdual_fres_multipol (p_eos, nc, t, v, n)

Calculate reduced helmholtz energy from quadrupoles and dipoles.

- type(hyperdual) function hyperdual_j2_ij (nce, t, eta, a_ij, b_ij, i, j, lmax) Calculate correlation integral J2.
- type(hyperdual) function hyperdual_j3_ijk (nce, eta, c_ijk, i, j, k, Imax) Calculate correlation integral J3.
- type(hyperdual) function hyperdual_f_qq (nce, t, v, n, eta, mpol_param) *Quadrupol-quadrupol interaction Gross 2005: 10.1002/aic.10502.*
- type(hyperdual) function hyperdual_f_dd (nce, t, v, n, eta, mpol_param)

- type(hyperdual) function hyperdual_f_dq (nce, t, v, n, eta, mpol_param)
 - Quadrupol-dipol interaction Vrabec and Gross 2008: 10.1021/jp072619u.
- subroutine, public add_hyperdual_fres_multipol (eos, nc, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn) Real variable wrapper around hyperdual numbers. Calculate reduced Helmholtz energy and differentials,.
- subroutine, public fres_multipol (t, v, n, qq, dd, dq, f) Test function for polar reduced Helmholtz energy.
- subroutine, public multipol_model_control (qq, dd, dq)

Enable/disable polar contributions.

Variables

• real, parameter alpha = 1.1937350

5.37.1 Detailed Description

Residual reduced Helmholtz energies from dipol amd quadrupol interactions: Gross 2005: 10.1002/aic.10502 Gross and Vrabec 2006: 10.1002/aic.10683 Vrabec and Gross 2008: 10.1021/jp072619u.

5.37.2 Function/Subroutine Documentation

5.37.2.1 add_hyperdual_fres_multipol()

```
subroutine, public multipol::add_hyperdual_fres_multipol (
             class(base_eos_param), intent(inout) eos,
             integer, intent(in) nc,
             real, intent(in) t,
             real, intent(in) v,
             real, dimension(nc), intent(in) n,
             real, intent(out), optional f,
             real, intent(out), optional f_t,
             real, intent(out), optional f_v,
             real, dimension(nc), intent(out), optional f_n,
             real, intent(out), optional f_tt,
             real, intent(out), optional f_tv,
             real, intent(out), optional f_vv,
             real, dimension(nc), intent(out), optional f_tn,
             real, dimension(nc), intent(out), optional f_vn,
             real, dimension(nc,nc), intent(out), optional f_nn )
```

Real variable wrapper around hyperdual numbers. Calculate reduced Helmholtz energy and differentials,.

Author

Morten Hammer, 2022

5.37.2.2 fres_multipol()

```
subroutine, public multipol::fres_multipol (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(nce), intent(in) n,
    logical, intent(in) qq,
    logical, intent(in) dd,
    logical, intent(in) dq,
    real, intent(out) f)
```

Test function for polar reduced Helmholtz energy.

Author

Morten Hammer, 2023-02

5.37.2.3 hyperdual_calc_d_hs_pc_saft()

Author

Morten Hammer, 2022

Parameters

in

Returns

[m]

5.37.2.4 hyperdual_f_dd()

```
type(hyperdual) function multipol::hyperdual_f_dd (
    integer, intent(in) nce,
    type(hyperdual), intent(in) t,
    type(hyperdual), intent(in) v,
    type(hyperdual), dimension(nce), intent(in) n,
    type(hyperdual), intent(in) eta,
    class(multipol_param), intent(in) mpol_param )
```

Dipol-dipol interaction Gross and Vrabec 2006: 10.1002/aic.10683.

Author

Morten Hammer, 2022

5.37.2.5 hyperdual_f_dq()

Quadrupol-dipol interaction Vrabec and Gross 2008: 10.1021/jp072619u.

Author

Morten Hammer, 2022

5.37.2.6 hyperdual_f_qq()

```
type(hyperdual), intent(in) t,
type(hyperdual), intent(in) v,
type(hyperdual), dimension(nce), intent(in) n,
type(hyperdual), intent(in) eta,
class(multipol_param), intent(in) mpol_param)
```

Quadrupol-quadrupol interaction Gross 2005: 10.1002/aic.10502.

Author

Morten Hammer, 2022

5.37.2.7 hyperdual_fres_multipol()

```
type(hyperdual) function, public multipol::hyperdual_fres_multipol (
        class(base_eos_param), intent(inout) p_eos,
        integer, intent(in) nc,
        type(hyperdual), intent(in) t,
        type(hyperdual), intent(in) v,
        type(hyperdual), dimension(nc), intent(in) n)
```

Calculate reduced helmholtz energy from quadrupoles and dipoles.

Author

Morten Hammer, 2022

5.37.2.8 hyperdual_j2_ij()

Author

Morten Hammer, 2022

5.37.2.9 hyperdual_j3_ijk()

Calculate correlation integral J3.

Author

Morten Hammer, 2022

5.37.2.10 hyperdual_packing_fraction_pc_saft()

Author

Morten Hammer, 2022

5.37.2.11 multipol_model_control()

Author

Morten Hammer, 2023-02

5.38 mut_solver Module Reference

Solve mu-T problem. Look for single phase solution given initial guess.

Functions/Subroutines

- subroutine, public solve_mu_t (mu, t, rho, ierr)
 - Solve mu(T,rho) = mu for a given temperature.
- subroutine, public solve_lnf_t (lnf, t, rho, ierr)
 Solve lnf(T,rho) = lnf for a given temperature.
- subroutine, public map_meta_isotherm (t, z, n, phase, v, rho_other, ierr) Map isotherm from saturation line to spinodal.

5.38.1 Detailed Description

Solve mu-T problem. Look for single phase solution given initial guess.

5.38.2 Function/Subroutine Documentation

5.38.2.1 map_meta_isotherm()

```
subroutine, public mut_solver::map_meta_isotherm (
    real, intent(in) t,
    real, dimension(nce), intent(in) z,
    integer, intent(in) n,
    integer, intent(in) phase,
    real, dimension(n), intent(out) v,
    real, dimension(n,nce), intent(out) rho_other,
    integer, intent(out) ierr )
Map isotherm from saturation line to spinodal.
```

Author

MH, 2022-11

in	Ζ	Composition
in	t	Temperature [K]
in	n	Number of points on isotherm
in	phase	Phase identifer
out	ierr	Error flag
out	V	Specific volume (m3/mol)
out	rho_other	Specific volume of other phase (-)

5.38.2.2 solve_Inf_t()

Author

MH, July 2022

Parameters

in	Inf	Fugacity coefficient
in	t	K - Temperature
in,out	rho	mol/m3 - Specific mole numbers
out	ierr	Error flag

5.38.2.3 solve_mu_t()

```
subroutine, public mut_solver::solve_mu_t (
    real, dimension(nce), intent(in) mu,
    real, intent(in) t,
    real, dimension(nce), intent(inout) rho,
    integer, intent(out) ierr )
```

Solve mu(T, rho) = mu for a given temperature.

Author

MH, July 2022

in	ти	Chemical potential	
in	t	K - Temperature	
in,out	rho	mol/m3 - Specific mole numbers	
out	ierr	Error flag	

5.39 nonlinear_solvers Module Reference

This module contains generic methods for solving systems of non-linear equations.

Data Types

- interface function_template
- interface jacobian_template
- type nonlinear_solver

A type that contains solver information.

Functions/Subroutines

- subroutine, public nonlinear_solve (solver, fun, jac, hess, limit, premterm, setxvar, x, xmin, xmax, param, dim) Interface for solver.
- subroutine, public approximate_jacobian (fun, jac, x0, n, param, xmax, xmin)
 - Approximate Jacobian numerically using forward differences.
- subroutine, public approximate_jacobian_2nd (fun, jac, x0, n, param, xmax, xmin) Approximate Jacobian numerically using central difference. 2nd order.
- subroutine, public approximate_jacobian_4th (fun, jac, x0, n, param, xmax, xmin)
- Approximate Jacobian numerically using central difference. 4th order.
- subroutine, public limit_dx (n, x, xmin, xmax, dx, np, param)
 - Limit change in x, dx, to keep x between extreme values: $xmin \le x \le xmax$.
- logical function, public premreturn (x, dx, param, n, np)

No premature return.

• logical function, public premterm_at_dx_zero (var, dvar, param, n, np)

Terminate search when step size is zero.

- subroutine, public setxv (n, nparam, x, dx, xmin, xmax, param, alpha) Set variables.
- subroutine, public bracketing_solver (xmin, xmax, fun, x, solver, param)
- Interface for bracketing methods Solve: f(x)=0 for $x low \le x \le x high$.
- subroutine, public pegasus (xlow, xhigh, fun, x, solver, param)

• subroutine, public ridders_method (func, param, xmin, xmax, solver, x)

Ridders' method for root finding.

• subroutine, public **newton_secondorder_singlevar** (func, xinit, xmin, xmax, solver, x, param)

Second order Newton solver (cubic convergence).

real function, public newton_1d (fun, x0, param, xmin, xmax)

A clean, minimal implemention of Newton's method for solving fun(x) = 0 in 1D. Quadratic convergence.

Variables

- integer, parameter, public ns_newton = 1
 Solver aliases
- integer, parameter, public **ns_succsub** = 2
- integer, parameter, public ns_newton_ls = 3
 Include line search in NR iteration.
- integer, parameter, public **ns_pegasus** = 4
 - Bracketing solver aliases.
- integer, parameter, public ns_ridders = 5

A method of Regula Falsi type for finding a simple root of a non-linear equation. Solve: f(x)=0 for xlow $\leq x \leq x$ high REF: AN IMPROVED PEGASUS METHOD FOR ROOT FINDING RICHARD F. KING BIT Numerical Mathematics, 13 (1973), 423-427.

5.39.1 Detailed Description

This module contains generic methods for solving systems of non-linear equations.

Author

MH, August 2012

5.39.2 Function/Subroutine Documentation

5.39.2.1 approximate_jacobian()

```
subroutine, public nonlinear_solvers::approximate_jacobian (
    external fun,
    real, dimension(n,n), intent(out) jac,
    real, dimension(n), intent(in) x0,
    integer, intent(in) n,
    real, dimension(:), intent(inout) param,
    real, dimension(n), intent(in), optional xmax,
    real, dimension(n), intent(in), optional xmin )
```

Approximate Jacobian numerically using forward differences.

Author

KEGT

Parameters

in,out	param	Paramaters
--------	-------	------------

5.39.2.2 approximate jacobian 2nd()

```
subroutine, public nonlinear_solvers::approximate_jacobian_2nd (
    external fun,
    real, dimension(n,n), intent(out) jac,
    real, dimension(n), intent(in) x0,
    integer, intent(in) n,
    real, dimension(:), intent(in) param,
    real, dimension(n), intent(in), optional xmax,
    real, dimension(n), intent(in), optional xmin )
Approximate Jacobian numerically using central difference 2nd order
```

Approximate Jacobian numerically using central difference. 2nd order.

Author

GL

Parameters

in *param* Paramaters

5.39.2.3 approximate_jacobian_4th()

```
subroutine, public nonlinear_solvers::approximate_jacobian_4th (
    external fun,
    real, dimension(n,n), intent(out) jac,
    real, dimension(n), intent(in) x0,
    integer, intent(in) n,
    real, dimension(:), intent(in) param,
```

real, dimension(n), intent(in), optional xmax, real, dimension(n), intent(in), optional xmin) Approximate Jacobian numerically using central difference. 4th order.

Author

GL

Parameters

in <i>param</i> Paramat

5.39.2.4 bracketing_solver()

```
subroutine, public nonlinear_solvers::bracketing_solver (
    real, intent(in) xmin,
    real, intent(in) xmax,
    real, external fun,
    real, intent(out) x,
    type(nonlinear_solver), intent(inout) solver,
    real, dimension(:), intent(inout), optional param )
```

Interface for bracketing methods Solve: f(x)=0 for xlow $\leq x \leq x$ high.

Author

MH, Januar 2014

5.39.2.5 limit_dx()

Author

MH, August 2012

5.39.2.6 newton_1d()

A clean, minimal implemention of Newton's method for solving fun(x) = 0 in 1D. Quadratic convergence.

Author

Ailo A, December 2014

in	хO	initial guess
in,out	param	additional parameters for fun
in	xmax	limits

Returns

the "root"

5.39.2.7 nonlinear_solve()

```
subroutine, public nonlinear_solvers::nonlinear_solve (
    type(nonlinear_solver), intent(inout) solver,
    external fun,
    external jac,
    external hess,
    external limit,
    logical, external premterm,
    external setxvar,
    real, dimension(:), intent(inout) x,
    real, dimension(:), intent(in) xmin,
    real, dimension(:), intent(in) param,
    integer, intent(in), optional dim )
```

Interface for solver.

Author

MH, August 2012

Parameters

in,out	solver	Solver information
	fun	The non-linear function F(x)=0
	jac	Function to evaluate the Jacobian of F. This can be approximate_jacobian, in which the jacobian is evaluated approximately
	hess	Function to evaluate the Hessian of F. If analyt_hess=false, then this will be found by inverting J.
	limit	Limit step
	premterm	Test for premature termination
	setxvar	Set variables
in,out	X	On entry, initial condition. On exit, solution
in	xmin	Minimum and maximum limit for x
in	xmax	Minimum and maximum limit for x
in,out	param	Paramaters
in	dim	Problem size

5.39.2.8 pegasus()

```
subroutine, public nonlinear_solvers::pegasus (
    real, intent(in) xlow,
    real, intent(in) xhigh,
    real, external fun,
```

```
real, intent(out) x,
type(nonlinear_solver), intent(inout) solver,
real, dimension(:), intent(inout), optional param )
```

A method of Regula Falsi type for finding a simple root of a non-linear equation. Solve: f(x)=0 for xlow $\leq x \leq x$ high REF: AN IMPROVED PEGASUS METHOD FOR ROOT FINDING RICHARD F. KING BIT Numerical Mathematics, 13 (1973), 423-427.

Author

MH, August 2012

5.39.2.9 premreturn()

```
logical function, public nonlinear_solvers::premreturn (
            real, dimension(n), intent(in) x,
            real, dimension(n), intent(in) dx,
            real, dimension(np), intent(in) param,
            integer, intent(in) n,
            integer, intent(in) np )
```

No premature return.

Author

MH, 2013-10-08

Parameters

in	n	Dimension of X	
in	np	Dimension of param	
in	x	Vapour mole numbers [mole]	
in	param	Parameter vector	

Returns

Terminate minimization?

5.39.2.10 premterm_at_dx_zero()

Author

MH, 2014

in	n	Dimension of X
in	np	Dimension of param
in	var	Variable vector
in,out	dvar	Change in variable vector
in	param	Parameter vector

5.39.2.11 setxv()

```
subroutine, public nonlinear_solvers::setxv (
    integer, intent(in) n,
    integer, intent(in) nparam,
    real, dimension(n), intent(inout) x,
    real, dimension(n), intent(in) dx,
    real, dimension(n), intent(in) xmin,
    real, dimension(n), intent(in) xmax,
    real, dimension(nparam), intent(inout) param,
    real, intent(in) alpha )
```

Set variables.

Author

MH, 2013-02-27

Parameters

in	nparam	Problem dimension
in,out	x	Variables
in	dx	Change in variables
in	xmax	Variable limits
in,out	param	Parameter vector
in	alpha	dX scaling

5.39.3 Variable Documentation

5.39.3.1 ns_newton

```
integer, parameter, public nonlinear_solvers::ns_newton = 1
Solver aliases.
NR solver
```

5.40 optimizers Module Reference

This module contains generic methods for minimizing systems of non-linear equations.

Data Types

- interface error_function
- type optim_param

A type that contains solver information.

Functions/Subroutines

- subroutine, public optimize (optim, objective, diff, x, param, limit, premterm, getsize, setxvar, error_fun) Interface for optimizer.
- subroutine, public setx (n, nparam, x, dx, param, alpha)

Set variables.

- logical function, public prematurereturn (x, param, of, dofdx)
 - No premature return.
- subroutine, public nelmin (fn, n, start, xmin, ynewlo, reqmin, step, konvge, kcount, icount, numres, ifault) NELMIN minimizes a function using the Nelder-Mead algorithm.

Variables

integer, parameter, public no_mod_newton = 1
 Optimizer aliases.

5.40.1 Detailed Description

This module contains generic methods for minimizing systems of non-linear equations.

Todo Add special treatment for n=2 systems. Analytical modification of eigenvalues.

Author

MHA, February 2012

5.40.2 Function/Subroutine Documentation

5.40.2.1 nelmin()

```
subroutine, public optimizers::nelmin (
    real ( kind = 8 ), external fn,
    integer ( kind = 4 ) n,
    real ( kind = 8 ), dimension(n) start,
    real ( kind = 8 ), dimension(n) xmin,
    real ( kind = 8 ) ynewlo,
    real ( kind = 8 ) reqmin,
    real ( kind = 8 ), dimension(n) step,
    integer ( kind = 4 ) konvge,
    integer ( kind = 4 ) kcount,
    integer ( kind = 4 ) numres,
    integer ( kind = 4 ) ifault )
```

NELMIN minimizes a function using the Nelder-Mead algorithm.

Author

KEGT

5.40.2.2 optimize()

```
subroutine, public optimizers::optimize (
    type(optim_param), intent(inout) optim,
    real, external objective,
    external diff,
    real, dimension(:), intent(inout) x,
    real, dimension(:), intent(inout) param,
    external limit,
    logical, external premterm,
    integer, external getsize,
    external setxvar,
    procedure(error_function), optional error_fun )
Interface for optimizer.
```

Author

MHA, February 2012

in,out	optim	Solver information	
--------	-------	--------------------	--

	objective	The non-linear function F(x)	
	diff	Function to evaluate the differentials.	
	limit	Function to limit search	
	premterm	Test for premature termination	
in,out	x	On entry, initial condition. On exit, solution	
in,out	param	Paramaters used by objective, diff, limit and premterm	
	getsize	Get size of problem (Usually size(x))	
	setxvar	Function to update variables	
	setxvar	Function to calculate error	

5.40.2.3 prematurereturn()

No premature return.

Author

MH, 2013-02-27

Parameters

in	x	Vapour mole numbers [mole]
in	param	Parameter vector
in	of	Objective function value
in	dofdx	Differential of objective function

Returns

Terminate minimization?

5.40.2.4 setx()

```
subroutine, public optimizers::setx (
    integer, intent(in) n,
    integer, intent(in) nparam,
    real, dimension(n), intent(inout) x,
    real, dimension(n), intent(in) dx,
    real, dimension(nparam), intent(inout) param,
    real, intent(in) alpha )
```

Set variables.

Author

MH, 2013-02-27

in	nparam	Problem dimension
in,out	x	Variables

in	dx	Change in variables
in,out	param	Parameter vector
in	alpha	dX scaling

5.40.3 Variable Documentation

5.40.3.1 no mod newton

```
integer, parameter, public optimizers::no_mod_newton = 1
Optimizer aliases.
Modefied newton optimizer
```

5.41 pc_saft_datadb Module Reference

Automatically generated to file pc_saft_datadb.f90 using utility python code pyUtils Time stamp: 2023-09-06T15↔ :26:02.894432.

Data Types

• type pc_saft_data

PURE COMPONENT PARAMETERS. This data structure stores pure component parameters for the PC-SAFT equation of state.

• type pckijdata

TEMPERATURE-INDEPENDENT INTERACTION PARAMETERS FOR PC-SAFT DISPERSION TERM.

Variables

- type(pc_saft_data), parameter pccx1 = pc_saft_data(eosidx = eosPC_SAFT, compName = "BUT1OL", m = 2.9614, sigma = 3.5065e-10, eps_depth_divk = 253.29, eps = 21625.917269816575, beta = 0...
 003874630939, assoc_scheme = assoc_scheme_2C, mu = 0., Q = 0., bib_ref = "de Villiers et al. (2011).
 Doi: 10.1021/ie200521k", ref = "Default/deVilliers2011")
- type(pc_saft_data), parameter pccx2 = pc_saft_data(eosidx = eosPC_SAFT, compName = "BUT1OL", m = 2.7515, sigma = 3.6189e-10, eps_depth_divk = 259.59, eps = 21156.981578152732, beta = 0.006692, assoc_scheme = assoc_scheme_2B, mu = 0., Q = 0., bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.↔ 2010.02.004", ref = "Tang_Gross2010")
- type(pc_saft_data), parameter pccx3 = pc_saft_data(eosidx = eosPC_SAFT, compName = "HEX1OL", m = 3.1542, sigma = 3.8188e-10, eps_depth_divk = 277.24, eps = 24495.238319341257, beta = 0.↔ 001308996939, assoc_scheme = assoc_scheme_2C, mu = 0., Q = 0., bib_ref = "de Villiers et al. (2011). Doi: 10.1021/ie200521k", ref = "Default/de Villiers2011")
- type(pc_saft_data), parameter pccx4 = pc_saft_data(eosidx = eosPC_SAFT, compName = "HEX1OL", m = 3.5146, sigma = 3.6735e-10, eps_depth_divk = 262.32, eps = 21109.589141229262, beta = 0.005747, assoc_scheme = assoc_scheme_2B, mu = 0., Q = 0., bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.↔ 2010.02.004", ref = "Tang_Gross2010")
- type(pc_saft_data), parameter pccx5 = pc_saft_data(eosidx = eosPC_SAFT, compName = "PENT1OL", m = 3.1488, sigma = 3.635e-10, eps_depth_divk = 261.96, eps = 21246.2789066717, beta = 0.003926990817, assoc_scheme = assoc_scheme_2C, mu = 0., Q = 0., bib_ref = "de Villiers et al. (2011). Doi: 10.↔ 1021/ie200521k", ref = "Default/deVilliers2011")
- type(pc_saft_data), parameter pccx6 = pc_saft_data(eosidx = eosPC_SAFT, compName = "PENT10L", m = 3.626, sigma = 3.4508e-10, eps_depth_divk = 247.28, eps = 18725.00126234291, beta = 0.010319, assoc⇔ _scheme = assoc_scheme_2B, mu = 0., Q = 0., bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.↔ 02.004", ref = "Tang_Gross2010")

- type(pc_saft_data), parameter pccx7 = pc_saft_data(eosidx = eosPC_SAFT, compName = "PROP1OL", m = 2.9537, sigma = 3.2473e-10, eps_depth_divk = 226.36, eps = 20353.970778491494, beta = 0.↔ 011938052084, assoc_scheme = assoc_scheme_2C, mu = 0., Q = 0., bib_ref = "de Villiers et al. (2011). Doi: 10.1021/ie200521k", ref = "Default/deVilliers2011")
- type(pc_saft_data), parameter pccx8 = pc_saft_data(eosidx = eosPC_SAFT, compName = "PROP1OL", m = 2.9997, sigma = 3.2522e-10, eps_depth_divk = 233.4, eps = 18930.368489011296, beta = 0.015268, assoc_scheme = assoc_scheme_2B, mu = 0., Q = 0., bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.↔ 2010.02.004", ref = "Tang_Gross2010")
- type(pc_saft_data), parameter pccx9 = pc_saft_data(eosidx = eosPC_SAFT, compName = "ACETONE", m = 2.7447, sigma = 3.2742e-10, eps_depth_divk = 232.99, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Gross and Vrabec 2006. doi: 10.1002/aic.10683", ref = "Gross2006")
- type(pc_saft_data), parameter pccx10 = pc_saft_data(eosidx = eosPC_SAFT, compName = "ACETYLENE", m = 1.5477, sigma = 3.3428e-10, eps_depth_divk = 174.48, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Gross 2005, doi: 10.1002/aic.10502", ref = "Gross2005")
- type(pc_saft_data), parameter pccx11 = pc_saft_data(eosidx = eosPC_SAFT, compName = "ACETYLENE", m = 1.5587, sigma = 3.3325e-10, eps_depth_divk = 174.68, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 4.5415, bib_ref = "Gross 2005, doi: 10.1002/aic.10502", ref = "Gross2005ADJQ")
- type(pc_saft_data), parameter pccx12 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NH3", m = 2...
 25807, sigma = 2.37802e-10, eps_depth_divk = 126.868, eps = 11032.6, beta = 0.20479, assoc_scheme = assoc_scheme_3B, mu = 0., Q = 0., bib_ref = "SINTEF Energy Research", ref = "Default/InHouse")
- type(pc_saft_data), parameter pccx13 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NH3", m = 1.4302, sigma = 2.7927e-10, eps_depth_divk = 145.0059, eps = 13303.140189, beta = 0.221193, assoc⇔ _scheme = assoc_scheme_2B, mu = 0., Q = 0., bib_ref = "10.1016/j.fluid.2020.112689", ref = "Nguyen⇔ Huynh2020")
- type(pc_saft_data), parameter pccx14 = pc_saft_data(eosidx = eosPC_SAFT, compName = "AR", m = 0... 9285, sigma = 3.4784e-10, eps_depth_divk = 122.23, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis... Folas2001")
- type(pc_saft_data), parameter pccx15 = pc_saft_data(eosidx = eosPC_SAFT, compName = "BENZENE", m = 2.4653, sigma = 3.6478e-10, eps_depth_divk = 287.35, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx16 = pc_saft_data(eosidx = eosPC_SAFT, compName = "BENZENE", m = 2.2463, sigma = 3.7852e-10, eps_depth_divk = 296.24, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 5.5907, bib_ref = "Gross 2005, doi: 10.1002/aic.10502", ref = "Gross2005ADJQ")
- type(pc_saft_data), parameter pccx17 = pc_saft_data(eosidx = eosPC_SAFT, compName = "BUTANAL", m = 2.8825, sigma = 3.4698e-10, eps_depth_divk = 247.09, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Gross and Vrabec (2006). Doi: 10.1002/aic.10683", ref = "Default/Gross2006")
- type(pc_saft_data), parameter pccx18 = pc_saft_data(eosidx = eosPC_SAFT, compName = "CO2", m = 2.↔ 0729, sigma = 2.7852e-10, eps_depth_divk = 169.21, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis.↔ _Folas2001")
- type(pc_saft_data), parameter pccx19 = pc_saft_data(eosidx = eosPC_SAFT, compName = "CO2", m = 2.↔ 58239, sigma = 2.56106e-10, eps_depth_divk = 151.691, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", ref = "Tang_Gross2010")
- type(pc_saft_data), parameter pccx20 = pc_saft_data(eosidx = eosPC_SAFT, compName = "CO2", m = 1.72897, sigma = 2.76102e-10, eps_depth_divk = 83.7215, eps = 9256.5, beta = 0.171605, assoc_scheme = assoc_scheme_3B, mu = 0., Q = 0., bib_ref = "Smith (2017) MSc thesis, Doi: 10019.1/101071", ref = "Smith2017")
- type(pc_saft_data), parameter pccx21 = pc_saft_data(eosidx = eosPC_SAFT, compName = "CO2", m = 1.↔ 5131, sigma = 3.1869e-10, eps_depth_divk = 163.33, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Gross 2005, doi: 10.1002/aic.10502", ref = "Gross2005")
- type(pc_saft_data), parameter pccx22 = pc_saft_data(eosidx = eosPC_SAFT, compName = "CO2", m = 1.↔
 6298, sigma = 3.0867e-10, eps_depth_divk = 163.34, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 3.9546, bib_ref = "Gross 2005, doi: 10.1002/aic.10502", ref = "Gross2005ADJQ")
- type(pc_saft_data), parameter pccx23 = pc_saft_data(eosidx = eosPC_SAFT, compName = "CL2", m = 1.↔ 3934, sigma = 3.5339e-10, eps_depth_divk = 270.49, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Gross (2005): doi: 10.1002/aic.10502", ref = "Default/Gross2005")

- type(pc_saft_data), parameter pccx24 = pc_saft_data(eosidx = eosPC_SAFT, compName = "CL2", m = 1.↔ 4682, sigma = 3.448e-10, eps_depth_divk = 269.67, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 3.0724, bib_ref = "Gross (2005): doi: 10.1002/aic.10502", ref = "Gross2005ADJQ")
- type(pc_saft_data), parameter pccx25 = pc_saft_data(eosidx = eosPC_SAFT, compName = "CYCLO-HEX", m = 2.5303, sigma = 3.8499e-10, eps_depth_divk = 278.11, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx26 = pc_saft_data(eosidx = eosPC_SAFT, compName = "DME", m = 2.2634, sigma = 3.2723e-10, eps_depth_divk = 210.29, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Gross and Vrabeck (2006). Doi: 10.1002/aic.10683", ref = "Default/Gross2006")
- type(pc_saft_data), parameter pccx27 = pc_saft_data(eosidx = eosPC_SAFT, compName = "C2", m = 1.↔ 6069, sigma = 3.5206e-10, eps_depth_divk = 191.42, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis.↔ _Folas2001")
- type(pc_saft_data), parameter pccx28 = pc_saft_data(eosidx = eosPC_SAFT, compName = "ETOH", m = 2.3609, sigma = 3.1895e-10, eps_depth_divk = 207.56, eps = 22413.213735129506, beta = 0.↔ 017121679962, assoc_scheme = assoc_scheme_2C, mu = 0., Q = 0., bib_ref = "de Villiers et al. (2011). Doi: 10.1021/ie200521k", ref = "Default/deVilliers2011")
- type(pc_saft_data), parameter pccx29 = pc_saft_data(eosidx = eosPC_SAFT, compName = "ETOH", m = 1.2309, sigma = 4.1057e-10, eps_depth_divk = 316.91, eps = 23372.12070888112, beta = 0.00331438025, assoc_scheme = assoc_scheme_2B, mu = 0., Q = 0., bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.↔ 2010.02.004", ref = "Tang_Gross2010")
- type(pc_saft_data), parameter pccx30 = pc_saft_data(eosidx = eosPC_SAFT, compName = "ETOH", m = 2.3827, sigma = 3.1771e-10, eps_depth_divk = 198.24, eps = 22061.595111007806, beta = 0.032384, assoc_scheme = assoc_scheme_2B, mu = 0., Q = 0., bib_ref = "Gross & Sadowski (2002). Doi: 10.↔ 1021/ie010954d", ref = "Gross_Sadowski2002")
- type(pc_saft_data), parameter pccx31 = pc_saft_data(eosidx = eosPC_SAFT, compName = "C2_1", m = 1.5425, sigma = 3.4523e-10, eps_depth_divk = 179.37, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Gross (2005), doi: 10.1002/aic.10502", ref = "Gross2005")
- type(pc_saft_data), parameter pccx32 = pc_saft_data(eosidx = eosPC_SAFT, compName = "C2_1", m = 1.5477, sigma = 3.4475e-10, eps_depth_divk = 179.19, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 1.9155, bib_ref = "Gross (2005), doi: 10.1002/aic.10502", ref = "Gross2005ADJQ")
- type(pc_saft_data), parameter pccx33 = pc_saft_data(eosidx = eosPC_SAFT, compName = "H2S", m = 1.↔ 6941, sigma = 3.0214e-10, eps_depth_divk = 226.79, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis.↔ _Folas2001")
- type(pc_saft_data), parameter pccx34 = pc_saft_data(eosidx = eosPC_SAFT, compName = "H2S", m = 1.↔ 355, sigma = 3.309e-10, eps_depth_divk = 234.25, eps = 6491.932412254049, beta = 0.001, assoc_scheme = assoc_scheme_2B, mu = 0., Q = 0., bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", ref = "Default/Tang_Gross2010")
- type(pc_saft_data), parameter pccx35 = pc_saft_data(eosidx = eosPC_SAFT, compName = "IC4", m = 2... 2616, sigma = 3.7574e-10, eps_depth_divk = 216.53, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis... Folas2001")
- type(pc_saft_data), parameter pccx36 = pc_saft_data(eosidx = eosPC_SAFT, compName = "IC5", m = 2.↔ 562, sigma = 3.8296e-10, eps_depth_divk = 230.75, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis.↔ _Folas2001")
- type(pc_saft_data), parameter pccx37 = pc_saft_data(eosidx = eosPC_SAFT, compName = "KR", m = 1., sigma = 3.63e-10, eps_depth_divk = 163.1, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Sauer & Gross (2017). DOI: 10.1021/acs.iecr.6b04551", ref = "Default/Sauer_Gross_2017")
- type(pc_saft_data), parameter pccx38 = pc_saft_data(eosidx = eosPC_SAFT, compName = "C1", m = 1., sigma = 3.7039e-10, eps_depth_divk = 150.03, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_← Folas2001")
- type(pc_saft_data), parameter pccx39 = pc_saft_data(eosidx = eosPC_SAFT, compName = "MEOH", m = 2.1, sigma = 2.7998e-10, eps_depth_divk = 197.23, eps = 21077.16273701846, beta = 0.430921792317,
assoc_scheme = assoc_scheme_2C, mu = 0., Q = 0., bib_ref = "de Villiers et al. (2011). Doi: $10. \leftrightarrow 1021/ie200521k$ ", ref = "Default/deVilliers2011")

- type(pc_saft_data), parameter pccx40 = pc_saft_data(eosidx = eosPC_SAFT, compName = "N2", m = 1... 2053, sigma = 3.313e-10, eps_depth_divk = 90.96, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis... Folas2001")
- type(pc_saft_data), parameter pccx41 = pc_saft_data(eosidx = eosPC_SAFT, compName = "N2", m = 1.↔ 1504, sigma = 3.3848e-10, eps_depth_divk = 91.4, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Gross 2005, doi: 10.1002/aic.10502", ref = "Gross2005")
- type(pc_saft_data), parameter pccx42 = pc_saft_data(eosidx = eosPC_SAFT, compName = "N2", m = 1.↔ 1879, sigma = 3.3353e-10, eps_depth_divk = 90.99, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 1.1151, bib_ref = "Gross 2005, doi: 10.1002/aic.10502", ref = "Gross2005ADJQ")
- type(pc_saft_data), parameter pccx43 = pc_saft_data(eosidx = eosPC_SAFT, compName = "O2", m = 1.↔ 1217, sigma = 3.2098e-10, eps_depth_divk = 114.96, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis.↔ _Folas2001")
- type(pc_saft_data), parameter pccx44 = pc_saft_data(eosidx = eosPC_SAFT, compName = "C3", m = 2.002, sigma = 3.6184e-10, eps_depth_divk = 208.11, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_
 Folas2001")
- type(pc_saft_data), parameter pccx45 = pc_saft_data(eosidx = eosPC_SAFT, compName = "TOLU", m = 2.8149, sigma = 3.7169e-10, eps_depth_divk = 285.69, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx46 = pc_saft_data(eosidx = eosPC_SAFT, compName = "H2O", m = 1.5, sigma = 2.6273e-10, eps_depth_divk = 180.3, eps = 15001.119744924437, beta = 0.0942, assoc_scheme = assoc_scheme_4C, mu = 0., Q = 0., bib_ref = "Grenner et al. (2006). Doi: 10.1021/ie0605332", ref = "Default/Grenner2006")
- type(pc_saft_data), parameter pccx47 = pc_saft_data(eosidx = eosPC_SAFT, compName = "H2O", m = 1.0656, sigma = 3.0007e-10, eps_depth_divk = 366.51, eps = 20791.976669215805, beta = 0.034868, assoc_scheme = assoc_scheme_2B, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.↔ 1002/9780470747537", ref = "Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx48 = pc_saft_data(eosidx = eosPC_SAFT, compName = "H2O", m = 1.↔ 18381, sigma = 2.87756e-10, eps_depth_divk = 201.82186, eps = 15074.120726711822, beta = 0.07002, assoc_scheme = assoc_scheme_4C, mu = 0., Q = 0., bib_ref = "10.1016/j.fluid.2018.06.019", ref = "Nguyen↔ Huynh2020")
- type(pc_saft_data), parameter pccx49 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC4", m = 2.↔ 3316, sigma = 3.7086e-10, eps_depth_divk = 222.88, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis.↔ _Folas2001")
- type(pc_saft_data), parameter pccx50 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC10", m = 4.6627, sigma = 3.8384e-10, eps_depth_divk = 243.87, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx51 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC22", m = 8.7068, sigma = 3.982e-10, eps_depth_divk = 253.955, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx52 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC12", m = 5.2133, sigma = 3.9115e-10, eps_depth_divk = 248.0042, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx53 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC20", m = 8.0081, sigma = 3.973e-10, eps_depth_divk = 253.1802, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")

- type(pc_saft_data), parameter pccx54 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC21", m = 8.3574, sigma = 3.9777e-10, eps_depth_divk = 253.5838, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx55 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC17", m = 6.96, sigma = 3.9559e-10, eps_depth_divk = 251.7263, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx56 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC7", m = 3...4831, sigma = 3.8049e-10, eps_depth_divk = 238.4, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis...-Folas2001")
- type(pc_saft_data), parameter pccx57 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC16", m = 6.6107, sigma = 3.949e-10, eps_depth_divk = 251.1392, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis Folas2001")
- type(pc_saft_data), parameter pccx58 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC6", m = 3... 0576, sigma = 3.7983e-10, eps_depth_divk = 236.77, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis... Folas2001")
- type(pc_saft_data), parameter pccx59 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC19", m = 7.6587, sigma = 3.9678e-10, eps_depth_divk = 252.7398, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx60 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC9", m = 4... 2079, sigma = 3.8448e-10, eps_depth_divk = 244.51, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis... Folas2001")
- type(pc_saft_data), parameter pccx61 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC18", m = 7.3094, sigma = 3.9622e-10, eps_depth_divk = 252.2573, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx62 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC8", m = 3.↔ 8176, sigma = 3.8373e-10, eps_depth_divk = 242.78, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis.↔ _Folas2001")
- type(pc_saft_data), parameter pccx63 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC25", m = 9.7548, sigma = 3.9931e-10, eps_depth_divk = 254.9091, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx64 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC15", m = 6.2614, sigma = 3.9412e-10, eps_depth_divk = 250.4867, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx65 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC5", m = 2.↔ 6896, sigma = 3.7729e-10, eps_depth_divk = 231.2, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis.↔ _Folas2001")
- type(pc_saft_data), parameter pccx66 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC14", m = 5.912, sigma = 3.9326e-10, eps_depth_divk = 249.757, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx67 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC24", m = 9.4055, sigma = 3.9897e-10, eps_depth_divk = 254.6147, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")

- type(pc_saft_data), parameter pccx68 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC23", m = 9.0561, sigma = 3.986e-10, eps_depth_divk = 254.2975, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx69 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC13", m = 5.5627, sigma = 3.9227e-10, eps_depth_divk = 248.9356, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- type(pc_saft_data), parameter pccx70 = pc_saft_data(eosidx = eosPC_SAFT, compName = "NC11", m = 4.864, sigma = 3.8986e-10, eps_depth_divk = 246.939, eps = 0., beta = 0., assoc_scheme = no_assoc, mu = 0., Q = 0., bib_ref = "Kontogeorgis & Folas (2010). Doi: 10.1002/9780470747537", ref = "Default/Kontogeorgis_Folas2001")
- integer, parameter **npcmodels** = 70
- type(pc_saft_data), dimension(npcmodels), parameter pcarray = (/ PCcx1,PCcx2,PCcx3,PCcx4,PCcx5, PCcx6,PCcx7,PCcx8,PCcx9,PCcx10, PCcx11,PCcx12,PCcx13,PCcx14,PCcx15, PCcx16,PCcx17,PCcx18,PCcx19,PCcx20, PCcx21,PCcx22,PCcx23,PCcx24,PCcx25, PCcx26,PCcx27,PCcx28,PCcx29,PCcx30, PCcx31,PCcx32,PCcx33,PCcx34,PCcx44,PCcx45, PCcx36,PCcx37,PCcx38,PCcx39,PCcx40, PCcx41,PCcx42,PCcx43,PCcx44,PCcx45, PCcx46,PCcx47,PCcx48,PCcx49,PCcx49,PCcx51,PCcx52,PCcx53,PCcx54,PCcx55, PCcx56,PCcx57,PCcx58,PCcx59,PCcx60, PCcx61,PCcx62,PCcx63,PCcx64,PCcx44,PCcx45, PCcx66,PCcx67,PCcx68,PCcx69,PCcx70 /)
- type(pckijdata), parameter **pcsaft_kij_1** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "C1", kijvalue = 0.↔ 0425, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_2** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "C2", kijvalue = 0.072, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_3** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "C3", kijvalue = 0.069, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter pcsaft_kij_4 = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "NC4", kijvalue = 0.↔ 067, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_5** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "NC5", kijvalue = 0.↔ 073, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_6** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "NC6", kijvalue = 0.↔ 073, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_7** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "NC7", kijvalue = 0.↔ 078, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_8** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "NC9", kijvalue = 0.↔ 086, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter pcsaft_kij_9 = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "NC10", kijvalue = 0.077, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_10** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "IC4", kijvalue = 0.06, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_11** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "IC5", kijvalue = 0.076, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_12** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "CYCLOHEX", kijvalue = 0.082, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_13** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "H2S", uid2 = "NC8", kijvalue = 0., eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)

- type(pckijdata), parameter pcsaft_kij_14 = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "H2S", kijvalue = 0.0223, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_15** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "BENZENE", kijvalue = 0.025, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_16** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "TOLU", kijvalue = 0.026, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_17** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Gross_ Sadowski2001", bib_ref = "Gross & Sadowski (2001). Doi: 10.1021/ie0003887", uid1 = "CO2", uid2 = "C1", kijvalue = 0.065, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_18** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "C2", kijvalue = 0.102, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_19** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "C3", kijvalue = 0.0107, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_20** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "NC4", kijvalue = 0.109, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter pcsaft_kij_21 = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "NC5", kijvalue = 0.12, eps comb rule = defaultComb, beta comb rule = defaultComb)
- type(pckijdata), parameter pcsaft_kij_22 = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "NC6", kijvalue = 0.123, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_23** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "NC7", kijvalue = 0.115, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_24** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "NC8", kijvalue = 0.132, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_25** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "NC9", kijvalue = 0.122, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_26** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "NC10", kijvalue = 0.133, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_27** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "IC4", kijvalue = 0.112, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_28** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "IC5", kijvalue = 0.116, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_29** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "CYCLOHEX", kijvalue = 0.125, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_30** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "BENZENE", kijvalue = 0.087, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_31** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Tang_↔ Gross2010", bib_ref = "Tang & Gross (2010). Doi: 10.1016/j.fluid.2010.02.004", uid1 = "CO2", uid2 = "TOLU", kijvalue = 0.108, eps_comb_rule = defaultComb, beta_comb_rule = defaultComb)
- type(pckijdata), parameter **pcsaft_kij_32** = PCkijdata(eosidx = eosPC_SAFT, ref = "Default/Nguyen↔ Huynh2020", bib_ref = "Doi: 10.1016/j.fluid.2020.112689", uid1 = "NH3", uid2 = "H2O", kijvalue = -0.32, eps_comb_rule = ariComb, beta_comb_rule = geoComb)

- integer, parameter pcmaxkij = 32
- type(pckijdata), dimension(pcmaxkij), parameter pckijdb = (/ PCSAFT_KIJ_1,PCSAFT_KIJ_2,PCSAFT_KIJ_3,PCSAFT_KIJ_4,PCSAFT_KIJ_5, PCSAFT_KIJ_6,PCSAFT_KIJ_7,PCSAFT_KIJ_8,PCSAFT_KIJ_4,PCSAFT_KIJ_4,PCSAFT_KIJ_10, PCSAFT_KIJ_11,PCSAFT_KIJ_12,PCSAFT_KIJ_13,PCSAFT_KIJ_14,PCSAFT_KIJ_4,PCSAFT_KIJ_5, PCSAFT_KIJ_16,PCSAFT_KIJ_17,PCSAFT_KIJ_18,PCSAFT_KIJ_19,PCSAFT_KIJ_20, PCSAFT_4,KIJ_21,PCSAFT_KIJ_22,PCSAFT_KIJ_23,PCSAFT_KIJ_24,PCSAFT_KIJ_25,PCSAFT_KIJ_26,PCSAFT_4,KIJ_27,PCSAFT_KIJ_28,PCSAFT_KIJ_29,PCSAFT_KIJ_30,PCSAFT_KIJ_31,PCSAFT_KIJ_32 /)

5.41.1 Detailed Description

Automatically generated to file pc_saft_datadb.f90 using utility python code pyUtils Time stamp: 2023-09-06T15↔ :26:02.894432.

5.42 pc_saft_nonassoc Module Reference

The module implementing the alpha^{hardchain} and alpha^{dispersion} contributions in PC-SAFT. Parameters are stored in the module $pc_saft_parameters$, while the association contribution is $alpha^{assoc}$ is implemented in the module saft.

Data Types

- type pcsaft_eos
- type spcsaft_eos

Functions/Subroutines

• subroutine f_spc_saft_tvn (eos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)

Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's hard-chain and dispersion contributions. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$

• subroutine alpha_pc (eos, rho, t, n, alp, alp_rho, alp_t, alp_n, alp_rhorho, alp_rhot, alp_rhon, alp_tt, alp_tn, alp_nn)

 $alpha_PC = alp^{\{hard_chain\}} + alpha^{\{dispersion\}}$

• subroutine alpha_disp (eos, rho, t, n, alp, alp_rho, alp_t, alp_n, alp_rhorho, alp_rhot, alp_rhon, alp_tt, alp_tn, alp_nn)

The reduced, molar Helmholtz energy contribution from dispersion.

• subroutine alpha_disp_pc_tvn (eos, t, v, n, alp, alp_v, alp_t, alp_n, alp_vv, alp_tv, alp_tv, alp_tt, alp_tn, alp_nn)

 $alpha^{dispersion}$ TVn alpha = A/(nRT)

• subroutine f_disp_pc_tvn (eos, t, v, n, f, f_v, f_t, f_n, f_vv, f_tv, f_vn, f_tt, f_tn, f_nn)

F = A/(RT)

- subroutine alpha_spc_saft_hc (eos, rho, t, n, alp, alp_rho, alp_t, alp_n, alp_rhorho, alp_rhot, alp_rhon, alp_tt, alp_tn, alp_tn, alp_nn)
- subroutine alpha_hs_spc_tvn (eos, t, v, n, alp, alp_v, alp_t, alp_n, alp_vv, alp_tv, alp_tv, alp_tt, alp_tn, alp, ____nn)

 $alpha^{hs}$ TVn alpha = A/(nRT)

- subroutine alpha_spc_saft_hs (eos, rho, t, n, alp, alp_rho, alp_t, alp_n, alp_rhorho, alp_rhot, alp_rhon, alp_tt, alp_tn, alp_tn, alp_nn)
- subroutine <u>g_spc_saft_tvn</u> (eos, t, v, n, g, <u>g_t</u>, <u>g_v</u>, <u>g_n</u>, <u>g_t</u>t, <u>g_t</u>v, <u>g_t</u>n, <u>g_v</u>v, <u>g_v</u>n, <u>g_n</u>n)
- subroutine g_ij_spc_saft (eos, rho, t, n, g, g_rho, g_t, g_n, g_rhorho, g_rhot, g_rhon, g_tt, g_tn, g_nn)
- subroutine m2e2s3_mean (eos, t, n, m2e2s3, m2e2s3_t, m2e2s3_n, m2e2s3_tt, m2e2s3_tt, m2e2s3_tn, m2e2s3_nn)
 Equation A.13 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.
- subroutine m2e1s3_mean (eos, t, n, m2e1s3, m2e1s3_t, m2e1s3_n, m2e1s3_tt, m2e1s3_tt, m2e1s3_tn, m2e1s3_nn)
 Equation A.12 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

- subroutine i_1 (eos, rho, t, n, i1, i1_rho, i1_t, i1_n, i1_rhorho, i1_rhor, i1_rhon, i1_tt, i1_tn, i1_nn)
 - A power series approximation of a perturbation theory integral. Equation A.16 of the PC-SAFT article (doi: 10.↔ 1021/ie0003887) See also PC-SAFT implementation memo in doc folder.
- subroutine i_2 (eos, rho, t, n, i2, i2_rho, i2_t, i2_n, i2_rhorho, i2_rhot, i2_rhon, i2_tt, i2_tn, i2_nn)
 - A power series approximation of a perturbation theory integral. Equation A.17 of the PC-SAFT article (doi: 10.↔ 1021/ie0003887) See also PC-SAFT implementation memo in doc folder.
- subroutine a_i (eos, n, a, a_n, a_nn)
 - The quantities a_i(m_bar) and its derivatives. This is the only routine which accesses a_mat directly. Equation A.18 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.
- subroutine b_i (eos, n, b, b_n, b_nn)
 - The quantities b_i(m_bar) and its derivatives. The only routine which accesses b_mat directly. Equation A.19 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.
- subroutine m_bar (eos, n, mbar, mbar_n, mbar_nn)

Mean mixture segment number. Equation A.5 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

- subroutine c_1 (eos, rho, t, n, c1, c1_rho, c1_t, c1_n, c1_rhorho, c1_rhot, c1_rhon, c1_tt, c1_tn, c1_nn)
 The compressibility term, defined as (1 + Z<sup>\{hc} + rho*dZ<sup>\{hc}/drho)^{-1}.
 </sup></sup>
- subroutine zeta (eos, rho, t, n, z, z_rho, z_t, z_n, z_rhorho, z_rhot, z_rhon, z_tt, z_tn, z_nn)

Calculates the functions zeta(0),...,zeta(3). zeta(3) equals eta, the packing fraction. Equation A.8 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

- subroutine eta (eos, rho, t, n, e, e_rho, e_t, e_n, e_rhorho, e_rhot, e_rhon, e_tt, e_tn, e_nn)
- subroutine calc_d (eos, t, d, d_t, d_tt)
- subroutine calc d hd (eos, t, d)
- subroutine calc_dhs (eos, t)
- subroutine g_pc_saft_tvn (eos, t, v, n, i, j, g, g_t, g_v, g_n, g_tt, g_tv, g_tn, g_vv, g_vn, g_nn)
- subroutine f_hs_pc_saft_tvn (eos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)

Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's hard-sphere. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$ zeta must be updated!!!!

• subroutine f_chain_pc_saft_tvn (eos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)

Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's chain term. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$ dhs and zeta must be updated!!!!

- subroutine f_hc_pc_saft_tvn (eos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
 - Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's HC term. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$ dhs and zeta must be updated!!!!
- subroutine alpha_hs_pc_tvn (eos, t, v, n, alp, alp_v, alp_t, alp_n, alp_vv, alp_tv, alp_vn, alp_tt, alp_tn, alp_nn)
 alpha^ {hs} TVn alpha = A/(nRT)
- subroutine f_pc_saft_tvn (eos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
 - Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's hard-chain and dispersion contributions. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$
- subroutine lng_ii_pc_saft_tvn (t, v, n, i, lng, lng_t, lng_v, lng_n, lng_tt, lng_tv, lng_tn, lng_vv, lng_vn, lng_nn) Get ln(q_ii) with differentials Boublik (doi: 10.1063/1.1673824) RDF at contact for molecule i in a mixture.
- subroutine spcsaft allocate and init (eos, nc, eos label)
- subroutine assign_spcsaft (this, other)
- subroutine spcsaft_dealloc (eos)
- subroutine pcsaft_allocate_and_init (eos, nc, eos_label)
- subroutine assign_pcsaft (this, other)
- subroutine pcsaft_dealloc (eos)
- class(pcsaft_eos) function, pointer get_pcsaft_eos_pointer (base_eos)

Variables

- real, dimension(0:2, 0:6), parameter a_mat = reshape((/ 0.9105631445, -0.3084016918, -0.0906148351, 0.6361281449, 0.1860531159, 0.4527842806, 2.6861347891, -2.5030047259, 0.5962700728, -26.↔ 547362491, 21.419793629, -1.7241829131, 97.759208784, -65.255885330, -4.1302112531, -159.↔ 59154087, 83.318680481, 13.776631870, 91.297774084, -33.746922930, -8.6728470368 /), (/3,7/))
- real, dimension(0:2, 0:6), parameter b_mat = reshape((/ 0.7240946941, -0.5755498075, 0.0976883116, 2.2382791861, 0.6995095521, -0.2557574982, -4.0025849485, 3.8925673390, -9.1558561530, -21.↔ 003576815, -17.215471648, 20.642075974, 26.855641363, 192.67226447, -38.804430052, 206.55133841, -161.82646165, 93.626774077, -355.60235612, -165.20769346, -29.666905585 /), (/3,7/))
- logical **enable_hs** = .true.
- logical enable_disp = .true.

5.42.1 Detailed Description

The module implementing the alpha^{$\$}{hardchain} and alpha^{$\$}{dispersion} contributions in PC-SAFT. Parameters are stored in the module pc_saft_parameters, while the association contribution is alpha^{$\$}{assoc} is implemented in the module saft.

We have implemented the variant sPC-SAFT (simplified PC-SAFT), which has the same (3 or 5) pure-component parameters as PC-SAFT but is built upon a simpler and computationally faster mixing rule.

5.42.2 Function/Subroutine Documentation

5.42.2.1 a_i()

```
subroutine pc_saft_nonassoc::a_i (
    class(spcsaft_eos), intent(in) eos,
    real, dimension(nce), intent(in) n,
    real, dimension(0:6), intent(out) a,
    real, dimension(0:6,nce), intent(out), optional a_n,
    real, dimension(0:6,nce,nce), intent(out), optional a_nn )
```

The quantities a_i(m_bar) and its derivatives. This is the only routine which accesses a_mat directly. Equation A.18 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

Parameters

in	п	[mol]
out	а	[-]

5.42.2.2 alpha_disp()

The reduced, molar Helmholtz energy contribution from dispersion.

in *n* [mol/m[^]3], [K], [mol]

5.42.2.3 alpha_disp_pc_tvn()

```
alpha<sup>(nRT)</sup> alpha = A/(nRT)
```

Parameters

in	n	[m^3], [K], [mol]
out	alp	[-]

5.42.2.4 alpha_hs_pc_tvn()

```
alpha^{hs} TVn alpha = A/(nRT)
```

in	n	[m^3], [K], [mol]
out	alp	[-]

5.42.2.5 alpha_hs_spc_tvn()

```
alpha<sup>\wedge</sup>{hs} TVn alpha = A/(nRT)
```

Parameters

in	n	[m^3], [K], [mol]
out	alp	[-]

5.42.2.6 alpha_pc()

 $alpha_PC = alp^{hard_chain} + alpha^{dispersion}$

Parameters

in	n	[mol/m^3], [K], [mol]
out	alp	[-]

5.42.2.7 alpha_spc_saft_hc()

```
real, intent(out), optional alp_rho,
real, intent(out), optional alp_t,
real, dimension(nce), intent(out), optional alp_n,
real, intent(out), optional alp_rhorho,
real, intent(out), optional alp_rhot,
real, dimension(nce), intent(out), optional alp_tr,
real, dimension(nce), intent(out), optional alp_tn,
real, dimension(nce), intent(out), optional alp_nn )
```

in	n	[mol/m^3], [K], [mol]
out	alp	[-]

5.42.2.8 alpha_spc_saft_hs()

```
subroutine pc_saft_nonassoc::alpha_spc_saft_hs (
```

```
class(spcsaft_eos), intent(in) eos,
real, intent(in) rho,
real, intent(in) t,
real, dimension(nce), intent(in) n,
real, intent(out) alp,
real, intent(out), optional alp_rho,
real, intent(out), optional alp_t,
real, dimension(nce), intent(out), optional alp_n,
real, intent(out), optional alp_rhorho,
real, intent(out), optional alp_rhot,
real, dimension(nce), intent(out), optional alp_rhon,
real, intent(out), optional alp_tt,
real, intent(out), optional alp_tt,
real, dimension(nce), intent(out), optional alp_tn,
real, dimension(nce), intent(out), optional alp_tn,
real, dimension(nce), intent(out), optional alp_nn)
```

Parameters

in	n	[mol/m^3], [K], [mol]
out	alp	[-]

5.42.2.9 b_i()

```
subroutine pc_saft_nonassoc::b_i (
    class(spcsaft_eos), intent(in) eos,
    real, dimension(nce), intent(in) n,
    real, dimension(0:6), intent(out) b,
    real, dimension(0:6,nce), intent(out), optional b_n,
    real, dimension(0:6,nce,nce), intent(out), optional b_nn )
```

The quantities b_i(m_bar) and its derivatives. The only routine which accesses b_mat directly. Equation A.19 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

in	n	[mol]
out	b	[-]

5.42.2.10 c_1()

The compressibility term, defined as $(1 + Z^{hc}) + rho * dZ^{hc}/drho)^{-1}$.

Parameters

in	n	[mol/m^3], [K], [mol]
out	c1	[-]

5.42.2.11 calc_d()

Parameters

in	t	[mol/m^3], [K], [mol]
out	d	[m]

5.42.2.12 calc_d_hd()

Parameters

in	t	[mol/m^3], [K], [mol]
out	d	[m]

5.42.2.13 calc_dhs()

in *t* **[K]**

5.42.2.14 eta()

```
subroutine pc_saft_nonassoc::eta (
        class(spcsaft_eos), intent(in) eos,
        real, intent(in) rho,
        real, intent(in) t,
        real, dimension(nce), intent(in) n,
        real, intent(out) e,
        real, intent(out), optional e_rho,
        real, intent(out), optional e_t,
        real, dimension(nce), intent(out), optional e_n,
        real, intent(out), optional e_rhorho,
        real, intent(out), optional e_rhot,
        real, intent(out), optional e_rhot,
        real, intent(out), optional e_rhot,
        real, intent(out), optional e_tt,
        real, dimension(nce), intent(out), optional e_tn,
        real, dimension(nce), intent(out), optional e_tn,
        real, dimension(nce), intent(out), optional e_tn,
        real, dimension(nce), intent(out), optional e_nn )
```

Parameters

in	п	[mol/m^3], [K], [mol]
out	е	[-]

5.42.2.15 f_chain_pc_saft_tvn()

```
subroutine pc_saft_nonassoc::f_chain_pc_saft_tvn (
        class(pcsaft_eos), intent(inout) eos,
        real, intent(in) t,
        real, intent(in) v,
        real, dimension(nce), intent(in) n,
        real, intent(out), optional f,
        real, intent(out), optional f_t,
        real, intent(out), optional f_v,
        real, dimension(nce), intent(out), optional f_n,
        real, intent(out), optional f_tt,
        real, intent(out), optional f_tt,
        real, intent(out), optional f_tt,
        real, intent(out), optional f_tt,
        real, intent(out), optional f_tv,
        real, intent(out), optional f_tv,
        real, dimension(nce), intent(out), optional f_tn,
        real, dimension(nce), intent(out), optional f_tn,
        real, dimension(nce), intent(out), optional f_vn,
        real, dimension(nce), intent(out), optional f_vn,
        real, dimension(nce), intent(out), optional f_vn,
        real, dimension(nce,nce), intent(out), optional f_nn)
```

Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's chain term. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$ dhs and zeta must be updated!!!!

Parameters

out | *f* | [mol]

5.42.2.16 f_disp_pc_tvn()

subroutine pc_saft_nonassoc::f_disp_pc_tvn (

```
class(spcsaft_eos), intent(in) eos,
real, intent(in) t,
real, intent(in) v,
real, dimension(nce), intent(in) n,
real, intent(out), optional f,
real, intent(out), optional f_v,
real, intent(out), optional f_t,
real, dimension(nce), intent(out), optional f_n,
real, intent(out), optional f_vv,
real, intent(out), optional f_tv,
real, dimension(nce), intent(out), optional f_vn,
real, dimension(nce), intent(out), optional f_vn,
real, intent(out), optional f_tt,
real, dimension(nce), intent(out), optional f_tn,
real, dimension(nce), intent(out), optional f_n,
```

F = A/(RT)

Parameters

in	n	[m^3], [K], [mol]
out	f	[-]

5.42.2.17 f_hc_pc_saft_tvn()

Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's HC term. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$ dhs and zeta must be updated!!!!

Parameters

out	f	[mol]
-----	---	-------

5.42.2.18 f_hs_pc_saft_tvn()

```
subroutine pc_saft_nonassoc::f_hs_pc_saft_tvn (
        class(pcsaft_eos), intent(in) eos,
        real, intent(in) t,
        real, intent(in) v,
        real, dimension(nce), intent(in) n,
        real, intent(out), optional f,
        real, intent(out), optional f_t,
        real, intent(out), optional f_v,
```

```
348
```

```
real, dimension(nce), intent(out), optional f_n,
real, intent(out), optional f_tt,
real, intent(out), optional f_tv,
real, dimension(nce), intent(out), optional f_tn,
real, dimension(nce), intent(out), optional f_vn,
real, dimension(nce,nce), intent(out), optional f_nn )
```

Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's hard-sphere. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$ zeta must be updated!!!!

Parameters

out	f	[mol]
-----	---	-------

5.42.2.19 f_pc_saft_tvn()

```
subroutine pc_saft_nonassoc::f_pc_saft_tvn (
        class(pcsaft_eos), intent(inout) eos,
        real, intent(in) t,
        real, intent(in) v,
        real, dimension(nce), intent(in) n,
        real, intent(out), optional f,
        real, intent(out), optional f_t,
        real, intent(out), optional f_v,
        real, dimension(nce), intent(out), optional f_n,
        real, intent(out), optional f_tt,
        real, intent(out), optional f_tt,
        real, intent(out), optional f_tt,
        real, intent(out), optional f_tt,
        real, intent(out), optional f_tv,
        real, intent(out), optional f_tv,
        real, intent(out), optional f_tv,
        real, intent(out), optional f_tv,
        real, dimension(nce), intent(out), optional f_tn,
        real, intent(out), optional f_vv,
        real, dimension(nce), intent(out), opt
```

Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's hard-chain and dispersion contributions. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$

Parameters

```
out f [mol]
```

5.42.2.20 f_spc_saft_tvn()

```
subroutine pc_saft_nonassoc::f_spc_saft_tvn (
        class(spcsaft_eos), intent(in) eos,
        real, intent(in) t,
        real, intent(in) v,
        real, dimension(nce), intent(in) n,
        real, intent(out), optional f,
        real, intent(out), optional f_t,
        real, intent(out), optional f_v,
        real, dimension(nce), intent(out), optional f_n,
        real, intent(out), optional f_tt,
        real, intent(out), optional f_tv,
        real, dimension(nce), intent(out), optional f_tn,
        real, intent(out), optional f_vv,
        real, intent(out), intent(out), optional f_vv,
        real, intent(out), intent(out), intent(o
```

real, dimension(nce,nce), intent(out), optional f_nn)

Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PC-SAFT's hard-chain and dispersion contributions. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$

Parameters

out | *f* | [mol]

5.42.2.21 g_ij_spc_saft()

```
subroutine pc_saft_nonassoc::g_ij_spc_saft (
        class(spcsaft_eos), intent(in) eos,
        real, intent(in) rho,
        real, intent(in) t,
        real, dimension(nce), intent(in) n,
        real, intent(out) g,
        real, intent(out), optional g_rho,
        real, intent(out), optional g_t,
        real, dimension(nce), intent(out), optional g_n,
        real, intent(out), optional g_rhorho,
        real, intent(out), optional g_rhorho,
        real, intent(out), optional g_rhor,
        real, intent(out), optional g_rhor,
        real, intent(out), optional g_t,
        real, intent(out), optional g_rhor,
        real, dimension(nce), intent(out), optional g_rhon,
        real, intent(out), optional g_tt,
        real, dimension(nce), intent(out), optional g_nn )
```

Parameters

in	n	[mol/m^3], [K], [mol]
out	g	[-]

5.42.2.22 g_pc_saft_tvn()

```
subroutine pc_saft_nonassoc::g_pc_saft_tvn (
            class(pcsaft_eos), intent(inout) eos,
             real, intent(in) t,
             real, intent(in) v,
             real, dimension(nce), intent(in) n,
             integer, intent(in) i,
             integer, intent(in) j,
             real, intent(out) g,
             real, intent(out), optional g_t,
             real, intent(out), optional g_v,
             real, dimension(nce), intent(out), optional g_n,
             real, intent(out), optional g_tt,
             real, intent(out), optional g_tv,
             real, dimension(nce), intent(out), optional g_tn,
             real, intent(out), optional g_vv,
             real, dimension(nce), intent(out), optional q_vn,
             real, dimension(nce,nce), intent(out), optional g_nn )
```

in	n	[m^3], [K], [mol]
in	j	component indices [-]

out **g [-]**

5.42.2.23 g_spc_saft_tvn()

```
subroutine pc_saft_nonassoc::g_spc_saft_tvn (
        class(spcsaft_eos), intent(in) eos,
        real, intent(in) t,
        real, intent(in) v,
        real, dimension(nce), intent(in) n,
        real, intent(out) g,
        real, intent(out), optional g_t,
        real, intent(out), optional g_v,
        real, dimension(nce), intent(out), optional g_n,
        real, intent(out), optional g_tt,
        real, intent(out), optional g_vv,
        real, dimension(nce), intent(out), optional g_tn,
        real, intent(out), optional g_vv,
        real, dimension(nce), intent(out), optional g_vn,
        real, dimension(nce), intent(out), optional g_vn,
        real, dimension(nce,nce), intent(out), optional g_nn)
```

Parameters

in	n	[m^3], [K], [mol]
out	g	[-]

5.42.2.24 i_1()

```
subroutine pc_saft_nonassoc::i_1 (
        class(spcsaft_eos), intent(in) eos,
        real, intent(in) rho,
        real, intent(in) t,
        real, dimension(nce), intent(in) n,
        real, intent(out) i1,
        real, intent(out), optional i1_rho,
        real, intent(out), optional i1_t,
        real, dimension(nce), intent(out), optional i1_n,
        real, intent(out), optional i1_rhorho,
        real, intent(out), optional i1_rh
```

A power series approximation of a perturbation theory integral. Equation A.16 of the PC-SAFT article (doi: 10. 1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

in	n	[mol/m [^] 3], [K], [mol]
out	i1	[-]

5.42.2.25 i_2()

```
subroutine pc_saft_nonassoc::i_2 (
        class(spcsaft_eos), intent(in) eos,
        real, intent(in) rho,
        real, intent(in) t,
        real, dimension(nce), intent(in) n,
        real, intent(out) i2,
        real, intent(out), optional i2_rho,
        real, intent(out), optional i2_t,
        real, dimension(nce), intent(out), optional i2_n,
        real, intent(out), optional i2_rhorho,
        real, intent(out), optional i2_rhot,
        real, intent(out), optional i2_rhot,
        real, dimension(nce), intent(out), optional i2_rhon,
        real, intent(out), optional i2_tt,
        real, intent(out), optional i2_tt,
        real, dimension(nce), intent(out), optional i2_rhon,
        real, dimension(nce), intent(out), optional i2_tn,
        real, dimension(nce), intent(out), optional i2_nn)
```

A power series approximation of a perturbation theory integral. Equation A.17 of the PC-SAFT article (doi: 10.↔ 1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

Parameters

in	n	[mol/m [^] 3], [K], [mol]
out	i2	[-]

5.42.2.26 Ing_ii_pc_saft_tvn()

```
subroutine pc_saft_nonassoc::lng_ii_pc_saft_tvn (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(nce), intent(in) n,
    integer i,
    real, intent(out), optional lng,
    real, intent(out), optional lng_t,
    real, intent(out), optional lng_v,
    real, dimension(nce), intent(out), optional lng_n,
    real, intent(out), optional lng_tt,
    real, intent(out), optional lng_tv,
    real, intent(out), optional lng_tv,
    real, dimension(nce), intent(out), optional lng_tn,
    real, intent(out), optional lng_v,
    real, dimension(nce), intent(out), optional lng_n,
    real, intent(out), optional lng_v,
    real, dimension(nce), intent(out), optional lng_v,
    real, dimension(nce), intent(out), optional lng_vn,
    real, dimension(nce), intent(out), optional lng_vn,
    real, dimension(nce), intent(out), optional lng_vn,
    real, dimension(nce,nce), intent(out), optional lng_vn,
    real, dimension(nce,nce), intent(out), optional lng_vn,
    real, dimension(nce,nce), intent(out), optional lng_vn
```

Get In(g_ii) with differentials Boublik (doi: 10.1063/1.1673824) RDF at contact for molecule i in a mixture.

Parameters

out | *Ing* | [mol]

5.42.2.27 m2e1s3_mean()

```
subroutine pc_saft_nonassoc::m2els3_mean (
        class(spcsaft_eos), intent(in) eos,
        real, intent(in) t,
        real, dimension(nce), intent(in) n,
        real, intent(out) m2els3,
        real, intent(out), optional m2els3_t,
```

```
real, dimension(nce), intent(out), optional m2e1s3_n,
real, intent(out), optional m2e1s3_tt,
real, dimension(nce), intent(out), optional m2e1s3_tn,
real, dimension(nce,nce), intent(out), optional m2e1s3_nn)
```

Equation A.12 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

Parameters

in	n	[K], [mol]
out	m2e1s3	[-]

5.42.2.28 m2e2s3_mean()

```
subroutine pc_saft_nonassoc::m2e2s3_mean (
```

```
class(spcsaft_eos), intent(in) eos,
real, intent(in) t,
real, dimension(nce), intent(in) n,
real, intent(out) m2e2s3,
real, intent(out), optional m2e2s3_t,
real, dimension(nce), intent(out), optional m2e2s3_n,
real, intent(out), optional m2e2s3_tt,
real, dimension(nce), intent(out), optional m2e2s3_tn,
real, dimension(nce), intent(out), optional m2e2s3_tn,
real, dimension(nce,nce), intent(out), optional m2e2s3_nn)
```

Equation A.13 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

Parameters

in	n	[K], [mol]
out	m2e2s3	[-]

5.42.2.29 m_bar()

```
subroutine pc_saft_nonassoc::m_bar (
        class(spcsaft_eos), intent(in) eos,
        real, dimension(nce), intent(in) n,
        real, intent(out) mbar,
        real, dimension(nce), intent(out) mbar_n,
        real, dimension(nce,nce), intent(out) mbar_nn )
```

Mean mixture segment number. Equation A.5 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

Parameters

in	n	[mol]
out	mbar	[-]
out	mbar_n	[1/mol]
out	mbar_nn	[1/mol^2]

5.42.2.30 pcsaft_allocate_and_init()

integer, intent(in) nc, character(len=*), intent(in) eos_label)

Parameters

in	nc	Number of components
in	eos_label	EOS label

5.42.2.31 spcsaft_allocate_and_init()

Parameters

in	nc	Number of components
in	eos_label	EOS label

5.42.2.32 zeta()

```
subroutine pc_saft_nonassoc::zeta (
        class(spcsaft_eos), intent(in) eos,
        real, intent(in) rho,
        real, intent(in) t,
        real, dimension(nce), intent(in) n,
        real, dimension(0:3), intent(out) z,
        real, dimension(0:3), intent(out), optional z_rho,
        real, dimension(0:3), intent(out), optional z_t,
        real, dimension(0:3,nce), intent(out), optional z_n,
        real, dimension(0:3), intent(out), optional z_rhor,
        real, dimension(0:3), intent(out), optional z_rhorho,
        real, dimension(0:3), intent(out), optional z_rhorho,
        real, dimension(0:3,nce), intent(out), optional z_rhor,
        real, dimension(0:3,nce), intent(out), optional z_tr,
        real, dimension(0:3,nce), intent(out), optional z_tr,
        real, dimension(0:3,nce), intent(out), optional z_tn,
        real, dimension(0:3,nce), intent(out), optional z_nn)
```

Calculates the functions zeta(0),...,zeta(3). zeta(3) equals eta, the packing fraction. Equation A.8 of the PC-SAFT article (doi: 10.1021/ie0003887) See also PC-SAFT implementation memo in doc folder.

Parameters

in	n	[mol/m^3], [K], [mol]
out	Ζ	[m^(i-3)]

5.43 pc_saft_parameters Module Reference

Module for PC-SAFT pure-component parameters and binary interaction parameters. Also contains parameters for the PeTS equation of state.

Functions/Subroutines

• logical function rgas_is_correct ()

Checks that we use the correct gas constant when initializing the pc_saft_data parameters.

- integer function getpcdataidx (eosidx, compname, param_ref)
- Get the index in the PCarray of the component having uid given by compName. idx=0 if component isn't in database. • real function **getpckij** (eosidx, uid1, uid2, param ref)
- Retrieve binary interaction parameter for components uid1 and uid2. If no kij is stored in the database PCkijdb, it returns 0.0.
- subroutine getpcsaftkij_allcomps (nc, comp, eosidx, kij, param_ref)
- subroutine getpcsaftcombrules_allcomps (nc, comp, eosidx, epsbeta_combrules, param_ref)
- subroutine getpcsaftcombrules (eosidx, uid1, uid2, param_ref, found, epsbetacombrules)

Retrieve association combining rules for components uid1 and uid2. Found is true if and only if the parameters are in the database.

- subroutine **getpcsaftpureparams_singlecomp** (compname, eosidx, param_ref, found, m, sigma, eps_↔ depth_divk, eps, beta, scheme, mu, q)

5.43.1 Detailed Description

Module for PC-SAFT pure-component parameters and binary interaction parameters. Also contains parameters for the PeTS equation of state.

NB: If you want to add new parameters here, beware that different authors are inconsistent wrt. whether beta should be multiplied with pi/6 or not. For this reason you should validate your results before using these parameters. If you get strange results, try multiplying beta with pi/6=0.5236.

5.44 ph_solver Module Reference

Solve the two-phase PH flash.

Functions/Subroutines

- subroutine, public twophasephflash (t, p, z, beta, betal, x, y, hspec, phase, ierr_out) Interface for PH flash.
- subroutine, public singlecomponenttwophasephflash (t, p, z, beta, betal, hspec, tmin, tmax, phase, ierr) Do single component PH-flash.
- subroutine, public singlephasepxflash (t, p, z, beta, betal, xspec, tmin, tmax, phase, mode, ierr)

Do PH/PS flash, assuming we only have one phase.

- subroutine, public setphtolerance (tol)
 - Set PH-flash tolerance Caution, write to module variable, and is not thread safe.
- real function, public getphtolerance ()
 - Get PH-flash tolerance.

Variables

- integer, parameter, public ph_mode =1
 - Flash-mode. Some functions allow multiple specifications.
- integer, parameter, public ps_mode =2

5.44.1 Detailed Description

Solve the two-phase PH flash.

5.44.2 Function/Subroutine Documentation

5.44.2.1 getphtolerance()

real function, public ph_solver::getphtolerance Get PH-flash tolerance.

Author

MH, 2015-03

Returns

Tolerance of hp-flash [-]

5.44.2.2 setphtolerance()

subroutine, public ph_solver::setphtolerance (

real, intent(in) tol)

Set PH-flash tolerance Caution, write to module variable, and is not thread safe.

Author

MH, 2015-03

Parameters

in tol Tolerance for hp-flash [-]

5.44.2.3 singlecomponenttwophasephflash()

```
subroutine, public ph_solver::singlecomponenttwophasephflash (
    real, intent(inout) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, intent(in) hspec,
    real, intent(inout) tmin,
    real, intent(inout) tmax,
    integer, intent(inout) phase,
    integer, intent(out), optional ierr )
```

Do single component PH-flash.

Author

MH, 2014-10-17 Ailo 2016-12-21

Parameters

in,out	beta	Vapour phase molar fraction [-]
out	betal	Liquid phase molar fraction [-]
in	Z	Overall molar compozition [-]
in,out	t	Temperature [K]
in	р	Pressure [Pa]
in	hspec	Specified entropy [J/mol]
in,out	tmax	Temperature limits [K]
in,out	phase	Phase identifier

Generated by Doxygen

5.44.2.4 singlephasepxflash()

```
subroutine, public ph_solver::singlephasepxflash (
    real, intent(inout) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, intent(in) tmin,
    real, intent(in) tmax,
    integer, intent(in) phase,
    integer, intent(in) mode,
    integer, intent(out), optional ierr )
Do PH/PS flash, assuming we only have one phase.
```

Author

Ailo, 2016-12-21 MH, 2018-10

Parameters

in,out	t	Temperature [K]
in	р	Pressure [Pa]
in	Ζ	Overall molar compozition [-]
in,out	beta	Vapour phase molar fraction [-]
out	betal	Liquid phase molar fraction [-]
in	xspec	Specified enthalpy/entropy [J/mol(/K)]
in	tmax	Temperature limits [K]
in	phase	Phase identifier

5.44.2.5 twophasephflash()

```
subroutine, public ph_solver::twophasephflash (
    real, intent(inout) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) hspec,
    integer, intent(inout) phase,
    integer, intent(out), optional ierr_out )
```

Interface for PH flash.

Author

MH, 2012-03-20

in,out	beta	Vapour phase molar fraction [-]
out	betal	Liquid phase molar fraction [-]
in	Z	Overall molar compozition [-]

in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in	p	Pressure [Pa]
in	hspec	Specified enthalpy [J/mol]
in,out	phase	Phase identifier
out	ierr_out	Error flag (ierr==0 means everything vent well. ierr==-2 out of temperature range, ierr==-1 tolerance not met)

5.45 ps_solver Module Reference

Solve PS-flash specification.

Functions/Subroutines

- subroutine, public twophasepsflash (t, p, z, beta, betal, x, y, sspec, phase, ierr_out) *Do PS-flash using PT-flash in nested loop.*
- subroutine, public singlecomponenttwophasepsflash (t, p, z, beta, betal, x, y, sspec, phase, ierr) Do single component PS-flash.
- subroutine, public setpstolerance (tol)
 - Set PS-flash tolerance Caution, write to module variable, and is not thread safe.
- real function, public getpstolerance () Get PS-flash tolerance.

5.45.1 Detailed Description

Solve PS-flash specification.

Todo Need trace-component functionallity.

5.45.2 Function/Subroutine Documentation

5.45.2.1 getpstolerance()

```
real function, public ps_solver::getpstolerance Get PS-flash tolerance.
```

Author

MH, 2015-03

Returns

Tolerance of ps-flash [-]

5.45.2.2 setpstolerance()

subroutine, public ps_solver::setpstolerance (

real, intent(in) tol)

Set PS-flash tolerance Caution, write to module variable, and is not thread safe.

Author

MH, 2015-03

in tol Tolerance for ps-flash [-]

5.45.2.3 singlecomponenttwophasepsflash()

```
subroutine, public ps_solver::singlecomponenttwophasepsflash (
    real, intent(inout) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) sspec,
    integer, intent(inout) phase,
    integer, intent(out), optional ierr )
```

Do single component PS-flash.

Author

MH, 2014-10-17

Parameters

in,out	beta	Vapour phase molar fraction [-]
out	betal	Liquid phase molar fraction [-]
in	Z	Overall molar compozition [-]
in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in	р	Pressure [Pa]
in	sspec	Specified entropy [J/mol/K]
in,out	phase	Phase identifier

5.45.2.4 twophasepsflash()

```
subroutine, public ps_solver::twophasepsflash (
    real, intent(inout) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) sspec,
    integer, intent(inout) phase,
    integer, intent(out), optional ierr_out )
```

Do PS-flash using PT-flash in nested loop.

Author

MHA, 2012-03-20

in,out	beta	Vapour phase molar fraction [-]
out	betal	Liquid phase molar fraction [-]
in	Z	Overall molar compozition [-]
in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in	p	Pressure [Pa]
in	sspec	Specified entropy [J/mol/K]
in,out	phase	Phase identifier
out	ierr_out	Error flag (ierr==0 means everything vent well. ierr==-2 out of temperature range,
		len=="l'tolerance not met)

5.46 saft_association Module Reference

This module handles all data and routines related to association.

Functions/Subroutines

• subroutine **calc_boltzmann_fac** (assoc, t, boltzmann_fac)

Calculate Boltzmann factor for association energy, with caching.

• subroutine **delta_kl** (eos, nc, delta, delta_t, delta_v, delta_n, delta_tt, delta_tv, delta_tn, delta_vv, delta_vn, delta_nn)

Assemble Delta[^] {kl} matrix, and derivatives if wanted. Can be optimized e.g. by not calculating the exponential in every loop iteration.

subroutine assemble_m_mich_k (assoc, nc, m_mich_k)

Assemble the m vector from Michelsen paper, holding the number of moles of each association site.

- subroutine k_mich (eos, nc, k_mich_kl, m_opt, delta_opt)
 - Computes the K matrix from Michelsen paper. Needed when solving for X.
- subroutine solve_for_x_k (eos, nc, x_k, maxit, tol)

Compute the value of X_k consistent with (T,V,n) stored in param.

- subroutine succ_subs (eos, nc, x, n_iter)
- subroutine x_derivatives_knowing_x (eos, nc, x, x_t, x_v, x_n, x_tt, x_tv, x_vv, x_tn, x_vn, x_nn)
 Computes the derivatives of X. Assumes that X is known.
- subroutine q_derivatives_knowing_x (eos, nc, x_k, q, q_t, q_v, q_n, q_x, q_xt, q_xv, q_xn, q_xx, q_tt, q_tv, q_tn, q_vv, q_vn, q_nn, q_xxx, q_xxt, q_xxv, q_xxn, q_xtt, q_xvv, q_xtv, q_xtn, q_xvn, q_xnn, x_calculated)

This back-end routine computes the necessary Q-derivatives. Note that X_k is an independent variable of this routine, but if one feeds it an X_k calculated from (T,V,n), one should set X_c calculated = .true. This routine is valid for general SAFT equations (both CPA and PC-SAFT).

• subroutine calcfder_assoc (eos, nc, x_k, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn)

Calculates the association contribution to the reduced, residual Helmholtz energy, along with its derivatives.

• subroutine assoc_pressure (eos, nc, x_k, p, dpdv, dpdt, dpdn)

Gives the association contribution to pressure.

• subroutine fun (resid0, x, param)

The X-gradient of Q.

• subroutine jac (j, x, param)

The X-Hessian of Q, modified according to Michelsen.

- subroutine **hess** (jinv, x, param)
 - Just a dummy function needed in nonlinear_solve.
- subroutine **limit** (n, x, xmin, xmax, dx, np, lim_param)

Procedure for limiting the step (deny more than 80% reduction of any X_{A_i}-variable)

- subroutine fun_succ_subst (eos, x)
 - Successive substitution method.
- type(hyperdual) function q_fmt_hd (eos, nc, t, n_fmt, xk0, n)
- subroutine delta_kl_hd (eos, t, n_fmt, dhs, delta)

Assemble Delta[^]{kl} matrix, and derivatives if wanted. Can be optimized e.g. by not calculating the exponential in every loop iteration.

Variables

- integer, parameter standard =1
- integer, parameter elliot =2
- integer delta_combrule = STANDARD

5.46.1 Detailed Description

This module handles all data and routines related to association.

5.46.2 Function/Subroutine Documentation

5.46.2.1 assemble_m_mich_k()

```
subroutine saft_association::assemble_m_mich_k (
```

```
type(association), intent(in) assoc,
integer, intent(in) nc,
```

real, dimension(numassocsites), intent(out) m_mich_k)

Assemble the m vector from Michelsen paper, holding the number of moles of each association site.

Parameters

out	<i>m_mich</i> ⊷	Michelsen m vector.
	_k	

5.46.2.2 fun()

```
subroutine saft_association::fun (
                real, dimension(numassocsites), intent(out) resid0,
                real, dimension(numassocsites), intent(in) x,
                real, dimension(2+nce), intent(in) param)
The X empliant f(2)
```

The X-gradient of Q.

Parameters

out	resid0	the X-gradient of Q.
in	x	the X-vector

5.46.2.3 jac()

```
subroutine saft_association::jac (
                real, dimension(numassocsites,numassocsites), intent(out) j,
                real, dimension(numassocsites), intent(in) x,
                real, dimension(2+nce), intent(in) param )
The X-Hessian of Q, modified according to Michelsen.
```

out	j	the modified X-Hessian of Q
in	x	the X-vector

5.46.2.4 k_mich()

Computes the K matrix from Michelsen paper. Needed when solving for X.

Parameters

in	m_opt	Optional input m_mich_k, in case it has already been computed.
in	delta_opt	Optional input Delta_kl, in case it has already been computed.

5.46.2.5 q_derivatives_knowing_x()

```
subroutine saft_association::q_derivatives_knowing_x (
            class(base_eos_param), intent(inout) eos,
            integer, intent(in) nc,
             real, dimension(numassocsites), intent(in) x_k,
             real, intent(out), optional q,
            real, intent(out), optional q_t,
            real, intent(out), optional q_v,
            real, dimension(nc), intent(out), optional q_n,
            real, dimension(numassocsites), intent(out), optional q_x,
             real, dimension(numassocsites), intent(out), optional q_xt,
             real, dimension(numassocsites), intent(out), optional q_xv,
             real, dimension(numassocsites,nc), intent(out), optional q_xn,
             real, dimension(numassocsites, numassocsites), intent(out), optional q_xx,
             real, intent(out), optional q_tt,
            real, intent(out), optional q_tv,
            real, dimension(nc), intent(out), optional q_tn,
            real, intent(out), optional q_vv,
             real, dimension(nc), intent(out), optional q_vn,
             real, dimension(nc,nc), intent(out), optional q_nn,
             real, dimension(numassocsites), intent(out), optional q_xxx,
             real, dimension(numassocsites, numassocsites), intent(out), optional q_xxt,
             real, dimension(numassocsites,numassocsites), intent(out), optional q_xxv,
             real, dimension (numassocsites, numassocsites, nc), intent (out), optional q_xxn,
            real, dimension(numassocsites), intent(out), optional q_xtt,
            real, dimension(numassocsites), intent(out), optional q_xvv,
             real, dimension(numassocsites), intent(out), optional q_xtv,
             real, dimension(numassocsites,nc), intent(out), optional q_xtn,
             real, dimension (numassocsites, nc), intent (out), optional q_xvn,
             real, dimension(numassocsites,nc,nc), intent(out), optional q_xnn,
             logical, intent(in), optional x_calculated )
```

This back-end routine computes the necessary Q-derivatives. Note that X_k is an independent variable of this routine, but if one feeds it an X_k calculated from (T,V,n), one should set $X_calculated = .true$. This routine is valid for general SAFT equations (both CPA and PC-SAFT).

in $x_{calculated}$ Is $X_k = X_k(T,V,n)$ calculated?

5.46.2.6 solve_for_x_k()

Compute the value of X_k consistent with (T,V,n) stored in param.

Parameters

	in	maxit	Maximum number of iterations.
ſ	in	tol	Tolerance.

5.47 saft_interface Module Reference

The interface module for SAFT equations of state. Contains all routines a user may wish to call. Also responsible for combining the association and non-association contributions.

Functions/Subroutines

subroutine saft_type_eos_init (nc, comp, eos, param_ref, silent_init)

Called from routine init_thermopack in eoslibinit.f90.

- subroutine cpa_set_cubic_params (nc, comp, cbeos, a0_in, b_in, alphaparams_in, alphacorridx_in, kij_in) Sets the fitted parameters in the cubic eos.
- subroutine pcsaft_set_nonassoc_params (eos, nc, m_in, sigma_in, eps_depth_divk_in, kij_in) Sets the fitted parameters in the non-association part of PC-SAFT.
- subroutine pets_set_params (eos, sigma_in, eps_depth_divk_in)

Set the molecular parameters in the PeTS equation of state.

 subroutine saft_setassocparams (assoc, nc, saft_model, assoc_scheme, epsval, betaval, sigmaval, epsbetacombrulespcsaft)

Set association parameters for PC-SAFT and SAFT-VR Mie.

- subroutine cpa_setassocparams (assoc, nc, assoc_scheme, epsval, betaval, epsbetacombrules, epsbetakij)
- subroutine calcsaftfder_res (nc, eos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn, xk)

Calculates the reduced residual Helmholtz energy F (both the association contribution and the underlying equation (e.g. SRK)), together with its derivatives.

• subroutine calcsaftfder_res_nonassoc (nc, eos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn)

Calculates the reduced residual Helmholtz energy F for the non-associationg part, together with its derivatives.

subroutine saft_total_pressure_assoc_mix (nc, eos, t, v, n, p, dpdv, dpdt, dpdn)

Front-end procedure giving the combined pressure of the cubic contribution and the association contribution. Only works for mixtures with association.

• subroutine saft_total_pressure (nc, cbeos, t, v, n, p, dpdv, dpdt, dpdn)

Front-end procedure giving the combined pressure of the cubic contribution and the association contribution.

• subroutine calc_saft_dispersion (t, v, n, a, a_t, a_v, a_n, a_tt, a_tv, a_vv, a_tn, a_vn, a_nn)

Calculates the reduced dispersion contribution to the Helmholtz energy, together with its derivatives.

• subroutine calc_saft_hard_sphere (t, v, n, a, a_t, a_v, a_n, a_tt, a_tv, a_vv, a_tn, a_vn, a_nn)

Calculates the reduced molar hard-sphere contribution to the Helmholtz energy, together with its derivatives.
 subroutine calc_soft_repulsion (t, v, n, a, a_t, a_v, a_n, a_tt, a_tv, a_vv, a_tn, a_vn, a_nn)
Calculates the reduced molar soft repulsion contribution to the Helmholtz energy, together with its derivatives.
Calculates Hard-sphere diameter
 subroutine calc hard sphere diameter ii (i, j, t, d, d t)
Calculates non-additive Hard-sphere diameter.
 subroutine truncation_corrections (enable_truncation_correction, enable_shift_correction, reduced_
radius_cut)
Enable/disable truncation corrections.
 subroutine de_broglie_wavelength (i, t, lambda)
Return de Broglie wavelength for component i.
subroutine de_boer_parameter (I, lambda)
Heturn de Boer parameter for component i.
Beturn de Boer parameter for component i
 subroutine potential (i, j, n, r, t, pot)
Return interaction potential between component i and i.
 subroutine alpha (t, a_ij)
Calculate dimensionless van der Waals energy for interaction potentials.
 subroutine epsilon_ij (i, j, eps_div_kb_ij)
Get well depth divided by kB for interaction i and j.
 subroutine epsilon_eff_ij (i, j, t, eps_div_kb_jj)
Get effective well depth divided by kB for interaction i and j.
• subroutine sigma_ij (i, j, s_ij)
Size parameter for interaction I and J.
Effective size parameter for interaction i and i
 subroutine test fmt compatibility (is fmt consistent, na enabled)
Test if model setup is comaptible with the Fundamental Measure Theory (FMT)
• subroutine saft_zfac (nc, eos, phase, t, p, n, z, dzdt, dzdp, dzdn)
Calculate the compressibility and its derivatives.
 subroutine saft_Inphi (nc, eos, phase, t, p, n, Inphi, dInphidt, dInphidp, dInphidn)
Calculate the logarithmic fugacity and its derivatives.
 subroutine saft_residentropy (nc, eos, phase, t, p, n, s, dsdt, dsdp, dsdn)
 subroutine saft_residenthalpy (nc, eos, phase, t, p, n, h, dhdt, dhdp, dhdn) subroutine saft_residenthalpy (nc, eos, phase, t, p, n, dadt, dadp, dadp)
 subroutine saft_residgibbs (nc, eos, phase, i, p, n, g, dgdi, dgdp, dgdn) subroutine saft_master_volume_solver (nc, cheos, t, p, spec, n, phase, v)
 subroutine pc_saft_nonassoc_volume_solver (nc, cbeos, t, p_spec, n, phase, v)
Routine for when we want to use PC-SAFT on a non-association mixture.
 real function conversion_numerator (eos, nc, t, n)
Calculate conversion numerator for pressure solver.
 subroutine saft_volume_solver (nc, eos, t, p_spec, n, phase, v)
Volume solver for associating mixtures. Modeled after the paper: Michelsen (2006) "Robust and Efficient Solution
Procedures for Association Models.".
A back and precedure giving the combined precsure of the cubic contribution and the acceptation contribution
 subroutine nonassoc_pressure (nc, eos, t, v, n, p, dpdv, dpdt, dpdn)
The pressure contribution not coming from association.
• subroutine calcroer_nonassoc_cpa (nc, cbeos, t, v, n, t, t_t, t_v, t_n, t_tt, t_tv, t_vv, t_tn, t_vn, t_nn)
Calculates the contibution to the reduced residual Helmholtz energy F coming from the non-association part, along with its derivatives.

subroutine compute_dxdv_and_dpdv (nc, eos, x_k, x_v, p_v)

Special routine for computing the derivatives needed in the Newton iteration of volume_solver.

- subroutine pc_saft_get_kij (i, j, kij)
 - Routine useful when fitting binary interaction parameters.
- subroutine pc_saft_set_kij (i, j, kij)

Routine useful when fitting binary interaction parameters.

subroutine pc_saft_set_kij_asym (i, j, kij)

Routine useful when fitting binary interaction parameters. For the cases when kij/=kji.

subroutine cpa_get_kij (i, j, aeps_kij_out)

Routine useful when fitting binary interaction parameters.

• subroutine cpa_set_kij (i, j, aeps_kij_in)

Routine useful when fitting binary interaction parameters.

subroutine cpa_set_pure_params (ic, params)

Input a0, b in their conventional (non-SI) units, beta and eps in SI units, c1 dimensionless.

- subroutine cpa_get_pure_params (ic, params)
- subroutine pc_saft_set_pure_params (ic, params)
- subroutine pc_saft_get_pure_params (ic, params)
- subroutine **pets_set_pure_params** (ic, params)
- subroutine pets_get_pure_params (ic, params)
- subroutine getactiveassocparams (assoc, ic, eps, beta)
- · subroutine setactiveassocparams (assoc, ic, eps, beta)
- subroutine printbinarymixturereportsaft ()
- · subroutine setcpaformulation (simplified)

Lets the user choose whether to use the simplified or the original formulation of CPA.

subroutine estimate_critical_parameters (i, tc, vc)

Estimate critical parameters based on reduced values.

• subroutine calc_assoc_phi (n_fmt, t, f, f_t, f_n, f_tt, f_tn, f_nn)

Calculates the reduced association Helmholtz energy density together with its derivatives. FMT interface.

subroutine test_calc_assoc_phi ()

Test calc_assoc_phi.

subroutine set_fmt_densities (t, v, n, n_fmt)

5.47.1 Detailed Description

The interface module for SAFT equations of state. Contains all routines a user may wish to call. Also responsible for combining the association and non-association contributions.

Available SAFT equations: CPA-SRK, CPA-PR, PC-SAFT and SAFT-VR Mie.

Caveat for future programmers modifying this module: It operates only with SI units. Most notably, the routines use V [m^A3] and n [mole numbers] instead of v [L/mol] and z [normalized mole numbers]. However, the a and b parameters in the CPA database use non-SI units that comply with the units in eoscubic type.

5.47.2 Function/Subroutine Documentation

5.47.2.1 adjust_mass_to_specified_de_boer_parameter()

Author

Morten Hammer, July 2022

in	i	Component number
in	lambda	de Boer

5.47.2.2 alpha()

Author

Morten Hammer, June 2023

Parameters

in	t	Temperature
out	a⇔	Dimensionless van der Waals energy
	_ij	

5.47.2.3 cpa_get_kij()

Routine useful when fitting binary interaction parameters.

Parameters

in	j	Component indices.
out	aeps_kij_out	Binary interaction parameters.

5.47.2.4 cpa_get_pure_params()

Parameters

out	params	a0, b, beta, eps, c1	
-----	--------	----------------------	--

5.47.2.5 cpa_set_cubic_params()

real, dimension(3,nc), intent(in) alphaparams_in, integer, dimension(nc), intent(in) alphacorridx_in, real, dimension(nc,nc), intent(in) kij_in) Sets the fitted parameters in the cubic eos.

Parameters

in	nc	Number of components.
in,out	сотр	Component vector.
in,out	cbeos	The underlying cubic equation of state.

5.47.2.6 cpa_set_kij()

Routine useful when fitting binary interaction parameters.

Parameters

in	j	Component indices.
in	aeps_kij⇔ _in	Binary interaction parameters.

5.47.2.7 cpa_set_pure_params()

Input a0, b in their conventional (non-SI) units, beta and eps in SI units, c1 dimensionless.

Parameters

in *params* a0, b, beta, eps, c1

5.47.2.8 de_boer_parameter()

Return de Boer parameter for component i.

Author

Morten Hammer, July 2022

in	i	Component number
out	lambda	de Boer

5.47.2.9 de_broglie_wavelength()

Author

Morten Hammer, March 2022

Parameters

in	i	Component number
in	t	Temperature
out	lambda	de Broglie wavelength

5.47.2.10 epsilon_eff_ij()

Get effective well depth divided by kB for interaction i and j.

Author

Morten Hammer, June 2023

Parameters

in	j	Component number
in	t	Temperature (K)
out	eps_div_kb⇔ _ij	Effective well depth divided by Boltzmann constant

5.47.2.11 epsilon_ij()

Author

Morten Hammer, June 2023

in	j	Component number
out	eps_div_kb⇔	Well depth divided by Boltzmann constant
	_ij	

5.47.2.12 pc_saft_get_kij()

_

Parameters

in	j	Component indices.	
out	kij	Binary interaction parameter.	

5.47.2.13 pc_saft_set_kij()

Parameters

in	j	Component indices.	
in	kij	Binary interaction parameter.	

5.47.2.14 pc_saft_set_kij_asym()

Routine useful when fitting binary interaction parameters. For the cases when kij/=kji.

Parameters

in	j	Component indices.	
in	kij	Binary interaction parameter.	

5.47.2.15 pcsaft_set_nonassoc_params()

Sets the fitted parameters in the non-association part of PC-SAFT.

Parameters

in *nc* Number of components.

5.47.2.16 potential()

```
subroutine saft_interface::potential (
    integer, intent(in) i,
    integer, intent(in) j,
    integer, intent(in) n,
    real, dimension(n), intent(in) r,
    real, intent(in) t,
    real, dimension(n), intent(out) pot )
```

Return interaction potential between component i and j.

Author

Morten Hammer, July 2022

Parameters

in	j	Component number	
in	t	Temperature	
in	n	Array size	
in	r	Intermolecular separation (m)	
out	pot	Potential divided by Boltzmann constant	

5.47.2.17 saft_Inphi()

```
subroutine saft_interface::saft_lnphi (
```

```
integer, intent(in) nc,
class (base_eos_param), intent(inout) eos,
integer, intent(in) phase,
real, intent(in) t,
real, intent(in) p,
real, dimension(nc), intent(in) n,
real, dimension(nc), intent(out) lnphi,
real, dimension(nc), intent(out), optional dlnphidt,
real, dimension(nc), intent(out), optional dlnphidp,
real, dimension(nc,nc), intent(out), optional dlnphidn)
```

Calculate the logarithmic fugacity and its derivatives.

Parameters

in	t	Temperature [K]
in	р	Pressure [Pa]
in	n	Mole numbers [moles]

5.47.2.18 saft_residenthalpy()

Generated by Doxygen

```
subroutine saft_interface::saft_residenthalpy (
    integer, intent(in) nc,
    class(base_eos_param), intent(inout) eos,
    integer, intent(in) phase,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) n,
    real, intent(out) h,
    real, intent(out), optional dhdt,
```

real, intent(out), optional dhdp, real, dimension(nc), intent(out), optional dhdn)

Parameters

in,out	eos	Cubic eos
in	р	Pressure [Pa]
in	t	Temperature [K]
in	phase	Phase identifier [-]
in	n	Composition [mol]
011	h	Enthalov [.l/mol/K]

5.47.2.19 saft_residentropy()

subroutine saft_interface::saft_residentropy (

```
integer, intent(in) nc,
class(base_eos_param), intent(inout) eos,
integer, intent(in) phase,
real, intent(in) t,
real, intent(in) p,
real, dimension(nc), intent(in) n,
real, intent(out) s,
real, intent(out), optional dsdt,
real, intent(out), optional dsdp,
real, dimension(nc), intent(out), optional dsdn )
```

Parameters

in	nc	Number of components in mixture.
in,out	eos	Cubic eos for
in	р	Pressure [Pa]
in	t	Temperature [K]
in	phase	Phase identifier [-]
in	n	Composition [mol]
out	S	Entropy [J/mol/K]

5.47.2.20 saft_residgibbs()

```
subroutine saft_interface::saft_residgibbs (
    integer, intent(in) nc,
    class(base_eos_param), intent(inout) eos,
    integer, intent(in) phase,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) n,
    real, intent(out) g,
    real, intent(out), optional dgdt,
    real, intent(out), optional dgdp,
    real, dimension(nc), intent(out), optional dgdn )
```

in,out	eos	Cubic eos.	
in	р	Pressure [Pa]	
	in	t	Temperature [K]
----------	-----	-------	---------------------------
in in		phase	Phase identifier [-]
		n	Composition [mol]
	out	g	Gibbs free energy [J/mol]

5.47.2.21 saft_total_pressure()

Front-end procedure giving the combined pressure of the cubic contribution and the association contribution.

Parameters

in	t	Temperature [K]
in	v	Volume [m^3]
in	n	Mole numbers [moles]
out	р	Pressure [Pa]

5.47.2.22 saft_total_pressure_assoc_mix()

Front-end procedure giving the combined pressure of the cubic contribution and the association contribution. Only works for mixtures with association.

Parameters

in	t	Temperature [K]
in	v	Volume [m^3]
in	n	Mole numbers [moles]
out	р	Pressure [Pa]

5.47.2.23 saft_total_pressure_knowing_x_k()

subroutine saft_interface::saft_total_pressure_knowing_x_k (

```
integer, intent(in) nc,
class(base_eos_param), intent(inout) eos,
real, dimension(numassocsites), intent(in) x_k,
real, intent(out) p,
real, intent(out), optional dpdv,
real, intent(out), optional dpdt,
real, dimension(nc), intent(out), optional dpdn)
```

A back-end procedure giving the combined pressure of the cubic contribution and the association contribution.

Parameters

out *p* Pressure [Pa]

5.47.2.24 saft_type_eos_init()

Called from routine init_thermopack in eoslibinit.f90.

Parameters

in	nc	Number of components.
in,out	сотр	Component vector.
in,out	eos	Underlying cubic equation of state.
in	param_ref	Parameter sets to use for components
in	silent_init	Print no varnings during init

5.47.2.25 saft_zfac()

```
Calculate the compressibility and its derivatives.
```

in	t	Temperature [K]
in	р	Pressure [Pa]
in	n	Mole numbers [moles]

5.47.2.26 sigma_eff_ij()

Effective size parameter for interaction i and j.

Author

Morten Hammer, June 2023

Parameters

in	j	Component number
in	t	Temperature (K)
out	S⇔	Effective size paramater (m)
	_← ij	

5.47.2.27 sigma_ij()

Size parameter for interaction i and j.

Author

Morten Hammer, June 2023

Parameters

in	j	Component number
out	S⇔	Size paramater (m)
	_← ij	

5.47.2.28 test_fmt_compatibility()

Test if model setup is comaptible with the Fundamental Measure Theory (FMT)

Author

Morten Hammer, October 2022

5.48 saft_rdf Module Reference

Module responsible for radial distribution functions.

Functions/Subroutines

• subroutine, public master_saft_rdf (eos, nc, i, j, g, g_t, g_v, g_n, g_tt, g_tv, g_tn, g_vv, g_vn, g_nn) Radial distribution function (RDF) interface for association.

Variables

• logical, public usesimplifiedcpa = .FALSE.

5.48.1 Detailed Description

Module responsible for radial distribution functions.

5.48.2 Function/Subroutine Documentation

5.48.2.1 master_saft_rdf()

```
subroutine, public saft_rdf::master_saft_rdf (
        class(base_eos_param), intent(inout) eos,
        integer, intent(in) nc,
        integer, intent(in) i,
        integer, intent(in) j,
        real, intent(out) g,
        real, intent(out), optional g_t,
        real, intent(out), optional g_v,
        real, intent(out), optional g_tt,
        real, intent(out), optional g_tt,
        real, intent(out), optional g_tt,
        real, intent(out), optional g_tv,
        real, intent(out), optional g_tv,
        real, intent(out), optional g_tv,
        real, intent(out), optional g_vv,
        real, intent(out), optional g_vv,
        real, intent(out), optional g_vv,
        real, dimension(nc), intent(out), optional g_vn,
        real, dimension(nc), intent(out), optional g_nn )
```

Radial distribution function (RDF) interface for association.

Parameters

in,out	eos	Depends on component indices i,j only for eosBH_pert	
in	j	component indices [-]	
out	g	The rdf gij [-]	

5.49 saftvrmie_datadb Module Reference

Automatically generated to file saftvrmie_datadb.f90 using utility python code pyUtils Time stamp: 2023-06-21T13↔ :07:27.307865.

Data Types

type miekijdata

INTERACTION PARAMETERS FOR THE SAFT-VR-MIE DISPERSION TERM.

type saftvrmie_data

PURE COMPONENT PARAMETERS. This data structure stores pure component parameters for the SAFT-VRQ Mie EoS.

Variables

 type(saftvrmie_data), parameter miecx1 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NH3", m = 1., sigma = 3.3309e-10, eps_depth_divk = 323.7, lambda_a = 6., lambda_r = 36.832, mass = 2.828e-26, eps = 1105., beta = 5.6073E-28, assoc_scheme = assoc_scheme_4B, fh_order = 0, bib_ref = "Dufal (2015) - 10.1080/00268976.2015.1029027", ref = "DEFAULT/Dufal2015")

- type(saftvrmie_data), parameter miecx2 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "AR", m = 1., sigma = 3.41e-10, eps_depth_divk = 118.7, lambda_a = 6., lambda_r = 12.26, mass = 6.6335e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Unpublished (as of 08/2018) parameters from G. Jackon's group", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx3 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "CO2", m = 1.5, sigma = 3.1916e-10, eps_depth_divk = 231.88, lambda_a = 5.1646, lambda_r = 27.557, mass = 0.e+00, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx4 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "D2", m = 1., sigma = 3.1538e-10, eps_depth_divk = 21.2, lambda_a = 6., lambda_r = 8., mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1...5111364", ref = "DEFAULT/AASEN2019-FH0")
- type(saftvrmie_data), parameter miecx5 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "D2", m = 1., sigma = 3.0203e-10, eps_depth_divk = 30.273, lambda_a = 6., lambda_r = 10., mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1")
- type(saftvrmie_data), parameter miecx6 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "D2", m = 1., sigma = 2.9897e-10, eps_depth_divk = 36.913, lambda_a = 6., lambda_r = 12., mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2/AASEN2019-FH2-LJ")
- type(saftvrmie_data), parameter miecx7 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "D2", m = 1., sigma = 3.1561e-10, eps_depth_divk = 28.222, lambda_a = 6., lambda_r = 12., mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH0-LJ")
- type(saftvrmie_data), parameter miecx8 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "D2", m = 1., sigma = 3.0193e-10, eps_depth_divk = 34.389, lambda_a = 6., lambda_r = 12., mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1-LJ")
- type(saftvrmie_data), parameter miecx9 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "D2", m = 1., sigma = 3.009e-10, eps_depth_divk = 39.239, lambda_a = 7., lambda_r = 11., mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Hammer 2022, doi: xxxx", ref = "HAMMER2022-FH1")
- type(saftvrmie_data), parameter miecx10 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "C2", m = 1.4373, sigma = 3.7257e-10, eps_depth_divk = 206.12, lambda_a = 6., lambda_r = 12.4, mass = 0.e+00, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx11 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "ETOH", m = 2.25648939, sigma = 3.2903e-10, eps_depth_divk = 238.97, lambda_a = 6., lambda_r = 12.↔ 282, mass = 0.e+00, eps = 2247.3, beta = 4.2794E-29, assoc_scheme = assoc_scheme_3B, fh_order = 0, bib_ref = "Dufal (2015) 10.1080/00268976.2015.1029027", ref = "DEFAULT/Dufal2015")
- type(saftvrmie_data), parameter miecx12 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "ETOH", m = 1.7639, sigma = 3.6025e-10, eps_depth_divk = 307.92, lambda_a = 6., lambda_r = 17.968, mass = 0.e+00, eps = 2380., beta = 1.5018E-28, assoc_scheme = assoc_scheme_3B, fh_order = 0, bib_ref = "Polishuk (2018) 10.1016/j.molliq.2018.05.112", ref = "Polishuk")
- type(saftvrmie_data), parameter miecx13 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "HE", m = 1., sigma = 3.353e-10, eps_depth_divk = 4.44, lambda_a = 6., lambda_r = 14.84, mass = 6.6464764e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Herdes 2015, doi: 10.1016/j.fluid.2015.07.014", ref = "DEFAULT/AASEN2019-FH0")
- type(saftvrmie_data), parameter miecx14 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "HE", m = 1., sigma = 2.7443e-10, eps_depth_divk = 5.4195, lambda_a = 6., lambda_r = 9., mass = 6.6464764e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1")
- type(saftvrmie_data), parameter miecx15 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "HE", m = 1., sigma = 2.549e-10, eps_depth_divk = 10.952, lambda_a = 6., lambda_r = 13., mass = 6.6464764e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2")

- type(saftvrmie_data), parameter miecx16 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "HE", m = 1., sigma = 3.1273e-10, eps_depth_divk = 4.1463, lambda_a = 6., lambda_r = 12., mass = 6.6464764e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH0-LJ")
- type(saftvrmie_data), parameter miecx17 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "HE", m = 1., sigma = 2.8107e-10, eps_depth_divk = 6.6893, lambda_a = 6., lambda_r = 12., mass = 6.6464764e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1-LJ")
- type(saftvrmie_data), parameter miecx18 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "HE", m = 1., sigma = 2.5442e-10, eps_depth_divk = 10.393, lambda_a = 6., lambda_r = 12., mass = 6.6464764e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2-LJ")
- type(saftvrmie_data), parameter miecx19 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "HE", m = 1., sigma = 2.8525e-10, eps_depth_divk = 4.5764, lambda_a = 6., lambda_r = 8.3471, mass = 6.↔ 6464764e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "HYVA parameters with non-integer repulsive exponent", ref = "HYVA-FH0")
- type(saftvrmie_data), parameter miecx20 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "HE", m = 1., sigma = 2.6615e-10, eps_depth_divk = 7.9191, lambda_a = 6., lambda_r = 10.455, mass = 6.↔ 6464764e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "HYVA parameters with non-integer repulsive exponent", ref = "HYVA-FH1")
- type(saftvrmie_data), parameter miecx21 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "HE", m = 1., sigma = 2.5682e-10, eps_depth_divk = 11.942, lambda_a = 6., lambda_r = 13.239, mass = 6.↔ 6464764e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "HYVA parameters with non-integer repulsive exponent", ref = "HYVA-FH2")
- type(saftvrmie_data), parameter miecx22 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "N2H4", m = 1.7839, sigma = 3.0012e-10, eps_depth_divk = 373., lambda_a = 6., lambda_r = 30.823, mass = 0.e+00, eps = 1400., beta = 9.9666E-28, assoc_scheme = assoc_scheme_4C, fh_order = 0, bib_ref = "Polishuk (2018) 10.1016/j.molliq.2018.05.112", ref = "DEFAULT/Polishuk")
- type(saftvrmie_data), parameter miecx23 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 3.2574e-10, eps_depth_divk = 17.931, lambda_a = 6., lambda_r = 8., mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "DEFAULT/AASEN2019-FH0")
- type(saftvrmie_data), parameter miecx24 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 3.0243e-10, eps_depth_divk = 26.706, lambda_a = 6., lambda_r = 9., mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1")
- type(saftvrmie_data), parameter miecx25 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 2.9195e-10, eps_depth_divk = 55.729, lambda_a = 6., lambda_r = 20., mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2")
- type(saftvrmie_data), parameter miecx26 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 3.5333e-10, eps_depth_divk = 14.312, lambda_a = 6., lambda_r = 12., mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH0-LJ")
- type(saftvrmie_data), parameter miecx27 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 3.0225e-10, eps_depth_divk = 33.096, lambda_a = 6., lambda_r = 12., mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1-LJ")
- type(saftvrmie_data), parameter miecx28 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 2.9324e-10, eps_depth_divk = 40.321, lambda_a = 6., lambda_r = 12., mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2-LJ")
- type(saftvrmie_data), parameter miecx29 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 3.198e-10, eps_depth_divk = 14.492, lambda_a = 6., lambda_r = 6.4709, mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "HYVA parameters with non-integer repulsive exponent", ref = "HYVA-FH0")

- type(saftvrmie_data), parameter miecx30 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 3.0022e-10, eps_depth_divk = 28.349, lambda_a = 6., lambda_r = 9.5413, mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "HYVA parameters with non-integer repulsive exponent", ref = "HYVA-FH1")
- type(saftvrmie_data), parameter miecx31 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 2.9209e-10, eps_depth_divk = 53.07, lambda_a = 6., lambda_r = 18.033, mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "HYVA parameters with non-integer repulsive exponent", ref = "HYVA-FH2")
- type(saftvrmie_data), parameter miecx32 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2", m = 1., sigma = 3.0459e-10, eps_depth_divk = 33.434, lambda_a = 6., lambda_r = 12., mass = 3.3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Trejos et al. 2013, doi: 10.1063/1.4829769", ref = "TREJOS2013")
- type(saftvrmie_data), parameter miecx33 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2S", m = 1., sigma = 3.782e-10, eps_depth_divk = 243.28, lambda_a = 6., lambda_r = 31.311, mass = 5.659e-26, eps = 585.72, beta = 1.8804E-27, assoc_scheme = assoc_scheme_4C, fh_order = 0, bib_ref = "Dufal (2015) 10.1080/00268976.2015.1029027", ref = "DEFAULT/Dufal2015")
- type(saftvrmie_data), parameter miecx34 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "KR", m = 1., sigma = 3.64e-10, eps_depth_divk = 166.66, lambda_a = 6., lambda_r = 12., mass = 1.↔ 3914985275103401e-25, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Irma et. al (1999) ISSN : 1029-0435/0892-7022", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx35 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "LJF", m = 1., sigma = 3.e-10, eps_depth_divk = 100., lambda_a = 6., lambda_r = 12., mass = 0.e+00, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx36 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "C1", m = 1., sigma = 3.7412e-10, eps_depth_divk = 153.36, lambda_a = 6., lambda_r = 12.65, mass = 0.e+00, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx37 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "C1", m = 1., sigma = 3.752e-10, eps_depth_divk = 170.75, lambda_a = 6., lambda_r = 16.39, mass = 0.e+00, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "MÃüÂ1/4ller's mystery parameters for methane and decane where SAFT-VR Mie fails", ref = "Muller")
- type(saftvrmie_data), parameter miecx38 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "MEOH", m = 1.7989, sigma = 3.1425e-10, eps_depth_divk = 276.92, lambda_a = 6., lambda_r = 16.↔ 968, mass = 0.e+00, eps = 2156., beta = 2.2218E-28, assoc_scheme = assoc_scheme_3B, fh_order = 0, bib_ref = "Dufal (2015) 10.1080/00268976.2015.1029027", ref = "DEFAULT/Dufal2015")
- type(saftvrmie_data), parameter miecx39 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.8019e-10, eps_depth_divk = 29.875, lambda_a = 6., lambda_r = 9.6977, mass = 3.↔ 3509177e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "DEFAULT/AASEN2019-FH0")
- type(saftvrmie_data), parameter miecx40 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.7778e-10, eps_depth_divk = 37.501, lambda_a = 6., lambda_r = 13., mass = 3.3509177e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1")
- type(saftvrmie_data), parameter miecx41 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.776e-10, eps_depth_divk = 37.716, lambda_a = 6., lambda_r = 13., mass = 3.3509177e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2")
- type(saftvrmie_data), parameter miecx42 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.8066e-10, eps_depth_divk = 33.977, lambda_a = 6., lambda_r = 12., mass = 3.3509177e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH0-LJ")
- type(saftvrmie_data), parameter miecx43 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.776e-10, eps_depth_divk = 35.851, lambda_a = 6., lambda_r = 12., mass = 3.3509177e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1-LJ")
- type(saftvrmie_data), parameter miecx44 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.7745e-10, eps_depth_divk = 36.024, lambda_a = 6., lambda_r = 12., mass = 3.3509177e-

26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2-LJ")

- type(saftvrmie_data), parameter miecx45 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.8e-10, eps_depth_divk = 31.297, lambda_a = 6., lambda_r = 10.396, mass = 3.3509177e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "HYVA parameters with non-integer repulsive exponent", ref = "HYVA-FH0")
- type(saftvrmie_data), parameter miecx46 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.7765e-10, eps_depth_divk = 36.648, lambda_a = 6., lambda_r = 12.451, mass = 3.↔ 3509177e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "HYVA parameters with non-integer repulsive exponent", ref = "HYVA-FH1")
- type(saftvrmie_data), parameter miecx47 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.7765e-10, eps_depth_divk = 38.039, lambda_a = 6., lambda_r = 13.187, mass = 3.↔ 3509177e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "HYVA parameters with non-integer repulsive exponent", ref = "HYVA-FH2")
- type(saftvrmie_data), parameter miecx48 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NE", m = 1., sigma = 2.7867e-10, eps_depth_divk = 41.6523, lambda_a = 6., lambda_r = 16., mass = 3.3509177e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Hammer 2022 not published", ref = "HAMMER-2022-NP")
- type(saftvrmie_data), parameter miecx49 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "N2", m = 1., sigma = 3.656e-10, eps_depth_divk = 98.94, lambda_a = 6., lambda_r = 12.26, mass = 4.65173451e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Ronald A. Aziz, J. Chem. Phys. 99, 4518 (1993), DOI : https://doi.org/10.1063/1.466051", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx50 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "O-H2", m = 1., sigma = 3.2571e-10, eps_depth_divk = 17.935, lambda_a = 6., lambda_r = 8., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "DEFAULT/AASEN2019-FH0")
- type(saftvrmie_data), parameter miecx51 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "O-H2", m = 1., sigma = 3.0239e-10, eps_depth_divk = 26.716, lambda_a = 6., lambda_r = 9., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1")
- type(saftvrmie_data), parameter miecx52 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "O-H2", m = 1., sigma = 2.9191e-10, eps_depth_divk = 55.749, lambda_a = 6., lambda_r = 20., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2")
- type(saftvrmie_data), parameter miecx53 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "O-H2", m = 1., sigma = 3.3604e-10, eps_depth_divk = 14.084, lambda_a = 6., lambda_r = 12., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH0-LJ")
- type(saftvrmie_data), parameter miecx54 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "O-H2", m = 1., sigma = 3.0222e-10, eps_depth_divk = 33.107, lambda_a = 6., lambda_r = 12., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1-LJ")
- type(saftvrmie_data), parameter miecx55 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "O-H2", m = 1., sigma = 2.9319e-10, eps_depth_divk = 40.342, lambda_a = 6., lambda_r = 12., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2-LJ")
- type(saftvrmie_data), parameter miecx56 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "O2", m = 1., sigma = 3.433e-10, eps_depth_divk = 113., lambda_a = 6., lambda_r = 12., mass = 5.31339291e-26, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Chen, Rex and Yuen, W., Oxidation of Metals, 73 (2009), DOI : 10.1007/s11085-009-9180-z", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx57 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "P-H2", m = 1., sigma = 3.2557e-10, eps_depth_divk = 17.849, lambda_a = 6., lambda_r = 8., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "DEFAULT/AASEN2019-FH0")
- type(saftvrmie_data), parameter miecx58 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "P-H2", m = 1., sigma = 3.0235e-10, eps_depth_divk = 26.586, lambda_a = 6., lambda_r = 9., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1")

- type(saftvrmie_data), parameter miecx59 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "P-H2", m = 1., sigma = 2.9185e-10, eps_depth_divk = 55.519, lambda_a = 6., lambda_r = 20., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2")
- type(saftvrmie_data), parameter miecx60 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "P-H2", m = 1., sigma = 3.8131e-10, eps_depth_divk = 13.197, lambda_a = 6., lambda_r = 12., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH0-LJ")
- type(saftvrmie_data), parameter miecx61 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "P-H2", m = 1., sigma = 3.0217e-10, eps_depth_divk = 32.955, lambda_a = 6., lambda_r = 12., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 1, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH1-LJ")
- type(saftvrmie_data), parameter miecx62 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "P-H2", m = 1., sigma = 2.9318e-10, eps_depth_divk = 40.152, lambda_a = 6., lambda_r = 12., mass = 3.↔ 3472e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 2, bib_ref = "Aasen 2019, doi: 10.1063/1.5111364", ref = "AASEN2019-FH2-LJ")
- type(saftvrmie_data), parameter miecx63 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "C3", m = 1.6845, sigma = 3.9056e-10, eps_depth_divk = 239.89, lambda_a = 6., lambda_r = 13.006, mass = 0.e+00, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx64 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2O", m = 1., sigma = 3.0555e-10, eps_depth_divk = 418., lambda_a = 6., lambda_r = 35.823, mass = 2.992e-26, eps = 1600., beta = 4.9666E-28, assoc_scheme = assoc_scheme_4C, fh_order = 0, bib_ref = "Dufal (2015) 10.1080/00268976.2015.1029027", ref = "DEFAULT/Dufal2015")
- type(saftvrmie_data), parameter miecx65 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "H2O", m = 1.25656, sigma = 2.802422e-10, eps_depth_divk = 351.2321, lambda_a = 6., lambda_r = 25.↔ 12615, mass = 2.992e-26, eps = 1630.57, beta = 1.7762E-28, assoc_scheme = assoc_scheme_4C, fh_order = 0, bib ref = "Unpublished water parameters (courtesy of Edward Graham)", ref = "Graham")
- type(saftvrmie_data), parameter miecx66 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "XE", m = 1., sigma = 3.9011e-10, eps_depth_divk = 227.55, lambda_a = 6., lambda_r = 12., mass = 2.1801716e-22, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Jadran Vrabec, Jurgen Stoll, Hans Hasse, J. Phys. Chem. B 2001, 105, DOI: 10.1021/jp0125420", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx67 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC4", m = 1.8514, sigma = 4.0887e-10, eps_depth_divk = 273.64, lambda_a = 6., lambda_r = 13.65, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx68 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC10", m = 2.9976, sigma = 4.589e-10, eps_depth_divk = 400.79, lambda_a = 6., lambda_r = 18.885, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx69 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC10", m = 3., sigma = 4.584e-10, eps_depth_divk = 415.19, lambda_a = 6., lambda_r = 20.92, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "MÃ1/4ller's mystery parameters for methane and decane where SAFT-VR Mie fails", ref = "Muller")
- type(saftvrmie_data), parameter miecx70 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC22", m = 3.2519, sigma = 4.7484e-10, eps_depth_divk = 437.72, lambda_a = 6., lambda_r = 20.862, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx71 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC20", m = 4.8794, sigma = 4.8788e-10, eps_depth_divk = 475.76, lambda_a = 6., lambda_r = 22.926, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx72 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC7", m = 2.3949, sigma = 4.4282e-10, eps_depth_divk = 358.51, lambda_a = 6., lambda_r = 17.092, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")

- type(saftvrmie_data), parameter miecx73 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC6", m = 2.1097, sigma = 4.423e-10, eps_depth_divk = 354.38, lambda_a = 6., lambda_r = 17.203, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx74 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC9", m = 2.8099, sigma = 4.5334e-10, eps_depth_divk = 387.55, lambda_a = 6, lambda_r = 18.324, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx75 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC8", m = 2.6253, sigma = 4.4696e-10, eps_depth_divk = 369.18, lambda_a = 6., lambda_r = 17.378, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx76 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC15", m = 3.9325, sigma = 4.7738e-10, eps_depth_divk = 444.51, lambda_a = 6., lambda_r = 20.822, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- type(saftvrmie_data), parameter miecx77 = saftvrmie_data(eosidx = eosSAFT_VR_MIE, compName = "NC5", m = 1.9606, sigma = 4.2928e-10, eps_depth_divk = 321.94, lambda_a = 6., lambda_r = 15.847, mass = 6.689e-27, eps = 0., beta = 0.0000E+00, assoc_scheme = no_assoc, fh_order = 0, bib_ref = "Lafitte et al. 2013, doi: 10.1063/1.4819786", ref = "DEFAULT")
- integer, parameter nmiemodels = 77
- type(saftvrmie_data), dimension(nmiemodels), parameter miearray = (/ Miecx1, Miecx2, Miecx3, Miecx4, Miecx5, Miecx6, Miecx7, Miecx8, Miecx9, Miecx10, Miecx11, Miecx12, Miecx13, Miecx14, Miecx15, Miecx16, Miecx17, Miecx18, Miecx19, Miecx21, Miecx22, Miecx23, Miecx24, Miecx26, Miecx26, Miecx27, Miecx28, Miecx29, Miecx30, Miecx31, Miecx32, Miecx33, Miecx33, Miecx33, Miecx36, Miecx37, Miecx38, Miecx39, Miecx40, Miecx41, Miecx42, Miecx43, Miecx44, Miecx45, Miecx46, Miecx47, Miecx48, Miecx44, Miecx51, Miecx52, Miecx53, Miecx54, Miecx55, Miecx56, Miecx57, Miecx58, Miecx59, Miecx60, Miecx61, Miecx62, Miecx63, Miecx67, Miecx68, Miecx70, Miecx71, Miecx72, Miecx73, Miecx74, Miecx75, Miecx76, Miecx77
- type(miekijdata), parameter svrm_kij_1 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "DEFAULT", bib_ref = "", uid1 = "He", uid2 = "Ne", kijvalue = 0.0425)
- type(miekijdata), parameter svrm_kij_2 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "DEFAULT", bib_ref = "", uid1 = "C2", uid2 = "NC10", kijvalue = -0.0222)
- type(miekijdata), parameter svrm_kij_3 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "DEFAULT", bib_ref = "", uid1 = "H2S", uid2 = "C2", kijvalue = 0.072)
- type(miekijdata), parameter svrm_kij_4 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "Ne", kijvalue = -0.22)
- type(miekijdata), parameter svrm_kij_5 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "H2", uid2 = "Ne", kijvalue = 0.105)
- type(miekijdata), parameter svrm_kij_6 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "H2", kijvalue = 0.08)
- type(miekijdata), parameter svrm_kij_7 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "D2", uid2 = "Ne", kijvalue = 0.13)
- type(miekijdata), parameter svrm_kij_8 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "H2", uid2 = "D2", kijvalue = 0.)
- type(miekijdata), parameter svrm_kij_9 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "D2", kijvalue = 0.)
- type(miekijdata), parameter svrm_kij_10 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "Ne", kijvalue = -0.06)
- type(miekijdata), parameter svrm_kij_11 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "H2", uid2 = "Ne", kijvalue = 0.105)
- type(miekijdata), parameter svrm_kij_12 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "H2", kijvalue = 0.15)
- type(miekijdata), parameter svrm_kij_13 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "D2", uid2 = "Ne", kijvalue = 0.14)
- type(miekijdata), parameter svrm_kij_14 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "H2", uid2 = "D2", kijvalue = -0.04)

- type(miekijdata), parameter svrm_kij_15 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "D2", kijvalue = 0.12)
- type(miekijdata), parameter svrm_kij_16 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "HAMMER2022-FH1", bib_ref = "xxx", uid1 = "D2", uid2 = "Ne", kijvalue = 0.13)
- type(miekijdata), parameter svrm_kij_17 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "HAMMER2022-NP", bib_ref = "Hammer 2022 not published", uid1 = "H2", uid2 = "Ne", kijvalue = 0.09)
- type(miekijdata), parameter svrm_kij_18 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "Default/Dufal2015", bib_ref = "10.1080/00268976.2015.1029027", uid1 = "H2O", uid2 = "MEOH", kijvalue = 0.02)
- type(miekijdata), parameter svrm_lij_1 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "Ne", kijvalue = 0.)
- type(miekijdata), parameter svrm_lij_2 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "H2", uid2 = "Ne", kijvalue = 0.)
- type(miekijdata), parameter svrm_lij_3 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "H2", kijvalue = -0.05)
- type(miekijdata), parameter svrm_lij_4 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "D2", uid2 = "Ne", kijvalue = 0.)
- type(miekijdata), parameter svrm_lij_5 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "H2", uid2 = "D2", kijvalue = 0.)
- type(miekijdata), parameter svrm_lij_6 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH1", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "D2", kijvalue = -0.05)
- type(miekijdata), parameter svrm_lij_7 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "Ne", kijvalue = 0.)
- type(miekijdata), parameter svrm_lij_8 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "H2", uid2 = "Ne", kijvalue = 0.)
- type(miekijdata), parameter svrm_lij_9 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "H2", kijvalue = -0.025)
- type(miekijdata), parameter svrm_lij_10 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "D2", uid2 = "Ne", kijvalue = 0.)
- type(miekijdata), parameter svrm_lij_11 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "H2", uid2 = "D2", kijvalue = 0.)
- type(miekijdata), parameter svrm_lij_12 = Miekijdata(eosidx = eosSAFT_VR_MIE, ref = "AASEN2019-FH2", bib_ref = "10.1063/1.5136079", uid1 = "He", uid2 = "D2", kijvalue = -0.05)
- integer, parameter **miemaxkij** = 18
- type(miekijdata), dimension(miemaxkij), parameter miekijdb = (/ SVRM_KIJ_1,SVRM_KIJ_2,SVRM_↔ KIJ_3,SVRM_KIJ_4,SVRM_KIJ_5, SVRM_KIJ_6,SVRM_KIJ_7,SVRM_KIJ_8,SVRM_KIJ_9,SVRM_KIJ_10, SVRM_KIJ_11,SVRM_KIJ_12,SVRM_KIJ_13,SVRM_KIJ_14,SVRM_KIJ_15, SVRM_KIJ_16,SVRM_KIJ_↔ 17,SVRM_KIJ_18 /)
- integer, parameter miemaxlij = 12
- type(miekijdata), dimension(miemaxlij), parameter mielijdb = (/ SVRM_LIJ_1,SVRM_LIJ_2,SVRM_↔ LIJ_3,SVRM_LIJ_4,SVRM_LIJ_5, SVRM_LIJ_6,SVRM_LIJ_7,SVRM_LIJ_8,SVRM_LIJ_9,SVRM_LIJ_10, SVRM_LIJ_11,SVRM_LIJ_12 /)

5.49.1 Detailed Description

Automatically generated to file saftvrmie_datadb.f90 using utility python code pyUtils Time stamp: 2023-06-21T13↔ :07:27.307865.

5.50 satdensdatadb Module Reference

Automatically generated file satdensdatadb.f90 Time stamp: 2021-07-25T15:05:48.939509.

Data Types

• type satdensdata

Variables

382

- type(satdensdata), parameter satdensgas_1 = satdensdata(ident = "AR", name = "ARGON", phase = "G", tr = 150.687, rhor = 13.40742965, correlation_id = 5, n_param = 4, n = (/ -0.29182D+01,0.97930D-01,-0.↔ 13721D+01, -0.22898D+01,0.0d0,0.0d0 /), t = (/ 0.72,1.25,0.32, 4.34,0.0d0,0.0d0 /))
- type(satdensdata), parameter satdensliq_1 = satdensdata(ident = "AR", name = "ARGON", phase = "L", tr = 150.687, rhor = 13.40742965, correlation_id = 3, n_param = 4, n = (/ 1.5004264,-0.3138129,0.086461622, -0.041477525,0.0d0,0.0d0 /), t = (/ 0.334,0.6666666666666666666666,2.3333333333333, 4.0,0.0d0,0.0d0 /))
- type(satdensdata), parameter satdensgas_2 = satdensdata(ident = "CO", name = "CO", phase = "G", tr = 132.86, rhor = 10.85, correlation_id = 3, n_param = 6, n = (/ -0.25439D+01,-0.55601D+01,-0.85276D+01, -0.51163D+01,-0.17701D+02,-0.29858D+02 /), t = (/ 0.395,1.21,3.0, 3.5,6.0,8.0 /))
- type(satdensdata), parameter satdensliq_2 = satdensdata(ident = "CO", name = "CO", phase = "L", tr = 132.86, rhor = 10.85, correlation_id = 1, n_param = 5, n = (/ 0.29570D+01,-0.42880D+01,0.87643D+01, -0.84001D+01,0.36372D+01,0.0d0 /), t = (/ 0.398,0.735,1.08, 1.5,1.9,0.0d0 /))
- type(satdensdata), parameter satdensgas_3 = satdensdata(ident = "H2O", name = "WATER", phase = "G", tr = 647.096, rhor = 17.8737279956, correlation_id = 4, n_param = 6, n = (/ -2.03150240, -2.68302940, -5. \leftrightarrow 38626492, -17.2991605, -44.7586581, -63.9201063 /), t = (/ 1.0, 2.0, 4.0, 9.0, 18.5, 35.5 /))
- type(satdensdata), parameter satdensliq_3 = satdensdata(ident = "H2O", name = "WATER", phase = "L", tr = 647.096, rhor = 17.8737279956, correlation_id = 2, n_param = 6, n = (/ 1.99274064,1.09965342,-0. \leftrightarrow 510839303, -1.75493479,-45.5170352,-6.74694450d5 /), t = (/ 1.,2.,5., 16.,43.,110. /))
- type(satdensdata), parameter satdensgas_4 = satdensdata(ident = "CO2", name = "CO2", phase = "G", tr = 304.1282, rhor = 10.6249, correlation_id = 4, n_param = 5, n = (/ -1.7074879, -0.8227467, -4.6008549, -10.111178, -29.742252, 0.0d0 /), t = (/ 1.02, 1.5, 3.0, 7.0, 14.0, 0.0d0 /))
- type(satdensdata), parameter satdensliq_4 = satdensdata(ident = "CO2", name = "CO2", phase = "L", tr = 304.1282, rhor = 10.6249, correlation_id = 4, n_param = 4, n = (/ 1.92451080,-0.62385555,-0.32731127, 0.39245142,0.0d0,0.0d0 /), t = (/ 1.02,1.5,5.0, 5.5,0.0d0,0.0d0 /))
- type(satdensdata), parameter satdensgas_5 = satdensdata(ident = "NC10", name = "DECANE", phase = "G", tr = 617.7, rhor = 1.64, correlation_id = 3, n_param = 6, n = (/ -0.50378D+01,-0.34694D+01,-0.↔ 15906D+02, -0.82894D+02,0.29336D+02,-0.10985D+03 /), t = (/ 0.4985,1.33,2.43, 5.44,5.8,11.0 /))
- type(satdensdata), parameter satdensliq_5 = satdensdata(ident = "NC10", name = "DECANE", phase = "L", tr = 617.7, rhor = 1.64, correlation_id = 1, n_param = 5, n = (/ 0.92435D+01,-0.16288D+02,0.20445D+02, -0.17624D+02,0.73796D+01,0.0d0 /), t = (/ 0.535,0.74,1.0, 1.28,1.57,0.0d0 /))
- type(satdensdata), parameter satdensgas_6 = satdensdata(ident = "O2", name = "OXYGEN", phase = "G", tr = 154.581, rhor = 13.63, correlation_id = 3, n_param = 6, n = (/ -0.22695D+01,-0.46578D+01,-0.99480D+01, -0.22845D+02,-0.45190D+02,-0.25101D+02 /), t = (/ 0.3785,1.07,2.7, 5.5,10.0,20.0 /))
- type(satdensdata), parameter satdensliq_6 = satdensdata(ident = "O2", name = "OXYGEN", phase = "L", tr = 154.581, rhor = 13.63, correlation_id = 1, n_param = 5, n = (/ 0.16622D+01,0.76846D+00,-0.10041D+00, 0.20480D+00,0.11551D-01,0.0d0 /), t = (/ 0.345,0.74,1.2, 2.6,7.2,0.0d0 /))
- type(satdensdata), parameter satdensgas_7 = satdensdata(ident = "NC8", name = "OCTANE", phase = "G", tr = 569.32, rhor = 2.056404, correlation_id = 3, n_param = 6, n = (/ -0.16556D+00,-0.59337D+01,-0.↔ 18915D+02, -0.36484D+03,0.72686D+03,-0.50392D+03 /), t = (/ 0.09,0.59,2.4, 7.0,8.0,9.0 /))
- type(satdensdata), parameter satdensliq_7 = satdensdata(ident = "NC8", name = "OCTANE", phase = "L", tr = 569.32, rhor = 2.056404, correlation_id = 1, n_param = 5, n = (/ 0.56814D-01,0.38908D+02,-0.75923D+02, 0.59548D+02,-0.19651D+02,0.0d0 /), t = (/ 0.10,0.75,0.90, 1.10,1.25,0.0d0 /))
- type(satdensdata), parameter satdensgas_8 = satdensdata(ident = "IC4", name = "ISOBUTAN", phase = "G", tr = 407.81, rhor = 3.879756788, correlation_id = 6, n_param = 4, n = (/ -2.12933323, -2.93790085, -0.↔ 89441086, -3.46343707, 0.0d0, 0.0d0 /), t = (/ 1.065, 2.5, 9.5, 13.0, 0.0d0, 0.0d0 /))
- type(satdensdata), parameter satdensliq_8 = satdensdata(ident = "IC4", name = "ISOBUTAN", phase = "L", tr = 407.81, rhor = 3.879756788, correlation_id = 2, n_param = 4, n = (/ 2.04025104,0.850874089,-0.↔ 479052281, 0.348201252,0.0d0,0.0d0 /), t = (/ 1.065,3.0,4.0, 7.0,0.0d0,0.0d0 /))
- type(satdensdata), parameter satdensgas_9 = satdensdata(ident = "HE", name = "HELIUM", phase = "G", tr = 5.1953, rhor = 17.3837, correlation_id = 3, n_param = 5, n = (/ -1.5789,-10.749,17.711, -15.413,-14.↔ 352,0.0d0 /), t = (/ 0.333,1.5,2.1, 2.7,9.0,0.0d0 /))
- type(satdensdata), parameter satdensliq_9 = satdensdata(ident = "HE", name = "HELIUM", phase = "L", tr = 5.1953, rhor = 17.3837, correlation_id = 1, n_param = 5, n = (/ 1.0929, 1.6584, -3.6477, 2.7440, -2.3859, 0.0d0 /), t = (/ 0.286, 1.2, 2.0, 2.8, 6.5, 0.0d0 /))

- type(satdensdata), parameter satdensgas_10 = satdensdata(ident = "H2", name = "HYDROGEN", phase = "G", tr = 33.145, rhor = 15.508, correlation_id = 3, n_param = 6, n = (/ -0.29962D+01,-0.16724D+02,0.↔ 15819D+02, -0.16852D+02,0.34586D+02,-0.53754D+02 /), t = (/ 0.466,2.,2.4, 4.,7.,8. /))
- type(satdensdata), parameter **satdensliq_10** = satdensdata(ident = "H2", name = "HYDROGEN", phase = "L", tr = 33.145, rhor = 15.508, correlation_id = 1, n_param = 5, n = (/ 0.15456D+02,-0.41720D+02,0.↔ 50276D+02, -0.27947D+02,0.56718D+01,0.0d0 /), t = (/ 0.62,0.83,1.05, 1.3,1.6,0.0d0 /))
- type(satdensdata), parameter satdensgas_11 = satdensdata(ident = "NC5", name = "PENTANE", phase = "G", tr = 469.7, rhor = 3.2155776, correlation_id = 3, n_param = 6, n = (/ -0.29389D+01,-0.62784D+01,-0.↔ 19941D+02, -0.16709D+02,-0.36543D+02,-0.12799D+03 /), t = (/ 0.4,1.18,3.2, 6.6,7.0,15.0 /))
- type(satdensdata), parameter **satdensliq_11** = satdensdata(ident = "NC5", name = "PENTANE", phase = "L", tr = 469.7, rhor = 3.2155776, correlation_id = 1, n_param = 5, n = (/ 0.10178D+01,0.42703D+00,0.↔ 11334D+01, 0.41518D+00,-0.47950D-01,0.0d0 /), t = (/ 0.27,0.44,0.6, 4.0,5.0,0.0d0 /))
- type(satdensdata), parameter satdensgas_12 = satdensdata(ident = "NC4", name = "BUTANE", phase = "G", tr = 425.125, rhor = 3.922769613, correlation_id = 3, n_param = 5, n = (/ -0.27390D+01,-0.57347D+01,-0.16408D+02, -0.46986D+02,-0.10090D+03,0.0d0 /), t = (/ 0.391,1.14,3.0, 6.5,14.0,0.0d0 /))
- type(satdensdata), parameter satdensliq_12 = satdensdata(ident = "NC4", name = "BUTANE", phase = "L", tr = 425.125, rhor = 3.922769613, correlation_id = 1, n_param = 4, n = (/ 0.52341D+01,-0.62011D+01,0.↔ 36063D+01, 0.22137D+00,0.0d0,0.0d0 /), t = (/ 0.44,0.60,0.76, 5.00,0.0d0,0.0d0 /))
- type(satdensdata), parameter satdensgas_13 = satdensdata(ident = "N2", name = "NITROGEN", phase = "G", tr = 126.192, rhor = 11.1839, correlation_id = 6, n_param = 5, n = (/ -0.170127164E+1,-0.↔ 370402649E+1,0.129859383E+1, -0.561424977E+0,-0.268505381E+1,0.0d0 /), t = (/ 1.02,2.5,3.5, 6.5,14.↔ 0,0.0d0 /))
- type(satdensdata), parameter satdensliq_13 = satdensdata(ident = "N2", name = "NITROGEN", phase = "L", tr = 126.192, rhor = 11.1839, correlation_id = 4, n_param = 4, n = (/ 0.148654237E+1,-0.280476066E+0,0.↔ 894143085E-1, -0.119879866E+0,0.0d0,0.0d0 /), t = (/ 0.9882,2..8., 17.5,0.0d0,0.0d0 /))
- type(satdensdata), parameter satdensgas_14 = satdensdata(ident = "NC7", name = "HEPTANE", phase = "G", tr = 540.13, rhor = 2.315323, correlation_id = 3, n_param = 6, n = (/ -0.24571D+00,-0.63004D+01,-0.↔ 19144D+02, -0.96970D+02,0.21643D+03,-0.27953D+03 /), t = (/ 0.097,0.646,2.56, 6.6,9.3,10.7 /))
- type(satdensdata), parameter **satdensliq_14** = satdensdata(ident = "NC7", name = "HEPTANE", phase = "L", tr = 540.13, rhor = 2.315323, correlation_id = 1, n_param = 5, n = (/ -0.26395D+01,0.21806D+02,-0.↔ 28896D+02, 0.12609D+02,0.40749D+00,0.0d0 /), t = (/ 0.322,0.504,0.651, 0.816,6.4,0.0d0 /))
- type(satdensdata), parameter satdensgas_15 = satdensdata(ident = "C2", name = "ETHANE", phase = "G", tr = 305.322, rhor = 6.856886685, correlation_id = 6, n_param = 6, n = (/ -1.89879145, -3.65459262, 0.↔ 850562745, 0.363965487, -1.50005943, -2.26690389 /), t = (/ 1.038, 2.5, 3.0, 6.0, 9.0, 15.0 /))
- type(satdensdata), parameter satdensliq_15 = satdensdata(ident = "C2", name = "ETHANE", phase = "L", tr = 305.322, rhor = 6.856886685, correlation_id = 4, n_param = 4, n = (/ 1.56138026,-0.381552776,0.↔ 0785372040, 0.0370315089,0.0d0,0.0d0 /), t = (/ 0.987,2.0,4.0, 9.5,0.0d0,0.0d0 /))
- type(satdensdata), parameter satdensgas_16 = satdensdata(ident = "H2S", name = "H2S", phase = "G", tr = 373.1, rhor = 10.19, correlation_id = 3, n_param = 4, n = (/ -3.9156, -7.7093, -19.543, -49.418, 0.0d0, 0.0d0 /), t = (/ 0.49, 1.69, 4.00, 8.00, 0.0d0, 0.0d0 /))
- type(satdensdata), parameter satdensliq_16 = satdensdata(ident = "H2S", name = "H2S", phase = "L", tr = 373.1, rhor = 10.19, correlation_id = 2, n_param = 3, n = (/ 11.833,-17.019,7.8047, 0.0d0,0.0d0,0.0d0 /), t = (/ 1.63,1.95,2.30, 0.0d0,0.0d0,0.0d0 /))
- type(satdensdata), parameter **satdensgas_17** = satdensdata(ident = "IC5", name = "IPENTANE", phase = "G", tr = 460.356, rhor = 3.271, correlation_id = 3, n_param = 6, n = (/ -0.38825D+02,0.79040D+02,-0.↔ 48791D+02, -0.21603D+02,-0.57218D+02,-0.15164D+03 /), t = (/ 0.565,0.66,0.77, 3.25,7.3,16.6 /))
- type(satdensdata), parameter satdensliq_17 = satdensdata(ident = "IC5", name = "IPENTANE", phase = "L", tr = 460.356, rhor = 3.271, correlation_id = 1, n_param = 5, n = (/ 0.18367D+02,-0.30283D+02,0.13557D+02, -0.90533D+00,0.20927D+01,0.0d0 /), t = (/ 1.21,1.41,1.65, 0.09,0.164,0.0d0 /))
- type(satdensdata), parameter satdensgas_18 = satdensdata(ident = "C1", name = "METHANE", phase = "G", tr = 190.564, rhor = 10.139128, correlation_id = 4, n_param = 6, n = (/ -1.8802840, -2.8526531, -3.↔ 0006480, -5.2511690, -13.191859, -37.553961 /), t = (/ 1.062, 2.5, 4.5, 7.5, 12.5, 23.5 /))
- type(satdensdata), parameter satdensliq_18 = satdensdata(ident = "C1", name = "METHANE", phase = "L", tr = 190.564, rhor = 10.139128, correlation_id = 3, n_param = 3, n = (/ 1.9906389,-0.78756197,0.036976723, 0.0d0,0.0d0,0.0d0,0.0d0 /), t = (/ 0.354,0.5,2.5, 0.0d0,0.0d0,0.0d0 /))
- type(satdensdata), parameter satdensgas_19 = satdensdata(ident = "NC6", name = "HEXANE", phase = "G", tr = 507.82, rhor = 2.7058779, correlation_id = 3, n_param = 6, n = (/ -0.13309D+00,-0.50653D+01,-0.↔ 11602D+02, -0.28530D+02,-0.51731D+02,-0.13482D+03 /), t = (/ 0.107,0.553,2.006, 4.46,8.0,16.0 /))

- type(satdensdata), parameter satdensliq_19 = satdensdata(ident = "NC6", name = "HEXANE", phase = "L", tr = 507.82, rhor = 2.7058779, correlation_id = 1, n_param = 3, n = (/ 0.14686D+03,-0.26585D+03,0.↔ 12200D+03, 0.0d0,0.0d0,0.0d0 /), t = (/ 0.75,0.81,0.88, 0.0d0,0.0d0,0.0d0 /))
- type(satdensdata), parameter satdensgas_20 = satdensdata(ident = "C3", name = "PROPANE", phase = "G", tr = 369.89, rhor = 5.0, correlation_id = 3, n_param = 6, n = (/ -2.4887,-5.1069,-12.174, -30.495,-52.↔ 192,-134.89 /), t = (/ 0.3785,1.07,2.7, 5.5,10.0,20.0 /))
- type(satdensdata), parameter satdensliq_20 = satdensdata(ident = "C3", name = "PROPANE", phase = "L", tr = 369.89, rhor = 5.0, correlation_id = 1, n_param = 4, n = (/ 1.82205, 0.65802, 0.21109, 0.083973, 0.0d0, 0.↔ 0d0 /), t = (/ 0.345, 0.74, 2.6, 7.2, 0.0d0, 0.0d0 /))
- type(satdensdata), parameter satdensgas_21 = satdensdata(ident = "NC9", name = "NONANE", phase = "G", tr = 594.55, rhor = 1.81, correlation_id = 3, n_param = 5, n = (/ -0.33199D+01,-0.23900D+01,-0.↔ 15307D+02, -0.51788D+02,-0.11133D+03,0.0d0 /), t = (/ 0.461,0.666,2.12, 5.1,11.0,0.0d0 /))
- type(satdensdata), parameter satdensliq_21 = satdensdata(ident = "NC9", name = "NONANE", phase = "L", tr = 594.55, rhor = 1.81, correlation_id = 1, n_param = 5, n = (/ -0.43785D+00,0.37240D+01,-0.23029D+01, 0.18270D+01,0.38664D+00,0.0d0 /), t = (/ 0.116,0.32,0.54, 0.8,3.5,0.0d0 /))
- integer, parameter maxsatdens = 42
- type(satdensdata), dimension(maxsatdens), parameter satdensdb = (/ satdensgas_1,satdensliq...,satdensgas_2,satdensliq_2,satdensgas_3,satdensliq_3, satdensgas_4,satdensliq_4,satdensgas...,satdensgas_5,satdensliq_5,satdensgas_6,satdensliq_6, satdensgas_7,satdensliq_7,satdensgas_8,satdensliq_...,satdensgas_9,satdensliq_9, satdensgas_10,satdensgas_11,satdensgas_11,satdensgas_...,satdensliq_12, satdensgas_13,satdensliq_13,satdensgas_14,satdensliq_14,satdensgas_15,satdensliq...,satdensgas_16,satdensgas_17,satdensgas_17,satdensliq_17,satdensgas_18,satdensliq_18, satdensgas...,19,satdensliq_19,satdensgas_20,satdensliq_20,satdensgas_21,satdensliq_21 /)

5.50.1 Detailed Description

Automatically generated file satdensdatadb.f90 Time stamp: 2021-07-25T15:05:48.939509.

5.51 saturation_point_locators Module Reference

Functionality for locating points on the saturation curve based on auxiliary properties such as specific volume or entropy. The isentropeEnvelopeCross routines should eventually be moved from saturation to saturation_point_locators.

Functions/Subroutines

- subroutine, public bracketsolveforpropertysingle (ic, propflag, propspec, phase, t1, p1, dpdt1, ts, ps, ierr) Bracket solver for finding the exact point on saturation line.
- subroutine, public sat_points_based_on_prop (z, t0, p0, x0, y0, n_grid, propflag, prop_grid, t_grid, p_grid, phase_grid, wi_grid, n_grid_found, ds_override, phase_in, ierr_out, sgn_in, spec_in, tmin, tmax, pmin, pmax, normal_grid, sequential_mode)

Locate the points on the phase envelope corresponding to the property values in prop_grid. The grid must be sorted according to whether one starts on the dew curve or the bubble curve.

• subroutine, public iso_cross_saturation_line (ts, ps, t, p, x, y, z, beta, prop_spec, prop_specid, phase, ierr)

Iso-line crossing of saturation line.

Variables

- integer, parameter, public locate_from_entropy = 1
- integer, parameter, public locate_from_lnvol = 2
- integer, parameter, public locate_from_enthalpy = 3
- integer, parameter, public locate_from_temperature = 4
- integer, parameter, public locate_from_pressure = 5
- integer, parameter, public locate_from_joule_thompson = 6

5.51.1 Detailed Description

Functionality for locating points on the saturation curve based on auxiliary properties such as specific volume or entropy. The isentropeEnvelopeCross routines should eventually be moved from saturation to saturation point locators.

Author

```
Ailo 2015-12
MH 2018-06
```

5.51.2 Function/Subroutine Documentation

5.51.2.1 bracketsolveforpropertysingle()

What property is is determined by propflag.

Author

MH 2019-05

5.51.2.2 iso_cross_saturation_line()

```
subroutine, public saturation_point_locators::iso_cross_saturation_line (
    real, intent(in) ts,
    real, intent(in) ps,
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) x,
    real, dimension(nc), intent(in) y,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(in) prop_spec,
    character, intent(in) prop_specid,
    integer, intent(out) phase,
    integer, intent(out) ierr )
```

Iso-line crossing of saturation line.

Author

MH, 2017-06

in	ts	Single phase temperature (K)
in	ps	Single phase pressure (Pa)
in,out	t	Two-phase temperature (K)
in,out	p	Two-phase pressure (Pa)

in,out	beta	Two-phase gas phase fraction (mol/mol)
in	x	Liquid composition
in	У	Gas composition
in	prop_specid	"h", "s", "t", "p"
out	phase	Single phase at envelope crossing
out	ierr	Error indicator, zero on success

5.51.2.3 sat_points_based_on_prop()

real, dimension(nc), intent(in) z, real, intent(in) t0, real, intent(in) p0, real, dimension(nc), intent(in) x0, real, dimension(nc), intent(in) y0, integer, intent(in) n_grid,

subroutine, public saturation_point_locators::sat_points_based_on_prop (

```
integer, intent(in) propflag,
real, dimension(n_grid), intent(inout) prop_grid,
real, dimension(n_grid), intent(out) t_grid,
real, dimension(n_grid), intent(out) p_grid,
integer, dimension(n_grid), intent(out) phase_grid,
real, dimension(nc,n_grid), intent(out) wi_grid,
integer, intent(out) n_grid_found,
real, intent(in), optional ds_override,
integer, intent(in), optional phase_in,
integer, intent(out), optional ierr_out,
real, intent(in), optional sgn_in,
integer, intent(in), optional spec_in,
real, intent(in), optional tmin,
real, intent(in), optional tmax,
real, intent(in), optional pmin,
real, intent(in), optional pmax,
real, dimension(2,n_grid), intent(out), optional normal_grid,
logical, intent(in), optional sequential_mode )
```

Locate the points on the phase envelope corresponding to the property values in prop_grid. The grid must be sorted according to whether one starts on the dew curve or the bubble curve.

The routine starts at the dew point at given initial pressure, and then traverses the phase envelope until it has bracketed a grid value; it then locates the exact saturation point corresponding to this value, before continuing. This routine can perhaps be generalized to subsume the routines envelopePlot and isentropeEnvelopeCross. To do: test the routine when starting from bubble curve.

Author

Ailo 2015-12 Morten 2018-06

in	Z	total composition
in	p0	init. point has pressure p0
in	уО	init. liq./vap. compo. guess
in	n_grid	number of grid points
in	propflag	specified property 1:s, 2:Inv

in,out	prop_grid	property grid (non sequential mode may reorder array)
in	ds_override	step length along envelope
in	phase_in	start search from this phase
out	ierr_out	error flag; nonzero if error
in	sgn_in	Override search direction
in	spec_in	Override initial search direction
in	tmax	Temperature limits (K)
in	pmax	Pressure limits (Pa)
in	sequential_mode	Default sequential
out	t_grid	t at the grid points
out	p_grid	p at the grid points
out	phase_grid	incumbent phase at grid points
out	wi_grid	Incipient phase at boundary
out	n_grid_found	Number of grid points found
out	normal_grid	Normal vector (from tangent) pointing into two-phase region

5.52 solid_correlation_datadb Module Reference

Automatically generated to file solid_correlation_datadb.f90 using utility python code pyUtils Time stamp: 2023-04-28T20:02:12.169534.

Data Types

type solid_correlation_data

This data structure stores parameters for sublimation and melting line correlations.

Variables

- type(solid_correlation_data), parameter melt2 = solid_correlation_data(compName = "AR", correlation = "ML-1", triple_temperature = 83.8058, minimum_temperature = 0., maximum_temperature = 700., reducing ~ _ pressure = 68891., reducing_temperature = 83.8058, n_coeff = 3, n_coeff_1 = 1, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/1.00000000000e+00,-7.476266510000e+03,9.959061250000e+03, 0.00000000000e+00,0...
 00000000000e+00,0.0000000000e+00/), exponents = (/0.000000,1.050000,1.275000, 0.000000,0...
 0000000,0.000000/), bib_ref = "DOI: 10.1063/1.556037", ref = "DEFAULT")
- type(solid_correlation_data), parameter melt4 = solid_correlation_data(compName = "CO", correlation = "ML-1", triple_temperature = 68.16, minimum_temperature = 0., maximum_temperature = 1000., reducing → _pressure = 1000000., reducing_temperature = 1., n_coeff = 2, n_coeff_1 = 2, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/-1.42941000000e+02,1.95608000000e-02,0.0000000000e+00, 0.0000000000e+00,0...→ 0000000000e+00,0.0000000000e+00/), exponents = (/0.000000,2.107470,0.000000, 0.000000,0...→ 0000000,0.000000/), bib ref = "DOI: 10.1016/0021-9614(82)90044-1", ref = "DEFAULT")

- type(solid_correlation_data), parameter melt7 = solid_correlation_data(compName = "HE", correlation = "ML-1", triple_temperature = 2.1768, minimum_temperature = 0., maximum_temperature = 1500., reducing → _pressure = 1000000., reducing_temperature = 1., n_coeff = 2, n_coeff_1 = 2, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/-1.745583700000e+00,1.697979300000e+00,0.0000000000e+00, 0.0000000000e+00,0...→ 00000000000e+00,0.0000000000e+00/), exponents = (/0.000000,1.555414,0.000000, 0.000000,0...→ 0000000,0.000000/), bib_ref = "DOI: 10.1007/978-1-4613-0639-9_174", ref = "DEFAULT")
- type(solid_correlation_data), parameter melt8 = solid_correlation_data(compName = "H2", correlation = "ML-1", triple_temperature = 13.957, minimum_temperature = 0., maximum_temperature = 400., reducing → _pressure = 7357.8, reducing_temperature = 13.957, n_coeff = 3, n_coeff_1 = 1, n_coeff_2 = 2, n_coeff_3 = 0, coeff = (/1.00000000000e+00,5.62630000000e+03,2.717200000000e+03, 0.0000000000e+00,0...→ 00000000000e+00,0.000000000e+00/), exponents = (/0.000000,1.000000,1.830000, 0.000000,0...→ 0000000,0.000000/), bib_ref = "", ref = "DEFAULT")
- type(solid_correlation_data), parameter melt9 = solid_correlation_data(compName = "IC4", correlation = "ML-1", triple_temperature = 113.73, minimum_temperature = 0., maximum_temperature = 575., reducing_↔ pressure = 0.022891, reducing_temperature = 113.73, n_coeff = 2, n_coeff_1 = 2, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/-1.953637129000e+09,1.953637130000e+09,0.0000000000e+00, 0.0000000000e+00,0.↔ 0000000000e+00,0.0000000000e+00/), exponents = (/0.000000,0.000000, 0.000000, 0.000000,0.↔ 0000000,0.000000/), bib_ref = "DOI: 10.1063/1.1901687", ref = "DEFAULT")
- type(solid_correlation_data), parameter melt11 = solid_correlation_data(compName = "KR", correlation = "ML-1", triple_temperature = 115.775, minimum_temperature = 0., maximum_temperature = 800., reducing → _pressure = 101325., reducing_temperature = 1., n_coeff = 2, n_coeff_1 = 2, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/-2.34592100000e+03, 1.080476685000e+00, 0.0000000000e+00, 0.0000000000e+00, 0...→ 0000000000e+00, 0.0000000000e+00/), exponents = (/0.000000, 1.616984, 0.000000, 0.000000, 0...→ 0000000, 0.000000/), bib_ref = "DOI: 10.1016/0031-8914(62)90096-4", ref = "DEFAULT")
- type(solid_correlation_data), parameter melt12 = solid_correlation_data(compName = "C1", correlation = "ML-1", triple_temperature = 90.6941, minimum_temperature = 0., maximum_temperature = 625., reducing ~ _ pressure = 11696., reducing_temperature = 90.6941, n_coeff = 3, n_coeff_1 = 1, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/1.00000000000e+00,2.47568000000e+04,-7.36602000000e+03, 0.0000000000e+00,0...
 00000000000e+00,0.0000000000e+00/), exponents = (/0.000000,1.850000,2.100000, 0.000000,0...
 0000000,0.000000/), bib_ref = "DOI: 10.1063/1.555898", ref = "DEFAULT")
- type(solid_correlation_data), parameter melt13 = solid_correlation_data(compName = "MEOH", correlation = "ML-1", triple_temperature = 175.61, minimum_temperature = 0., maximum_temperature = 620., reducing_pressure = 0.187, reducing_temperature = 175.61, n_coeff = 4, n_coeff_1 = 1, n_coeff_4
 2 = 3, n_coeff_3 = 0, coeff = (/1.00000000000e+00,5.320770000000e+09,4.524780000000e+09, 3.↔
 888861000000e+10,0.00000000000e+00,0.00000000000e+00/), exponents = (/0.000000,1.000000,1.↔
 500000, 4.000000,0.000000/), bib ref = "DOI: 10.1016/j.fluid.2013.03.024", ref = "DEFAULT")
- type(solid_correlation_data), parameter melt14 = solid_correlation_data(compName = "NE", correlation = "ML-1", triple_temperature = 24.556, minimum_temperature = 0., maximum_temperature = 10000., reducing_pressure = 43368.14, reducing_temperature = 24.556, n_coeff = 2, n_coeff_1 = 1, n_coeff 2 = 1, n coeff 3 = 0, coeff = (/1.00000000000e+00,4.4370000000000e+03,0.0000000000e+00, 0.

- type(solid_correlation_data), parameter melt15 = solid_correlation_data(compName = "N2", correlation = "ML-1", triple_temperature = 63.151, minimum_temperature = 0., maximum_temperature = 2000., reducing → _pressure = 12519.8, reducing_temperature = 63.151, n_coeff = 2, n_coeff_1 = 1, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/1.00000000000e+00, 1.279861000000e+04, 0.0000000000e+00, 0.0000000000e+00, 0...→ 00000000000e+00, 0.0000000000e+00/), exponents = (/0.000000, 1.789630, 0.000000, 0.000000, 0...→ 000000, 0.000000/), bib_ref = "DOI: 10.1063/1.1349047", ref = "DEFAULT")
- type(solid_correlation_data), parameter melt16 = solid_correlation_data(compName = "O2", correlation = "ML-2", triple_temperature = 54.361, minimum_temperature = 0., maximum_temperature = 300., reducing → _pressure = 146.277, reducing_temperature = 54.361, n_coeff = 4, n_coeff_1 = 0, n_coeff_2 = 4, n_coeff_3 = 0, coeff = (/-3.24635390000e+01,1.42780110000e+02,-1.470234100000e+02, 5.200120000000e+01,0.↔ 00000000000e+00,0.0000000000e+00/), exponents = (/0.062500,0.125000,0.187500, 0.250000,0.↔ 0000000,0.000000/), bib_ref = "DOI: 10.1016/0378-3812(85)87016-3", ref = "DEFAULT")
- type(solid_correlation_data), parameter melt17 = solid_correlation_data(compName = "P-H2", correlation = "MP-1", triple_temperature = 13.8, minimum_temperature = 0., maximum_temperature = 400., reducing_
 pressure = 1000000, reducing_temperature = 1., n_coeff = 4, n_coeff_1 = 4, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/-2.652891150000e+01, 2.485785960000e-01, -2.128233930000e+01, 1.257466430000e-01, 0.
 00000000000e+00,0.00000000000e+00/), exponents = (/0.000000, 1.764739, 0.000000, 1.955000, 0.
 000000,0.000000/), bib_ref = "ISBN: 088318415X, https://srd.nist.gov/JPCRD/jpcrdS1Vol11.pdf", ref = "DE-FAULT")

- type(solid_correlation_data), parameter subl1 = solid_correlation_data(compName = "NH3", correlation = "SL-2", triple_temperature = 195.49, minimum_temperature = 0., maximum_temperature = 0., reducing_
 pressure = 1000000., reducing_temperature = 1., n_coeff = 5, n_coeff_1 = 5, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/1.363932000000e+01,-3.53700000000e+03,-3.31000000000e+04, 1.74200000000e+06,-2.
 99500000000e+07,0.00000000000e+00/), exponents = (/0.000000,-1.000000,-2.000000, -3.000000,-4.
 000000,0.000000/), bib_ref = "DOI: 10.1063/5.0128269", ref = "DEFAULT")
- type(solid_correlation_data), parameter subl2 = solid_correlation_data(compName = "AR", correlation = "SL-3", triple_temperature = 83.8058, minimum_temperature = 0., maximum_temperature = 0., reducing_
 pressure = 68891., reducing_temperature = 83.8058, n_coeff = 1, n_coeff_1 = 0, n_coeff_2 = 1, n_coeff_3 = 0, coeff = (/-1.11307000000e+01,0.000000000e+00,0.000000000e+00, 0.0000000000e+00,0...
 00000000000e+00,0.0000000000e+00/), exponents = (/1.000000,0.000000,0.000000, 0.000000,0...
 0000000,0.000000/), bib_ref = "Lemmon, E.W. (2002)", ref = "DEFAULT")
- type(solid_correlation_data), parameter **subl3** = solid_correlation_data(compName = "CO2", correlation = "SL-3", triple_temperature = 216.592, minimum_temperature = 0., maximum_temperature = 0., reducing_↔ pressure = 517950., reducing_temperature = 216.592, n_coeff = 3, n_coeff_1 = 0, n_coeff_2 = 3, n_coeff_3 = 0, coeff = (/-1.474084600000e+01,2.432701500000e+00,-5.306177800000e+00, 0.00000000000e+00,0.↔ 0000000000e+00,0.0000000000e+00/), exponents = (/1.000000,1.900000,2.900000, 0.000000,0.↔ 0000000,0.000000/), bib_ref = "DOI: 10.1063/1.555991", ref = "DEFAULT")
- type(solid_correlation_data), parameter subl4 = solid_correlation_data(compName = "CO", correlation = "SL-2", triple_temperature = 68.16, minimum_temperature = 61.55, maximum_temperature = 0., reducing → _pressure = 1000000., reducing_temperature = 1., n_coeff = 4, n_coeff_1 = 4, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/7.94524000000e+00,-7.48151000000e+02,-5.84330000000e+03, 3.93850000000e+04,0.↔ 00000000000e+00,0.0000000000e+00/), exponents = (/0.000000,-1.000000,-2.000000, -3.000000,0.↔ 0000000,0.000000/), bib_ref = "DOI: 10.1007/978-1-4613-9856-1_76", ref = "DEFAULT")
- type(solid_correlation_data), parameter subl5 = solid_correlation_data(compName = "C2", correlation = "SL-2", triple_temperature = 90.368, minimum_temperature = 20., maximum_temperature = 0., reducing_↔ pressure = 1000000., reducing_temperature = 1., n_coeff = 6, n_coeff_1 = 6, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/1.28111000000e+01,-2.20746000000e+03,-2.41130000000e+04, 7.74440000000e+05,-1.↔ 16150000000e+07,6.76330000000e+07/), exponents = (/0.00000,-1.000000,-2.000000, -3.000000,-4.↔ 000000,-5.000000/), bib_ref = "DOI: 10.1007/978-1-4613-9856-1_76", ref = "DEFAULT")
- type(solid_correlation_data), parameter subl7 = solid_correlation_data(compName = "H2S", correlation = "S2", triple_temperature = 187.7, minimum_temperature = 0., maximum_temperature = 0., reducing_pressure = 1000000, reducing_temperature = 187.7, n_coeff = 5, n_coeff_1 = 5, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/6.624700000000e+00,-7.2600000000e+02,-3.50400000000e+05, 2.72400000000e+07,-8.↔ 58200000000e+08,0.0000000000e+00/), exponents = (/0.000000,-1.000000,-2.000000, -3.000000,-4.↔ 0000000,0.000000/), bib_ref = "DOI: 10.1016/j.pss.2009.09.011", ref = "DEFAULT")
- type(solid_correlation_data), parameter subl8 = solid_correlation_data(compName = "KR", correlation = "SL-3", triple_temperature = 115.775, minimum_temperature = 0., maximum_temperature = 0., reducing_
 pressure = 73197., reducing_temperature = 115.775, n_coeff = 1, n_coeff_1 = 0, n_coeff_2 = 1, n_coeff_3 = 0, coeff = (/-1.15616000000e+01,0.0000000000e+00,0.000000000e+00, 0.0000000000e+00,0...
 00000000000e+00,0.0000000000e+00/), exponents = (/1.000000,0.000000, 0.000000, 0.000000, 0.000000, 0.0000,
- type(solid_correlation_data), parameter subl9 = solid_correlation_data(compName = "C1", correlation = "SL-3", triple_temperature = 90.6941, minimum_temperature = 0., maximum_temperature = 0., reducing_
 pressure = 11696., reducing_temperature = 90.6941, n_coeff = 1, n_coeff_1 = 0, n_coeff_2 = 1, n_coeff_3 = 0, coeff = (/-1.28400000000e+01,0.000000000e+00,0.000000000e+00, 0.0000000000e+00,0...
 00000000000e+00,0.0000000000e+00/), exponents = (/1.000000,0.000000, 0.000000, 0.000000, 0.000000, 0.00000,

 $0, coeff = (/8.30710000000e+00, -3.085550000000e+02, 9.86020000000e+02, -9.069300000000e+03, 3. \leftrightarrow 51420000000e+04, 0.0000000000e+00/), exponents = (/0.000000, -1.000000, -2.000000, -3.000000, -4. \leftrightarrow 000000, 0.000000/), bib_ref = "DOI: 10.1007/978-1-4613-9856-1_76", ref = "DEFAULT")$

- type(solid_correlation_data), parameter subl11 = solid_correlation_data(compName = "N2", correlation = "SL-3", triple_temperature = 63.151, minimum_temperature = 0., maximum_temperature = 0., reducing_
 pressure = 12523., reducing_temperature = 63.151, n_coeff = 1, n_coeff_1 = 0, n_coeff_2 = 1, n_coeff_3 = 0, coeff = (/-1.30886920000e+01,0.0000000000e+00,0.000000000e+00, 0.0000000000e+00,0...
 00000000000e+00,0.00000000000e+00/), exponents = (/1.000000,0.000000, 0.000000, 0.000000, 0.000000, 0.0000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.0000, 0.00000, 0.0000, 0.000000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000,
- type(solid_correlation_data), parameter subl12 = solid_correlation_data(compName = "N2O", correlation = "SL-2", triple_temperature = 182.33, minimum_temperature = 0., maximum_temperature = 0., reducing → pressure = 1000000, reducing_temperature = 1., n_coeff = 4, n_coeff_1 = 4, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/1.379787540000e+01, -3.181209790000e+03, 6.345151470000e+04, -4.189965370000e+06, 0.00000000000e+00, 0.000000000e+00/), exponents = (/0.000000, -1.000000, -2.000000, -3.000000, 0.00000, 0.000000/), bib_ref = "Bell, I.H. (2018)", ref = "DEFAULT")
- type(solid_correlation_data), parameter subl13 = solid_correlation_data(compName = "O2", correlation = "SL-3", triple_temperature = 54.361, minimum_temperature = 0., maximum_temperature = 0., reducing_
 pressure = 146.28, reducing_temperature = 54.361, n_coeff = 1, n_coeff_1 = 0, n_coeff_2 = 1, n_coeff_3 = 0, coeff = (/-2.07140000000e+01,0.000000000e+00,0.0000000000e+00, 0.0000000000e+00,0...
 00000000000e+00,0.00000000000e+00/), exponents = (/1.060000,0.000000,0.000000, 0.000000,0...
 000000,0.000000/), bib_ref = "Lemmon, E.W. (2003)", ref = "DEFAULT")
- type(solid_correlation_data), parameter sub14 = solid_correlation_data(compName = "P-H2", correlation = "SL-2", triple_temperature = 13.8, minimum_temperature = 0., maximum_temperature = 0., reducing → pressure = 1000000, reducing_temperature = 1., n_coeff = 6, n_coeff_1 = 6, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/4.78288000000e+00,-1.48563600000e+02,2.32321000000e+02,-5.60207000000e+02,6.↔ 64126000000e+02,-2.89060000000e+02/), exponents = (/0.00000,-1.000000,-2.000000, -3.000000,-4.↔ 000000,-5.000000/), bib_ref = "DOI: 10.1007/978-1-4613-9856-1_76", ref = "DEFAULT")
- type(solid_correlation_data), parameter **subl15** = solid_correlation_data(compName = "F6S", correlation = "SL-2", triple_temperature = 223.555, minimum_temperature = 0., maximum_temperature = 0., reducing_↔ pressure = 231429., reducing_temperature = 223.555, n_coeff = 2, n_coeff_1 = 2, n_coeff_2 = 0, n_coeff_3 = 0, coeff = (/-1.169421410000e+01, 1.169421410000e+01, 0.0000000000e+00, 0.0000000000e+00, 0...↔ 0000000000e+00, 0.0000000000e+00/), exponents = (/-1.070000, 0.000000, 0.000000, 0.000000, 0...↔ 0000000, 0.000000/), bib_ref = "DOI: 10.1063/1.3037344", ref = "DEFAULT")
- type(solid_correlation_data), parameter sub16 = solid_correlation_data(compName = "XE", correlation = "SL-3", triple_temperature = 161.405, minimum_temperature = 0., maximum_temperature = 0., reducing_
 pressure = 81750., reducing_temperature = 161.405, n_coeff = 2, n_coeff_1 = 0, n_coeff_2 = 2, n_coeff_3 = 0, coeff = (/-1.390000000000e+01, 1.40000000000e+01, 0.0000000000e+00, 0.0000000000e+00, 0.0000000000e+00, 0.0000000000e+00, 0.0000000000e+00, 0.0000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000, 0.00000, 0.000000, 0.00000, 0
- integer, parameter **n_melting_curves** = 23
- type(solid_correlation_data), dimension(n_melting_curves), parameter melting_corr_array = (/ MELT1,MELT2,MELT3,MELT4, MELT6,MELT7,MELT8,MELT9,MELT10, MELT11,MELT12,MELT13,MELT14,MELT15, MELT16,MELT17,MELT18,MELT19,MELT9,MELT21,MELT21,MELT22,MELT23 /)
- integer, parameter n_sublimation_curves = 16
- type(solid_correlation_data), dimension(n_sublimation_curves), parameter sublimation_corr_array = (/ SUBL1,SUBL2,SUBL3,SUBL4,SUBL5, SUBL6,SUBL7,SUBL8,SUBL9,SUBL10, SUBL11,SUBL12,SUBL13,SUBL14,SUBL15, SUBL16 /)

5.52.1 Detailed Description

Automatically generated to file solid_correlation_datadb.f90 using utility python code pyUtils Time stamp: 2023-04-28T20:02:12.169534.

5.53 solideos Module Reference

Interface to solid equations of state. Currently only a Gibbs based equations of state for CO2 are supported.

Functions/Subroutines

- subroutine, public solid_init (comp)
 - Initialize solid model for given component.
- subroutine, public solid_thermo (t, p, z, Infug, Infugt, Infugp)
 - Calculate solid fugasities etc. given composition, temperature and pressure.
- subroutine, public solid_enthalpy (t, p, z, h, dhdt, dhdp)
 - Calculate solid enthalpy given composition, temperature and pressure Unit: J/mol.
- subroutine, public solid_entropy (t, p, z, s, dsdt, dsdp)
 - Calculate solid entropy given composition, temperature and pressure Unit: J/mol/K.
- subroutine, public solid_specificvolume (t, p, z, v, dvdt, dvdp)
 - Calculate solid specific volume given composition, temperature and pressure Unit: m3/mol.
- real function, public solidforming (t, p, j, z, nd, beta, ifugac, Infugs)
 - Calculate phase fraction of solid given current fugacities. If result is positive, the solid will be a stable phase.
- · logical function, public isformingsolid (nd, t, p, z, beta, xx, phasevec, betasol)
 - Return logical flag that is true when a solid phase is stable.
- real function, public solidfraction (j, z, nd, beta, ifugac, fugs)

Calculate phase fraction of solid given current fugacities.

• subroutine, public initice ()

Init water ice model Option to use Ice model without checking for ice in multiphase flash.

• subroutine, public initdryice ()

Init dry ice model Option to use dry ice model without checking for dry ice in multiphase flash.

Variables

- integer, public co2gibbsmodel
- integer, public h2ogibbsmodel
- integer, dimension(:), allocatable, public solidcomp
- integer, public **nsolid** = 0

5.53.1 Detailed Description

Interface to solid equations of state. Currently only a Gibbs based equations of state for CO2 are supported.

Author

MH, 2013-03-05.

5.53.2 Function/Subroutine Documentation

5.53.2.1 initdryice()

subroutine, public solideos::initdryice Init dry ice model Option to use dry ice model without checking for dry ice in multiphase flash.

Author

MH, 2015-11

5.53.2.2 initice()

subroutine, public solideos::initice

Init water ice model Option to use Ice model without checking for ice in multiphase flash.

Author

MH, 2015-11

5.53.2.3 isformingsolid()

```
logical function, public solideos::isformingsolid (
    integer, intent(in) nd,
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
    real, dimension(nph), intent(inout) beta,
    real, dimension(nph,nc), intent(inout) xx,
    integer, dimension(nph), intent(in) phasevec,
    real, intent(out), optional betasol )
```

Return logical flag that is true when a solid phase is stable.

Author

MH, 2016, 03

Parameters

in,out	beta	Phase molar fractions [-]
in	Ζ	Overall molar compozition [-]
in,out	XX	Phase molar compozition [-]
in,out	t	Temperature [K]
in,out	р	Pressure [Pa]
in	phasevec	Phase identifiers
in	nd	Number of phases

5.53.2.4 solid_enthalpy()

```
subroutine, public solideos::solid_enthalpy (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    real, intent(out) h,
    real, intent(out), optional dhdt,
    real, intent(out), optional dhdp )
```

Calculate solid enthalpy given composition, temperature and pressure Unit: J/mol.

Author

MH, 2013-03-06

Parameters

in	t	K - Temperature	
in	p	Pa - Pressure	
in	Ζ	Compozition	
out	h	J/mol - Specifc enthalpy	
out	dhdt	J/mol/K - Specifc enthalpy differential wrpt. temperature	
out	dhdp	J/mol/Pa - Specifc enthalpy differential wrpt. pressure	

5.53.2.5 solid_entropy()

subroutine, public solideos::solid_entropy (

```
real, intent(in) t,
real, intent(in) p,
real, dimension(1:nc), intent(in) z,
real, intent(out) s,
real, intent(out), optional dsdt,
real, intent(out), optional dsdp)
```

Calculate solid entropy given composition, temperature and pressure Unit: J/mol/K.

Author

MH, 2013-03-06

Parameters

in	t	K - Temperature	
in	р	Pa - Pressure	
in	Ζ	Compozition	
out	s	J/mol/K - Specifc entropy	
out	dsdt	J/mol/K2 - Specifc entropy differential wrpt. temperature	
out	dsdp	J/mol/K/Pa - Specifc entropy differential wrpt. pressure	

5.53.2.6 solid_init()

```
subroutine, public solideos::solid_init (
```

character(len=*), intent(in) comp)
Initialize solid model for given component.

Author

MH, 2013-03-05

Parameters

in | *comp* | Component name string

5.53.2.7 solid_specificvolume()

```
subroutine, public solideos::solid_specificvolume (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    real, intent(out) v,
    real, intent(out), optional dvdt,
    real, intent(out), optional dvdp)
```

Calculate solid specific volume given composition, temperature and pressure Unit: m3/mol.

Author

MH, 2013-03-06

Parameters

in	t	K - Temperature	
in	р	Pa - Pressure	
in	Z	Compozition	

394

out	V	m3/mol - Specifc volume
out	dvdt	m3/mol/K - Specifc volume differential wrpt. temperature
out	dvdp	m3/mol/Pa - Specifc volume differential wrpt. pressure

5.53.2.8 solid_thermo()

```
subroutine, public solideos::solid_thermo (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    real, intent(out) lnfug,
    real, intent(out), optional lnfugt,
    real, intent(out), optional lnfugp )
```

Calculate solid fugasities etc. given composition, temperature and pressure.

Author

MH, 2013-03-05

Parameters

in	t	K - Temperature	
in	р	Pa - Pressure	
in	Ζ	Compozition	
out	Infug	Logarithm of solid fugasity coefficient	
out	Infugt	1/K - Logarithm of solid fugasity coefficient differential wrpt. temperature	
out	Infugp	1/Pa - Logarithm of solid fugasity coefficient differential wrpt. pressure	

5.53.2.9 solidforming()

```
real function, public solideos::solidforming (
    real, intent(in) t,
    real, intent(in) p,
    integer, intent(in) j,
    real, dimension(nc), intent(in) z,
    integer, intent(in) nd,
    real, dimension(nd), intent(in) beta,
    real, dimension(nd,nc), intent(in) ifugac,
    real, intent(out) lnfugs )
```

Calculate phase fraction of solid given current fugacities. If result is positive, the solid will be a stable phase.

Author

MH, 2013-03-07

in	t	K - Temperature	
in	р	Pa - Pressure	
in	j	Solid component index	
in	nd	Number of phases	
in	Ζ	Overall compozition	

in	beta	Phase fractions
in	ifugac	Inverse fugasity coefficient of exsisting phases
out	Infugs	- Logarithm of solid fugasity coefficient

Returns

Solid phase fraction

5.53.2.10 solidfraction()

```
real function, public solideos::solidfraction (
    integer, intent(in) j,
    real, dimension(nc), intent(in) z,
    integer, intent(in) nd,
    real, dimension(nd), intent(in) beta,
    real, dimension(nd,nc), intent(in) ifugac,
    real, intent(in) fugs )
```

Calculate phase fraction of solid given current fugacities.

Author

MH, 2013-08-21

Parameters

in	j	Solid component index	
in	nd	Number of phases	
in	Ζ	Overall compozition	
in	beta	Phase fractions	
in	ifugac	Inverse fugasity coefficient of exsisting phases	
in	fugs	- Solid fugasity coefficient	

Returns

Solid phase fraction

5.54 speed_of_sound Module Reference

Calculate speed of sound for full (P,T, chemical potential) equilibrium.

Functions/Subroutines

- real function, public singlephasespeedofsound (t, p, z, phase)
 - Calculate speed-of-sound for single-phase flow.
- real function, public twophasespeedofsound (nph, t, p, z, beta, x, phase)
 Calculate speed-of-sound for ligid-liguid or gas-liguid mixtures.
- real function, public solidspeedofsound (t, p, z, betaf, xf, xs, phase) Calculate speed-of-sound for liqid-solid or gas-solid mixtures.
- real function, public sound_velocity_2ph (t, p, x, y, z, betav, betal, phase, ph)

Calculate speed of sound for single phase or gas-liquid. Alternative interface to sound_velocity.

real function, public speed_of_sound_tv (t, v, n)
 Calculate speed of sound for single phase given temperature, volume and mol numbers.

5.54.1 Detailed Description

Calculate speed of sound for full (P,T, chemical potential) equilibrium.

5.54.2 Function/Subroutine Documentation

5.54.2.1 singlephasespeedofsound()

Author

KYL, 2013-10

Parameters

in	t	Temperature [K]
in	р	Pressure [Pa]
in	Ζ	Overall molar compozition [-]
in	phase	Phase spec

5.54.2.2 solidspeedofsound()

```
real function, public speed_of_sound::solidspeedofsound (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in) betaf,
    real, dimension(nc), intent(in) xf,
    real, dimension(nc), intent(in) xs,
    integer, intent(in) phase )
```

Calculate speed-of-sound for liqid-solid or gas-solid mixtures. Equation set considered:

$$\begin{split} f(1) &= \ln \left(x^F(js)\varphi^F(js) \right) - \ln \left(\varphi^S \right) \\ f(2) &= \frac{S_{\text{spec}} - S_{\text{mix}}}{R} \\ f(3) &= \frac{P\left(v_{\text{mix}} - v_{\text{spec}} \right)}{RT} \end{split}$$

Variable vector:

$$X^{\mathsf{T}} = \left[n^F(js), \ln T, \ln P \right]$$

Author

MH, 2013-09

in	betaf	Fluid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]

in	xf	Fluid molar compozition [-]
in	xs	Solid molar compozition [-]
in	t	Temperature [K]
in	p	Pressure [Pa]
in	phase	Fluid phase integer

5.54.2.3 sound_velocity_2ph()

real function, public speed_of_sound::sound_velocity_2ph (

```
real, intent(in) t,
real, intent(in) p,
real, dimension(nc), intent(in) x,
real, dimension(nc), intent(in) y,
real, dimension(nc), intent(in) z,
real, intent(in) betav,
real, intent(in) betal,
integer, intent(in) phase,
integer, dimension(2), intent(in), optional ph )
```

Calculate speed of sound for single phase or gas-liquid. Alternative interface to sound_velocity.

Author

MH, 2014-05

Parameters

in	t	Temperature [K]
in	p	Pressure [Pa]
in	Ζ	Overall molar compozition [-]
in	betav	Vapor molar fraction [-]
in	betal	Liquid molar fraction [-]
in	x	Liquid molar compozition [-]
in	У	Vapor molar compozition [-]
in	phase	Phase spec
in	ph	Override phase integers

Returns

Speed of sound [m/s]

5.54.2.4 speed_of_sound_tv()

```
real function, public speed_of_sound::speed_of_sound_tv (
    real, intent(in) t,
    real, intent(in) v,
```

```
real, dimension(nc), intent(in) n )
```

Calculate speed of sound for single phase given temperature, volume and mol numbers.

Author

MH, 2019-06

in	t	Temperature [K]
in	v	Pressure [m3]
in	n	Mol numbers [mol]

Returns

Speed of sound [m/s]

5.54.2.5 twophasespeedofsound()

```
real function, public speed_of_sound::twophasespeedofsound (
    integer, intent(in) nph,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, dimension(nph), intent(in) beta,
    real, dimension(nph,nc), intent(in) x,
    integer, dimension(nph), intent(in) phase )
```

Calculate speed-of-sound for liqid-liquid or gas-liquid mixtures.

Author

MH, 2013-09

Parameters

in	nph	Maximum number of phases
in	t	Temperature [K]
in	р	Pressure [Pa]
in	Ζ	Overall molar compozition [-]
in	beta	Phase molar fraction [-]
in	x	Phase molar compozition [-]
in	phase	Phase spec

5.55 spinodal Module Reference

Methods for mapping spinodal.

Functions/Subroutines

- subroutine, public initial_stab_limit_point (p, z, v, t, phase, ierr, tmin)
 - Given pressure find initial point (T, v) for mapping stability line.
- subroutine, public map_stability_limit (p0, z, tmin, tl, pl, vl, nl, ierr, dlnv_override, tliq_start) Map limit of stable phases.
- real function, public rhomax pr (x)
 - Calculate maximum density according to the Peng-Robinson EoS. Equals the inverse covolume. PR is preferred over SRK since it gives higher max.
- real function, public rho_of_meta_extremum (t, x, phase, rho_init_in)

Computes the density at the first local pressure extremum for a general EoS. If no such extremum exists (i.e. a monotone rho-P curve), return a negative density.

- - Locate property spinodal curve intersect.
- subroutine, public locate_spinodal_prop_min_max_pure_fluid (propflag, z, p0, ts_min, vs_min, ps_min, ts
 __max, vs_max, ps_max, ierr)
 - Locate extrema on spinodal curve.
- subroutine, public tv_meta_ps (p, s, n, t, v, ierr)

Solve for stable or meta-stable state given entropy and pressure.

• subroutine, public map_meta_isentrope (p0, s, n, pmin, nmax, t, v, p, ierr) Map single phase isentrope in meta-stable region.

Variables

- integer, parameter, public nmax = 1000
- integer, parameter, public spin_locate_from_entropy = 1
- integer, parameter, public **spin_locate_from_volume** = 2
- integer, parameter, public spin_locate_from_enthalpy = 3
- integer, parameter, public spin_locate_from_temperature = 4
- integer, parameter, public spin locate from pressure = 5
- integer, parameter, public spin locate from energy = 6

5.55.1 Detailed Description

Methods for mapping spinodal.

5.55.2 Function/Subroutine Documentation

5.55.2.1 initial_stab_limit_point()

```
subroutine, public spinodal::initial_stab_limit_point (
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(out) v,
    real, intent(out) t,
    integer, intent(in) phase,
    integer, intent(out) ierr,
    real, intent(in), optional tmin )
```

Given pressure find initial point (T,v) for mapping stability line.

Author

MH, 2016-02

Parameters

in	Ζ	Overall compozition
in	р	Pressure [Pa]
in	phase	Where to look for initial point
out	t	Temperature [K]
out	V	Specific volume [m3/mol]
out	ierr	Error flag

5.55.2.2 locate_spinodal_prop_min_max_pure_fluid()

subroutine, public spinodal::locate_spinodal_prop_min_max_pure_fluid (

```
integer, intent(in) propflag,
real, dimension(nc), intent(in) z,
real, intent(in) p0,
real, intent(out) ts_min,
real, intent(out) vs_min,
real, intent(out) ps_min,
real, intent(out) ts_max,
real, intent(out) vs_max,
real, intent(out) ps_max,
integer, intent(out) ierr)
```

Locate extrema on spinodal curve.

Author

MH, 2021-02

5.55.2.3 locate_spinodal_prop_pure_fluid()

Author

MH, 2020-01

5.55.2.4 map_meta_isentrope()

```
subroutine, public spinodal::map_meta_isentrope (
    real, intent(in) p0,
    real, intent(in) s,
    real, dimension(nc), intent(in) n,
    real, intent(in) pmin,
    integer, intent(in) nmax,
    real, dimension(nmax), intent(out) t,
    real, dimension(nmax), intent(out) v,
    real, dimension(nmax), intent(out) p,
    integer, intent(out) ierr )
```

Map single phase isentrope in meta-stable region.

Author

MH, 2021-02

5.55.2.5 map_stability_limit()

```
subroutine, public spinodal::map_stability_limit (
    real, intent(in) p0,
    real, dimension(nc), intent(in) z,
```

```
real, intent(in) tmin,
real, dimension(nmax), intent(out) tl,
real, dimension(nmax), intent(out) pl,
real, dimension(nmax), intent(out) vl,
integer, intent(out) nl,
integer, intent(out) ierr,
real, intent(in), optional dlnv_override,
real, intent(in), optional tliq_start)
```

Map limit of stable phases.

Author

MH, 2015-11

Parameters

in	Z	Overall compozition
in	<i>р</i> 0	Pressure first point on line [Pa]
in	tmin	Stop mapping if $T < Tmin [K]$
out	tl	Line temperature [K]
out	vl	Line specific volume [m3/mol]
out	pl	Line pressure [Pa]
out	ierr	Error flag
out	nl	Actual number of points on curve
in	dlnv_override	Volume step override [m3/mol]

5.55.2.6 rho_of_meta_extremum()

Computes the density at the first local pressure extremum for a general EoS. If no such extremum exists (i.e. a monotone rho-P curve), return a negative density.

Todo : May need more sophisticated method of choosing initial liquid rho.

- : May need more robust handling of overshoots. Now we just "hope".
- : May need to check that we have converged to the correct extremum.

Author

Ailo 2016-01

in	t	Temperature [K]
in	X	Composition
in	phase	Phase flag; VAPPH or LIQPH
in	rho_init⇔	Override initial rho if desired
	_in	

Returns

[mol/m[^]3]

5.55.2.7 rhomax_pr()

```
real function, public spinodal::rhomax_pr (
```

```
real, dimension(nce) x )
```

Calculate maximum density according to the Peng-Robinson EoS. Equals the inverse covolume. PR is preferred over SRK since it gives higher max.

There is no guarantee that this is the maximum for an EoS other than PR.

Author

Ailo 2016-01

Parameters

x Composition (needn't be normalized)

Returns

Maximum density [mol/m[^]3]

5.55.2.8 tv_meta_ps()

```
subroutine, public spinodal::tv_meta_ps (
    real, intent(in) p,
    real, intent(in) s,
    real, dimension(nc), intent(in) n,
    real, intent(inout) t,
    real, intent(inout) v,
    integer, intent(out) ierr )
```

Solve for stable or meta-stable state given entropy and pressure.

Author

MH, 2021-02

5.56 stability Module Reference

Minimize reduced tangent plane distance.

Functions/Subroutines

- subroutine, public checkvlestability (t, p, z, isstable, wsol, new_phase)
 Check if a feed is stable against vapor-liquid split.
- real function, public stabcalc (t, p, z, phase, fugz, fug, wsol, pretermlim) *Calculate minimum reduced tangent plane distance.*
- real function, public stabcalcw (nd, k, t, p, xx, w, phase, fugz, fugw, pretermlim) *Calculate minimum reduced tangent plane distance.*
- real function, public tpd_fun (w, fugw, d)

Calculate reduced tangent plane distance.

- subroutine, public set_stability_tolerance (relativetolerance) Set tolerance for stability solver.
- real function, public get_stability_tolerance ()

Get tolerance for stability solver.

Variables

real, parameter, public stabilitylimit = -machine_prec * 1000.0
 Values > negative_lim is treated as zero or positive.

5.56.1 Detailed Description

Minimize reduced tangent plane distance.

Todo Add termination when approaching trivial solution.

5.56.2 Function/Subroutine Documentation

5.56.2.1 checkvlestability()

```
subroutine, public stability::checkvlestability (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    logical, intent(out) isstable,
    real, dimension(nc), intent(out) wsol,
    integer, intent(out) new_phase )
```

Check if a feed is stable against vapor-liquid split.

Author

Ailo, 2016-12-21

Parameters

in	t	Temperature [K]
in	р	Pressure [Pa]
in	Ζ	Trial composition (Overall compozition)
out	isstable	Is the solution trivial? (That is; $W == Z$)
out	wsol	Solution.

5.56.2.2 get_stability_tolerance()

real function, public stability::get_stability_tolerance
Get tolerance for stability solver.

Author

MH, 2014-11

Returns

Relative tolerance for staility solver

5.56.2.3 set_stability_tolerance()

Set tolerance for stability solver.

Author

MH, 2014-11

in *relativetolerance* Relative tolerance for staility solver

5.56.2.4 stabcalc()

```
real function, public stability::stabcalc (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase,
    real, dimension(nc), intent(in) fugz,
    real, dimension(nc), intent(out) fug,
    real, dimension(nc), intent(out), optional wsol,
    real, intent(in), optional pretermlim )
```

Calculate minimum reduced tangent plane distance.

Set starting compozition based on phase flag.

Note that the FUGZ must contain the single phase fugasities with the lowest gibbs energy when calling this function.

Author

MHA, 2012-01-30

Parameters

in	phase	Phase flag for compozition initiation (the
in	Ζ	Trial composition (Overall compozition)
in	t	Temperature [K]
in	р	Pressure [Pa]
in	fugz	Sigle phase fagasities for Z. Minimum gibbs solution.
out	fug	The fugasities at the solution, W.
out	wsol	Solution.
in	pretermlim	Control when solver terminates prematurely

Returns

Tangent plane distance

5.56.2.5 stabcalcw()

```
tpdm(W) = 1 + \sum W_i (\ln W_i + \ln \varphi - d_i - 1).
```

```
Where the sum is over all components.
```

Start by doing 3 iterations with successive substitution, if not converged, switch to a modefied newton minimizer.

Note that the FUGZ must contain the single phase fugasities with the lowest gibbs energy when calling this function. Initial compozition guess for W must also be supplied.

Author

MHA, 2012-01-30

Parameters

in	nd	Dimension of compozition matrix
in	k	Index of Trial phase
in	phase	Phase flag. Determine what root we are calculating in the eos.
in	ХХ	All phases in equilibrium
in,out	W	Inital guess
in	fugz	Fugacity of trial phase
in	t	Temperature [K]
in	p	Pressure [Pa]
out	fugw	The fugasities at the solution, W.
in	pretermlim	Control when solver terminates prematurely

5.56.2.6 tpd_fun()

```
real function, public stability::tpd_fun (
real, dimension(nc), intent(in) w,
real, dimension(nc), intent(in) fugw,
real, dimension(nc), intent(in) d)
Calculate reduced tangent plane distance.
tpdm(W) = 1 + \sum W_i(\ln W_i + \ln \varphi - d_i - 1).
Where the sum is over all components.
```

Author

MH, 2014-10-27

Parameters

in	W	Composition vector
in	fugw	The fugasities at the solution, W.

5.57 state_functions Module Reference

Calculate jacobian for Michelsen state matrices.

Functions/Subroutines

- subroutine, public getstatefuncmatrix (t, p, z, betav, betal, x, y, spec, vspec, m, rhs, phase, simplematrix) Calculate jacobian matrix for Michelsen state functions Implemented for two phase PH, PS, PT and UV flash Included TV and PV for convenience.
- subroutine, public getstatefunc (t, p, z, betav, betal, x, y, spec, vspec, rhs, phase)

Calculate RHS function values for Michelsen state functions Values corrensponds to subroutine getStateFuncMatirx. • real function, public dhdt_twophase (t, p, z, betav, betal, x, y, ph)

Calculate two-phase heat capacity at constant pressure.
- real function, public dhdp_twophase (t, p, z, betav, betal, x, y, ph)
 - Calculate two-phase enthalpy change at constant temperature.
- real function, public dvdt_twophase (t, p, z, betav, betal, x, y, ph)
- Calculate two-phase temperature differential of specific volume at constant pressure.
- real function, public dvdp_twophase (t, p, z, betav, betal, x, y, ph)
 Calculate two-phase pressure differential of specific volume at constant temperature.
- subroutine, public dnvdx (t, p, z, betav, betal, x, y, dbetadt, dbetadp, dndt, dndp)
 Calculate temperature/pressure differential of mole number (and phase fraction) at constant pressure.
- subroutine, public getsvderivativestwophase (t, p, z, betav, betal, x, y, iphase, dsdp_v, dsdt_v, dvdp_s, dvdt_s)
 Calculate single- or two-phase derivatives of entropy and/or molar volume.
- subroutine, public getuvderivativestwophase (t, p, z, betav, betal, x, y, iphase, dudp_v, dudt_v, dvdp_u, dvdt
 _u)
 - Calculate single- or two-phase derivatives of internal energy and/or molar volume.
- real function, public getjoulethompsoncoeff (t, p, z, betav, betal, x, y, phase, ph)
 - Calculate two-phase Joule-Thompson coefficient dT/dP at constant enthalpy.
- real function, public dpdt_twophase (t, p, z, betav, betal, x, y, phase, ph)
 Calculate temperaure differential of pressure at constant volume.

5.57.1 Detailed Description

Calculate jacobian for Michelsen state matrices.

Todo Need trace-component functionallity.

5.57.2 Function/Subroutine Documentation

5.57.2.1 dhdp_twophase()

```
real function, public state_functions::dhdp_twophase (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in) betav,
    real, intent(in) betal,
    real, dimension(nc), intent(in) x,
    real, dimension(nc), intent(in) y,
    integer, dimension(2), intent(in), optional ph )
```

Calculate two-phase enthalpy change at constant temperature.

Author

MH, 2014

in	betav	Vapour phase molar fraction [-]
in	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	у	Vapour molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]
in	ph	Phase integers

5.57.2.2 dhdt_twophase()

```
real function, public state_functions::dhdt_twophase (
        real, intent(in) t,
        real, intent(in) p,
        real, dimension(nc), intent(in) z,
        real, intent(in) betav,
        real, intent(in) betal,
        real, dimension(nc), intent(in) x,
        real, dimension(nc), intent(in) y,
        integer, dimension(2), intent(in), optional ph )
```

Calculate two-phase heat capacity at constant pressure.

Author

MHA, 2012-03-20

Parameters

in	betav	Vapour phase molar fraction [-]
in	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	У	Vapour molar compozition [-]
in	t	Temperature [K]
in	p	Pressure [Pa]
in	ph	Phase integers

5.57.2.3 dnvdx()

```
subroutine, public state_functions::dnvdx (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in) betav,
    real, intent(in) betal,
    real, dimension(nc), intent(in) x,
    real, dimension(nc), intent(in) y,
    real, intent(out), optional dbetadt,
    real, dimension(nc), intent(out), optional dndt,
    real, dimension(nc), intent(out), optional dndt,
    real, dimension(nc), intent(out), optional dndt,
    real, dimension(nc), intent(out), optional dndt,
```

Calculate temperature/pressure differential of mole number (and phase fraction) at constant pressure.

Author

MH, 2015-01

in	betav	Vapour phase molar fraction [-]
in	betal	Vapour phase molar fraction [-]
in	Z	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	У	Vapour molar compozition [-]
in	t	Temperature [K]

Parameters

in	р	Pressure [Pa]
out	dndp	Mole based

5.57.2.4 dpdt_twophase()

```
real function, public state_functions::dpdt_twophase (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in) betav,
    real, intent(in) betal,
    real, dimension(nc), intent(in) x,
    real, dimension(nc), intent(in) y,
    integer, intent(in) phase,
    integer, dimension(2), intent(in), optional ph )
```

Calculate temperaure differential of pressure at constant volume.

Author

MH, 2015-10

Parameters

in	betav	Vapour phase molar fraction [-]
in	betal	Vapour phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	У	Vapour molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]
in	phase	Phase identifyer
in	ph	Phase integers

5.57.2.5 dvdp_twophase()

```
real function, public state_functions::dvdp_twophase (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in) betav,
    real, intent(in) betal,
    real, dimension(nc), intent(in) x,
    real, dimension(nc), intent(in) y,
    integer, dimension(2), intent(in), optional ph )
```

Calculate two-phase pressure differential of specific volume at constant temperature.

Author

MH, 2012-07-06

in	betav	Vapour phase molar fraction [-	-1
	Solur	rapoal phace molal machen	

Parameters

in	betal	Vapour phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	у	Vapour molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]
in	ph	Phase integers

5.57.2.6 dvdt_twophase()

```
real function, public state_functions::dvdt_twophase (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in) betav,
    real, intent(in) betal,
    real, dimension(nc), intent(in) x,
    real, dimension(nc), intent(in) y,
    integer, dimension(2), intent(in), optional ph )
```

Calculate two-phase temperature differential of specific volume at constant pressure.

Author

MH, 2012-07-06

Parameters

in	betav	Vapour phase molar fraction [-]
in	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	у	Vapour molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]
in	ph	Phase integers

5.57.2.7 getjoulethompsoncoeff()

real function, public state_functions::getjoulethompsoncoeff (

```
real, intent(in) t,
real, intent(in) p,
real, dimension(nc), intent(in) z,
real, intent(in) betav,
real, intent(in) betal,
real, dimension(nc), intent(in) x,
real, dimension(nc), intent(in) y,
integer, intent(in) phase,
integer, dimension(2), intent(in), optional ph)
```

Calculate two-phase Joule-Thompson coefficient dT/dP at constant enthalpy.

Author

MH, 2015-09

Parameters

in	betav	Vapour phase molar fraction [-]
in	betal	Vapour phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	У	Vapour molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]
in	phase	Phase identifyer
in	ph	Phase integers

5.57.2.8 getstatefunc()

```
subroutine, public state_functions::getstatefunc (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in) betav,
    real, intent(in) betal,
    real, dimension(nc), intent(in) x,
    real, dimension(nc), intent(in) y,
    character(len=2), intent(in) spec,
    real, dimension(2), intent(out) rhs,
    integer, dimension(2), intent(in), optional phase )
```

Calculate RHS function values for Michelsen state functions Values corrensponds to subroutine getStateFuncMatirx.

Author

MH, 2014-10-23

Parameters

in	betav	Vapour phase molar fraction [-]
in	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	У	Vapour molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]
in	spec	Character specification
in	vspec	Specification value
out	rhs	Right hand side
in	phase	Phase integer

5.57.2.9 getstatefuncmatrix()

subroutine, public state_functions::getstatefuncmatrix (

```
real, intent(in) t,
real, intent(in) p,
real, dimension(nc), intent(in) z,
real, intent(in) betav,
real, intent(in) betal,
real, dimension(nc), intent(in) x,
real, dimension(nc), intent(in) y,
character(len=2), intent(in) spec,
real, dimension(2), intent(in) vspec,
real, dimension(:,:), intent(out) m,
real, dimension(:), intent(out) rhs,
integer, dimension(2), intent(in), optional phase,
logical, intent(in), optional simplematrix )
```

Calculate jacobian matrix for Michelsen state functions Implemented for two phase PH, PS, PT and UV flash Included TV and PV for convenience.

Author

MHA, 2012-03-20

Parameters

in	betav	Vapour phase molar fraction [-]
in	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	У	Vapour molar compozition [-]
in	t	Temperature [K]
in	p	Pressure [Pa]
in	spec	Character specification
in	vspec	Specification value
out	т	Jacobian matrix
out	rhs	Right hand side
in	phase	Phase integer
in	simplematrix	Deactivate composition diff.

5.57.2.10 getsvderivativestwophase()

```
subroutine, public state_functions::getsvderivativestwophase (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in) betav,
    real, intent(in) betal,
    real, dimension(nc), intent(in) x,
    real, dimension(nc), intent(in) y,
    integer, intent(in) iphase,
    real, intent(out), optional dsdp_v,
    real, intent(out), optional dsdt_v,
    real, intent(out), optional dvdp_s,
    real, intent(out), optional dvdt_s)
```

Calculate single- or two-phase derivatives of entropy and/or molar volume.

Author

MAG, 2015-03-03

Parameters

in	betav	Vapour phase molar fraction [-]
in	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	x	Liquid molar compozition [-]
in	У	Vapour molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]
in	iphase	Phase flag
out	dsdp⇔	Partial derivative of entropy w.r.t. pressure at constant molar volume
	_v	
out	dsdt⇔	Partial derivative of entropy w.r.t. temperature at constant molar volume
	_v	
out	dvdp⇔	Partial derivative of molar volume w.r.t. pressure at constant entropy
	_s	
out	dvdt⇔	Partial derivative of molar volume w.r.t. temperature at constant entropy
	_s	

5.57.2.11 getuvderivativestwophase()

subroutine, public state_functions::getuvderivativestwophase (

```
real, intent(in) t,
real, intent(in) p,
real, dimension(nc), intent(in) z,
real, intent(in) betav,
real, intent(in) betal,
real, dimension(nc), intent(in) x,
real, dimension(nc), intent(in) y,
integer, intent(in) iphase,
real, intent(out), optional dudp_v,
real, intent(out), optional dudt_v,
real, intent(out), optional dvdp_u,
real, intent(out), optional dvdt_u)
```

Calculate single- or two-phase derivatives of internal energy and/or molar volume. CAUTION: The implementations of dudp_v and dudt_v are covered by the unit tests in 3DMF. The implementations of dvdp_u and dvdt_u have not been tested yet.

Author

MAG, 2015-11-09

Parameters

in	betav	Vapour phase molar fraction [-]	
in	betal	Liquid phase molar fraction [-]	
in	Ζ	Overall molar composition [-]	
in	x	Liquid molar composition [-]	
in	У	Vapour molar composition [-]	
in	t	Temperature [K]	
in	p	Pressure [Pa]	

Generated by Doxygen

in	iphase	Phase flag
out	dudp⇔	Partial derivative of internal energy w.r.t. pressure at constant molar volume
	_v	
out	dudt⇔	Partial derivative of internal energy w.r.t. temperature at constant molar volume
	_v	
out	dvdp⇔	Partial derivative of molar volume w.r.t. pressure at constant internal energy
	_u	
out	dvdt⇔	Partial derivative of molar volume w.r.t. temperature at constant internal energy
	_ <i>u</i>	

Parameters

5.58 sv_solver Module Reference

Calculate solve SV-flash for single phase gas/liquid or a gas-liquid mixture.

Functions/Subroutines

- subroutine, public twophasesvflash (t, p, z, beta, betal, x, y, sspec, vspec, phase, ierr) Do SV-flash: Switch for multicomponent (mc) and single component solver.
- subroutine, public twophasesvflashnested (t, p, z, beta, betal, x, y, sspec, vspec, phase, isconverged) Do SV-flash using PT-flash in nested loop.
- subroutine, public twophasesvflashfull (t, p, z, beta, betal, x, y, sspec, vspec, phase, converged) *Do SV-flash using full equation system.*
- subroutine, public fun_1ph_sv (f, var, param)
 - Calculate state function for SV system.
- subroutine, public jac_1ph_sv (jac, var, param)
 - Calculate state function for PH system and its differentials.
- subroutine, public enablecustumstabcalc (w, phase)
 - Enable additional phase stability check.
- subroutine, public disablecustumstabcalc ()

Disable additional phase stability check.

- subroutine, public twophasesvsinglecomp (t, p, z, beta, betal, x, y, sspec, vspec, phase, ierr) Do SV-flash for single component.
- subroutine, public singlecompsv_tv (t, p, z, beta, betal, x, y, sspec, vspec, phase, isconverged, pmin, pmax)
 Do SV-flash for single component single phase. Use U(T,v)
- subroutine, public setnestedsvtolerance (tolerance, nmax, linesearch_nmax)
 - Set tolerance for nested loop SV flash.
- subroutine, public getnestedsvtolerance (tolerance, nmax, linesearch_nmax)
 - Get tolerance for nested loop SV flash.
- subroutine, public setfulleqsvtolerance (tolerance, nmax, linesearch_nmax, gibbs_tolerance) Set tolerance for fulleq. SV flash.
- subroutine, public getfulleqsvtolerance (tolerance, nmax, linesearch_nmax, gibbs_tolerance) Get tolerance for fulleq. SV flash.
- subroutine, public setsinglecompsytolerance (tolerance, nmax, linesearch_nmax) Set tolerance for single component SV flash.
- subroutine, public getsinglecompsvtolerance (tolerance, nmax, linesearch_nmax) Get tolerance for single component SV flash.

5.58.1 Detailed Description

Calculate solve SV-flash for single phase gas/liquid or a gas-liquid mixture.

Todo Need trace-component functionallity.

Consider merging with UV-flash

5.58.2 Function/Subroutine Documentation

5.58.2.1 disablecustumstabcalc()

```
subroutine, public sv_solver::disablecustumstabcalc
Disable additional phase stability check.
```

Author

MH, 2014-01

5.58.2.2 enablecustumstabcalc()

Author

MH, 2014-01

Parameters

in	phase Phase identifyer	
in	W	Initial comosition in stability calculation

5.58.2.3 fun_1ph_sv()

Author

MH, 2012-08-15

Parameters

out	f	Function values
in	var	Variable vector
in	param	Parameter vector

5.58.2.4 getfulleqsvtolerance()

```
integer, intent(out) linesearch_nmax,
  real, intent(out), optional gibbs_tolerance )
Get tolerance for fulleq. SV flash.
```

Author

MH, 2015

Parameters

out	tolerance	Solver tolerance
out	nmax	Maximum number of iteretions
out	linesearch_nmax	Maximum number of line-searches
out	gibbs_tolerance	Tolerance for when to accept two-phase solutions

5.58.2.5 getnestedsvtolerance()

```
subroutine, public sv_solver::getnestedsvtolerance (
            real, intent(out) tolerance,
            integer, intent(out) nmax,
            integer, intent(out) linesearch_nmax )
Get tolerance for nested loop SV flash.
```

Author

MH, 2015

Parameters

out	tolerance	Solver tolerance
out	nmax	Maximum number of iteretions
out	linesearch_nmax	Maximum number of line-searches

5.58.2.6 getsinglecompsvtolerance()

```
subroutine, public sv_solver::getsinglecompsvtolerance (
    real, intent(out) tolerance,
    integer, intent(out) nmax,
    integer, intent(out) linesearch_nmax)
```

Get tolerance for single component SV flash.

Author

MH, 2015

Parameters

out	tolerance	Solver tolerance
out	nmax	Maximum number of iteretions
out	linesearch_nmax	Maximum number of line-searches

5.58.2.7 jac_1ph_sv()

subroutine, public sv_solver::jac_1ph_sv (

real, dimension(2,2), intent(out) jac, real, dimension(2), intent(in) var, real, dimension(nc+3), intent(in) param)

Calculate state function for PH system and its differentials.

Author

MH, 2012-08-15

Parameters

in	var	Variable vector
in	param	Parameter vector
out	jac	Jacobian objective function

5.58.2.8 setfulleqsvtolerance()

subroutine,	<pre>public sv_solver::setfulleqsvtolerance (</pre>
	<pre>real, intent(in) tolerance,</pre>
	<pre>integer, intent(in) nmax,</pre>
	<pre>integer, intent(in) linesearch_nmax,</pre>
	<pre>real, intent(in), optional gibbs_tolerance)</pre>
Set tolerance	for fulleq. SV flash.

Author

MH, 2015

Parameters

in	tolerance	Solver tolerance
in	nmax	Maximum number of iteretions
in	linesearch_nmax	Maximum number of line-searches
in	gibbs_tolerance	Tolerance for when to accept two-phase solutions

5.58.2.9 setnestedsvtolerance()

subroutine, public sv_solver::setnestedsvtolerance (
 real, intent(in) tolerance,
 integer, intent(in) nmax,
 integer, intent(in) linesearch_nmax)

Set tolerance for nested loop SV flash.

Author

MH, 2015

in	tolerance	Solver tolerance
in	nmax	Maximum number of iteretions
in	linesearch_nmax	Maximum number of line-searches

5.58.2.10 setsinglecompsvtolerance()

Author

MH, 2015

Parameters

i	n	tolerance	Solver tolerance
i	n	nmax	Maximum number of iteretions
i	n	linesearch_nmax	Maximum number of line-searches

5.58.2.11 singlecompsv_tv()

```
subroutine, public sv_solver::singlecompsv_tv (
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(inout) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) sspec,
    real, intent(in) vspec,
    integer, intent(inout) phase,
    logical, intent(out), optional isconverged,
    real, intent(in), optional pmin,
    real, intent(in), optional pmax )
Do SV-flash for single component single phase. Use U(T,v)
```

Author

MH, 2014

in,out	beta	Vapour phase molar fraction [-]
in,out	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in,out	p	Pressure [Pa]
in	sspec	Specified entropy [J/mol/K]
in	vspec	Specified specific volume [m3/mol]
in,out	phase	Phase identifier

5.58.2.12 twophasesvflash()

```
subroutine, public sv_solver::twophasesvflash (
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) sspec,
    real, intent(in) vspec,
    integer, intent(inout) phase,
    integer, intent(out), optional ierr)
```

Do SV-flash: Switch for multicomponent (mc) and single component solver.

Author

MH, 2014

Parameters

in,out	beta	Vapour phase molar fraction [-]
out	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in,out	р	Pressure [Pa]
in	sspec	Specified entropy [J/mol/K]
in	vspec	Specified specific volume [m3/mol]
in,out	phase	Phase identifier
out	ierr	Integer error flag

5.58.2.13 twophasesvflashfull()

```
subroutine, public sv_solver::twophasesvflashfull (
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) sspec,
    real, intent(in) vspec,
    integer, intent(inout) phase,
    logical, intent(out) converged )
```

Do SV-flash using full equation system. Assume initial values for specified phase.

Author

MH, 2012-08-15

t

р

sspec

vspec

phase

Parameters

in,out

in,out

in,out

in

in

5.58.2.14 twophasesvflashnested()

```
subroutine, public sv_solver::twophasesvflashnested (
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) sspec,
    real, intent(in) vspec,
    integer, intent(inout) phase,
    logical, intent(out), optional isconverged )
Do SV-flash using PT-flash in negeted loop.
```

Temperature [K]

Specified entropy [J/mol/K]

Specified specific volume [m3/mol]

Pressure [Pa]

Phase identifier

Function to minimize: $-\frac{g_{min}+TS_{spec}-pv_{spec}}{R}$.

Author

MH, 2015-02

Parameters

in,out	beta	Vapour phase molar fraction [-]
out	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in,out	р	Pressure [Pa]
in	sspec	Specified entropy [J/mol/K]
in	vspec	Specified specific volume [m3/mol]
in,out	phase	Phase identifier

5.58.2.15 twophasesvsinglecomp()

```
real, dimension(nc), intent(in) z,
real, intent(inout) beta,
real, intent(inout) betal,
real, dimension(nc), intent(inout) x,
real, dimension(nc), intent(inout) y,
real, intent(in) sspec,
real, intent(in) vspec,
integer, intent(inout) phase,
integer, intent(out), optional ierr)
```

Do SV-flash for single component.

Todo Need handling of solutions close to critical point

Author

MH, 2014

Parameters

in,out	beta	Vapour phase molar fraction [-]
in,out	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in,out	р	Pressure [Pa]
in	sspec	Specified entropy [J/mol/K]
in	vspec	Specified specific volume [m3/mol]
in,out	phase	Phase identifier
out	ierr	Phase identifier

5.59 thermo_utils Module Reference

Module for thermodynamic helper-routines which may be useful for user-applications, but which do not belong in eos.f90.

Functions/Subroutines

integer function, public guessphase (t, p, z, t_comp, p_comp, vb_ratio)

Estimate the single phase given by T,P,z as either liquid or vapor.

- integer function, public guessphasetv (t, v, z, t_comp, v_comp, vb_ratio)
 Estimate the single phase given by T,V,z as either liquid or vapor.
- logical function, public iswatercomponent (i)
- real function, public watercomponentfraction (z)
- subroutine, public calcInphioffset (pid, Inphi_offset)

Set offset to Wilson liquid fugacity.

- subroutine, public wilsonk (t, p, k, dkdt, dkdp, liqtype) Calculate Wilson K-values.
- subroutine, public wilsonki (i, t, p, Inphi_offset, k) Calculate Wilson K-value for component i.
- subroutine, public wilsonkdiff (t, p, k, dkdp, dkdt)
 Calculate Wilson K-values with pressure and temperature differentials.

- integer function, public get_n_solids (nd, phasevec) Get number of solids in a mixture.
- logical function, public issinglecomp (z)

```
Is the "mixture" single component.
```

logical function, public istwocomp (z)

Is the "mixture" two component.

- integer function, public maxcomp (z) Return index of largest component fraction.
- logical function, public phase_is_fake (t, p, z, phase)

Is the solver returning FAKEPH solution.

5.59.1 Detailed Description

Module for thermodynamic helper-routines which may be useful for user-applications, but which do not belong in eos.f90.

Author

EA, 2014-05

5.59.2 Function/Subroutine Documentation

5.59.2.1 calcInphioffset()

Set offset to Wilson liquid fugacity.

Author

MH, 2016-03

5.59.2.2 get_n_solids()

```
integer function, public thermo_utils::get_n_solids (
```

integer *nd*,

integer, dimension(nph), intent(in) phasevec)

Get number of solids in a mixture.

Author

MH, 2018-06

Parameters

	nd	Number of solids
in	phasevec	Phases

5.59.2.3 guessphase()

```
integer function, public thermo_utils::guessphase (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in), optional t_comp,
    real, intent(in), optional p_comp,
    real, intent(in), optional vb_ratio )
```

Estimate the single phase given by T,P,z as either liquid or vapor.

Author

EA, 2014-05. Updated EA, 2015-01 Based on original code by MH, 2012-11-22

Parameters

in	t	Temperature (K)
in	р	Pressure (Pa)
in	Ζ	Molar composition (mol/mol)
in	t_comp	Override for comparison point (K)
in	p_comp	Override for comparison point (Pa)
in	vb_ratio	Override volume-covolume ratio

Returns

Best guess for phase (LIQPH or VAPPH)

5.59.2.4 guessphasetv()

```
integer function, public thermo_utils::guessphasetv (
    real, intent(in) t,
    real, intent(in) v,
    real, dimension(nc), intent(in) z,
    real, intent(in), optional t_comp,
    real, intent(in), optional v_comp,
    real, intent(in), optional vb_ratio )
```

Estimate the single phase given by T,V,z as either liquid or vapor.

Author

MH, 20018-04-13 Based on guessPhase code

Parameters

in	t	Temperature (K)
in	V	Volume (m3/mol)
in	Ζ	Molar composition (mol/mol)
in	t_comp	Override for comparison point (K)
in	v_comp	Override for comparison point (m3/mol)
in	vb_ratio	Override volume-covolume ratio

Returns

Best guess for phase (LIQPH or VAPPH)

5.59.2.5 issinglecomp()

Author

M. Hammer October 2014

5.59.2.6 istwocomp()

Author

M. Hammer March 2016

5.59.2.7 maxcomp()

Return index of largest component fraction.

Author

M. Hammer October 2014

5.59.2.8 phase_is_fake()

```
logical function, public thermo_utils::phase_is_fake (
            real, intent(in) t,
            real, intent(in) p,
            real, dimension(nc), intent(in) z,
            integer, intent(in) phase )
Is the solver returning FAKEPH solution.
```

Author

MH, 2020-01

Parameters

in	Ζ	Molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]

Returns

Phase is FAKEPH

5.59.2.9 wilsonk()

```
subroutine, public thermo_utils::wilsonk (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(out) k,
    real, dimension(nc), intent(out), optional dkdt,
    real, dimension(nc), intent(out), optional dkdp,
    integer, intent(in), optional liqtype )
Calculate Wilson K-values.
```

Generated by Doxygen

Author

MH, 2013-03-06

Parameters

in	t	K - Temperature	
in	р	Pa - Pressure	
out	k	K-values	
out	dkdt	1/K - Differential of K-values wrpt. temperature	
out	dkdp	1/Pa - Differential of K-values wrpt. pressure	
in	liqtype	Type of liquid (WATER, NONWATER)	

5.59.2.10 wilsonkdiff()

```
subroutine, public thermo_utils::wilsonkdiff (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(out) k,
    real, dimension(nc), intent(out) dkdp,
    real, dimension(nc), intent(out) dkdt )
Calculate Wilson K-values with pressure and temperature differentials.
```

Author

MH, 2013-03-06

Parameters

in	t	K - Temperature
in	р	Pa - Pressure
out	k	K-values
out	dkdt	1/K - Differential of K-values wrpt. temperature
out	dkdp	1/Pa - Differential of K-values wrpt. pressure

5.59.2.11 wilsonki()

```
subroutine, public thermo_utils::wilsonki (
    integer, intent(in) i,
    real, intent(in) t,
    real, intent(in) p,
    real, intent(in) lnphi_offset,
    real, intent(out) k )
```

Calculate Wilson K-value for component i.

Author

MH, 2013-03-06

in	i	Component
in	t	K - Temperature
in	р	Pa - Pressure
out	k	K-value

5.60 thermopack_var Module Reference

Global variables for ThermoPack. They are initialized in the thermo_model module.

Data Types

- interface allocate_and_init_intf
- interface assign_intf
- type base_eos_param
- type eos_param_pointer
- type thermo_model
- type thermo_model_pointer

Functions/Subroutines

- type(thermo_model) function, pointer, public get_active_thermo_model ()
- logical function, public active_thermo_model_is_associated ()
- class(base_eos_param) function, pointer, public get_active_eos ()
- class(base_eos_param) function, pointer, public get_active_alt_eos ()
- type(gendata_pointer) function, dimension(:), pointer get_active_comps ()
- logical function is_model_container (model, index)
- subroutine, public activate_model (index)
- integer function, public add_eos ()
- subroutine, public delete_eos (index)
- subroutine, public base_eos_dealloc (eos)
- subroutine assign_base_eos_param (this, other)
- subroutine thermo_model_dealloc (model)
- subroutine, public delete_all_eos ()
- subroutine, public get_eos_identification (eosid)
- subroutine, public set_tmin (tmin)
- real function, public get_tmin ()
- subroutine, public set_tmax (tmax)
- real function, public get_tmax ()
- subroutine, public **set_pmin** (pmin)
- real function, public get_pmin ()
- subroutine, public set_pmax (pmax)
- real function, public get_pmax ()
- real function, public get_rgas ()
- subroutine, public apparent_to_real_mole_numbers (n, ne)
- subroutine, public real_to_apparent_diff (fe_n, f_n)
- subroutine, public real_to_apparent_differentials (fe_n, fe_tn, fe_vn, fe_nn, f_n, f_tn, f_vn, f_nn)
- subroutine, public tp_lnfug_apparent (nc, ne, n, p, lnfug_real, lnfug, dlnfugdt_real, dlnfugdp_real, dlnfugdn, _real, dlnfugdt, dlnfugdp, dlnfugdn)

Variables

- real rgas = Rgas_default
 - J/mol/K.
- real krgas = 1000.0*Rgas_default
 - J/kmol/K Temperature/pressure min/max values.
- real tptmax = 999.0

```
К.
```

- real **tptmin** = 80.0
 - К.
- real tppmax = 1.0e8

Pa.

- real tppmin = 1.0e1
 - Pa.

integer **nph** = 0

- Number of phases:
- integer nc = 0

Number of apparent components:

integer nce = 0

Symmetrical upper left part of v_stoich.

• integer ncsym = 0

Total number of associating sites.

- integer numassocsites = 0
- character(len=eosid_len), dimension(:), pointer complist

List of component names.

- type(apparent_container), pointer apparent => NULL()
- type(thermo_model), pointer p_active_model => NULL()
- type(thermo_model_pointer), dimension(:), allocatable thermo_models

5.60.1 Detailed Description

Global variables for ThermoPack. They are initialized in the thermo_model module.

5.60.2 Function/Subroutine Documentation

5.60.2.1 tp_Infug_apparent()

```
subroutine, public thermopack_var::tp_lnfug_apparent (
    integer, intent(in) nc,
    real, dimension(nce), intent(in) ne,
    real, dimension(nc), intent(in) n,
    real, intent(in) p,
    real, dimension(nce), intent(in) lnfug_real,
    real, dimension(nce), intent(out) lnfug,
    real, dimension(nce), intent(in), optional dlnfugdt_real,
    real, dimension(nce), intent(in), optional dlnfugdp_real,
    real, dimension(nc), intent(out), optional dlnfugdt,
    real, dimension(nc,nc), intent(out), optional dlnfugdt,
    real, dlnfugdt,
    real, dlnf
```

Parameters

in	n	Apparent mole numbers [mols]
in	р	Pressure [Pa]
in	ne	Real mole numbers [mols]
in	Infug_real	Log of real fugacities
out	Infug	Log of apparent fugacity

5.60.3 Variable Documentation

5.60.3.1 nc

integer thermopack_var::nc = 0

Number of apparent components:

Number of real components, to support apparent composition mode. Always have: nce >= nc

5.61 tp_solver Module Reference

Solve TP flash problem. Look for single phase or a mixture of LV.

Functions/Subroutines

• subroutine, public twophasetpflash (t, p, z, beta, betal, phase, x, y)

Given pressure and temperature calculate phase distribution. Start by doing successive substitutions with acceleration with the Dominant Eigenvalue Method every 5th iteration. If no solution is found in 10 iterations, a modified Newton is used to converge the two phase flash.

subroutine, public rr_successive_substitution_iteration (t, p, z, k_in, sloppy, x, y, beta, k_out, fugl, fugv, g_simp, converged, rr_has_solution, betal, phasey)

Do one iteration of successive substitution. First, solve the Rachford- Rice equation for the given Z and K. Then, calculate the logarithm of the fugacity coefficients and update K.

logical function, public rr_solve (nc_rr, z, k, beta, x, y, sloppy, betal)

Given K-values for all components solve for vapour fraction. If a solution exsist the function will return true, otherwise false.

• real function, public objective (v, param)

Calculate Gibbs energy for a liquid-vapour mixture.

• subroutine, public differentials (v, param, of, dofdv, h)

Calculate Gibbs energy for a liquid-vapour mixture. And its differentials.

Variables

• real, public g_tolerance = machine_prec * 10.0

Accept two-phase solution even though its Gibbs energy is slightly larger than that of the single-phase feed.

5.61.1 Detailed Description

Solve TP flash problem. Look for single phase or a mixture of LV.

Todo Need trace-component functionallity.

Add DEM of order 2 for accelration of multi-phase Rachford-Rice

5.61.2 Function/Subroutine Documentation

5.61.2.1 differentials()

```
subroutine, public tp_solver::differentials (
    real, dimension(nc), intent(in) v,
    real, dimension(2*nc+2), intent(in) param,
    real, intent(out) of,
    real, dimension(nc), intent(out) dofdv,
    real, dimension(nc,nc), intent(out) h )
```

Calculate Gibbs energy for a liquid-vapour mixture. And its differentials.

Author

MHA, 2012-01-30

in	V	Vapour mole numbers [mole]
in	param	Parameter vector
out	h	Hessian matrix of objective function
out	dofdv	Differential of objective function with respect to variables (V)
out	of	Objective function value

5.61.2.2 objective()

```
real function, public tp_solver::objective (
                real, dimension(nc), intent(in) v,
                real, dimension(2*nc+2), intent(in) param )
Calculate Gibbs energy for a liquid-vapour mixture.
```

Author

MHA, 2012-01-30

Parameters

in	V	Vapour mole numbers [mole]
in	param	Parameter vector

Returns

Objective function value

5.61.2.3 rr_solve()

```
real, dimension(nc_rr), intent(out) y,
logical, intent(in) sloppy,
real, intent(out) betal )
```

Given K-values for all components solve for vapour fraction. If a solution exsist the function will return true, otherwise false.

The Rachford-Rice equation to be solved: $g(\beta) = \sum \frac{z_i(K_i-1)}{1-\beta+\beta K_i} = 0.$ Where the sum is over all components.

To avoid problems for $\beta \approx 1.0$, the problem is instead solved for $1.0 - \beta$.

g is a monotonous function in β , and is solved using a Newton method combined with bracketing.

Author

MHA, 2012-01-30

in	nc_rr	Number of components
out	beta	Vapour phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in	k	Molar based K-values [-]
out	x	Liquid molar compozition [-]
out	У	Vapour molar compozition [-]
in	sloppy	Only do single iteration
out	betal	Liquid phase molar fraction [-]

Returns

True is a solution exsist

5.61.2.4 twophasetpflash()

```
subroutine, public tp_solver::twophasetpflash (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(out) beta,
    real, intent(out) betal,
    integer, intent(out) phase,
    real, dimension(nc), intent(out) x,
    real, dimension(nc), intent(out) y )
```

Given pressure and temperature calculate phase distribution. Start by doing successive substitutions with acceleration with the Dominant Eigenvalue Method every 5th iteration. If no solution is found in 10 iterations, a modified Newton is used to converge the two phase flash.

In order to find the phase distribution with the lowest gibbs energy, the minimum single gibbs energy is comapred with the mixture gibbs energy.

Author

MHA, 2012-01-30, EA, 2013-07, MAG, 2013-09

Parameters

out	beta	Vapour phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
out	x	Liquid molar compozition [-]
out	У	Vapour molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]
out	phase	Phase identefier
out	betal	Liquid phase molar fraction [-]

5.62 trend_solver Module Reference

Solve for trend density given pressure and temperature.

Functions/Subroutines

- subroutine, public trend_density (t, p, z, phase_in, rho, phase_found_out, metaextr)
 - Solve for density given pressure, temperature and composition. Inteface RUB solver and local solver.
- logical function, public trend_phase_is_fake (t, p, z, phase)
 Is the solver returning FAKEPH solution.

Variables

- integer, parameter trend_liq =1
- integer, parameter trend_vap =2
- logical, public userubdensitysolver = .false.

5.62.1 Detailed Description

Solve for trend density given pressure and temperature.

5.62.2 Function/Subroutine Documentation

5.62.2.1 trend_density()

```
subroutine, public trend_solver::trend_density (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    integer, intent(in) phase_in,
    real, intent(out) rho,
    integer, intent(out), optional phase_found_out,
    logical, intent(in), optional metaextr )
```

Solve for density given pressure, temperature and composition. Inteface RUB solver and local solver.

Author

MH, 2015-10

Parameters

in	Ζ	Overall molar compozition [-]
in	t	Temperature [K]
in	p	Pressure [Pa]
in	phase_in	Desired phase
in	metaextr	Use extremum if no root
out	rho	Density [mol/m3]
out	phase_found_out	Phase actually found

5.62.2.2 trend_phase_is_fake()

Author

MH, 2020-01

in	Ζ	Molar compozition [-]
in	t	Temperature [K]
in	р	Pressure [Pa]

Returns

Phase is FAKEPH

5.63 uv_solver Module Reference

Calculate solve UV-flash for single phase gas/liquid or a gas-liquid mixture.

Functions/Subroutines

- subroutine, public twophaseuvflash (t, p, z, beta, betal, x, y, uspec, vspec, phase) Do UV-flash: Switch for multicomponent (mc) and single component solver.
- subroutine, public twophaseuvflashnested (t, p, z, beta, betal, x, y, uspec, vspec, phase, isconverged) Do UV-flash using PT-flash in nested loop.
- subroutine, public twophaseuvflashfull (t, p, z, beta, betal, x, y, uspec, vspec, phase, converged) Do UV-flash using full equation system.
- subroutine, public fun_1ph (f, var, param)
 - Calculate state function for UV system.
- subroutine, public jac_1ph (jac, var, param)
- Calculate state function for PH system and its differentials.subroutine, public enablecustumstabcalc (w, phase)

Enable additional phase stability check.

• subroutine, public disablecustumstabcalc ()

Disable additional phase stability check.

- subroutine, public twophaseuvsinglecomp (t, p, z, beta, betal, x, y, uspec, vspec, phase, ierr) Do UV-flash for single component.
- subroutine, public setnesteduvtolerance (tolerance, nmax, linesearch_nmax) Set tolerance for nested loop UV flash.
- subroutine, public getnesteduvtolerance (tolerance, nmax, linesearch_nmax) Get tolerance for nested loop UV flash.
- subroutine, public setfullequvtolerance (tolerance, nmax, linesearch_nmax, gibbs_tolerance) Set tolerance for fulleg. UV flash.
- subroutine, public getfullequvtolerance (tolerance, nmax, linesearch_nmax, gibbs_tolerance) Get tolerance for fulleq. UV flash.
- subroutine, public setsinglecompuvtolerance (tolerance, nmax, linesearch_nmax) Set tolerance for single component UV flash.
- subroutine, public getsinglecompuvtolerance (tolerance, nmax, linesearch_nmax) Get tolerance for single component UV flash.

5.63.1 Detailed Description

Calculate solve UV-flash for single phase gas/liquid or a gas-liquid mixture.

Todo Need trace-component functionallity.

5.63.2 Function/Subroutine Documentation

5.63.2.1 disablecustumstabcalc()

```
subroutine, public uv_solver::disablecustumstabcalc Disable additional phase stability check.
```

Author

MH, 2014-01

5.63.2.2 enablecustumstabcalc()

Author

MH, 2014-01

Parameters

in	phase	Phase identifyer
in	W	Initial comosition in stability calculation

5.63.2.3 fun_1ph()

Author

MH, 2012-08-15

Parameters

out	f	Function values
in	var	Variable vector
in	param	Parameter vector

5.63.2.4 getfullequvtolerance()

```
subroutine, public uv_solver::getfullequvtolerance (
        real, intent(out) tolerance,
        integer, intent(out) nmax,
        integer, intent(out) linesearch_nmax,
        real, intent(out), optional gibbs_tolerance )
Cettelerenee forfuller LN/fleeb
```

Get tolerance for fulleq. UV flash.

Author

MH, 2015

out	tolerance	Solver tolerance
out	nmax	Maximum number of iteretions
out	linesearch_nmax	Maximum number of line-searches
out	gibbs_tolerance	Tolerance for when to accept two-phase solutions

5.63.2.5 getnesteduvtolerance()

Author

MH, 2015

Parameters

out	tolerance	Solver tolerance
out	nmax	Maximum number of iteretions
out	linesearch_nmax	Maximum number of line-searches

5.63.2.6 getsinglecompuvtolerance()

Author

MH, 2015

Parameters

out	tolerance	Solver tolerance
out	nmax	Maximum number of iteretions
out	linesearch_nmax	Maximum number of line-searches

5.63.2.7 jac_1ph()

```
subroutine, public uv_solver::jac_1ph (
            real, dimension(2,2), intent(out) jac,
            real, dimension(2), intent(in) var,
            real, dimension(nc+3), intent(in) param )
Calculate state function for PH system and its differentials.
```

Author

MH, 2012-08-15

in	var	Variable vector
in	param	Parameter vector
out	jac	Jacobian objective function

5.63.2.8 setfullequvtolerance()

```
subroutine, public uv_solver::setfullequvtolerance (
        real, intent(in) tolerance,
        integer, intent(in) nmax,
        integer, intent(in) linesearch_nmax,
        real, intent(in), optional gibbs_tolerance )
Cettelerance for fuller LW/fleeh
```

Set tolerance for fulleq. UV flash.

Author

MH, 2015

Parameters

in	tolerance	Solver tolerance
in	nmax	Maximum number of iteretions
in	linesearch_nmax	Maximum number of line-searches
in	gibbs_tolerance	Tolerance for when to accept two-phase solutions

5.63.2.9 setnesteduvtolerance()

```
subroutine, public uv_solver::setnesteduvtolerance (
    real, intent(in) tolerance,
    integer, intent(in) nmax,
    integer, intent(in) linesearch_nmax )
```

Set tolerance for nested loop UV flash.

Author

MH, 2015

Parameters

in	tolerance	Solver tolerance
in	nmax	Maximum number of iteretions
in	linesearch_nmax	Maximum number of line-searches

5.63.2.10 setsinglecompuvtolerance()

Author

MH, 2015

in	tolerance	Solver tolerance
in	nmax	Maximum number of iteretions
in	linesearch_nmax	Maximum number of line-searches

5.63.2.11 twophaseuvflash()

```
subroutine, public uv_solver::twophaseuvflash (
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) uspec,
    real, intent(in) vspec,
    integer, intent(inout) phase )
```

Do UV-flash: Switch for multicomponent (mc) and single component solver.

Author

MH, 2014

Parameters

in,out	beta	Vapour phase molar fraction [-]
out	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in,out	p	Pressure [Pa]
in	uspec	Specified internal energy [J/mol]
in	vspec	Specified specific volume [m3/mol]
in,out	phase	Phase identifier

5.63.2.12 twophaseuvflashfull()

```
subroutine, public uv_solver::twophaseuvflashfull (
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) uspec,
    real, intent(in) vspec,
    integer, intent(inout) phase,
    logical, intent(out) converged )
```

Do UV-flash using full equation system. Assume initial values for specified phase.

Author

MH, 2012-08-15

in,out	beta	Vapour phase molar fraction [-]	
--------	------	---------------------------------	--

Parameters

out	betal	Liquid phase molar fraction [-]	
in	Ζ	Overall molar compozition [-]	
in,out	x	Liquid molar compozition [-]	
in,out	У	Vapour molar compozition [-]	
in,out	t	Temperature [K]	
in,out	р	Pressure [Pa]	
in	uspec	Specified internal energy [J/mol]	
in	vspec	Specified specific volume [m3/mol]	
in,out	phase	Phase identifier	

5.63.2.13 twophaseuvflashnested()

```
subroutine, public uv_solver::twophaseuvflashnested (
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
    real, intent(inout) beta,
    real, intent(out) betal,
    real, dimension(nc), intent(inout) x,
    real, dimension(nc), intent(inout) y,
    real, intent(in) uspec,
    real, intent(in) vspec,
    integer, intent(inout) phase,
    logical, intent(out), optional isconverged )
Do UV-flash using PT-flash in nested loop.
```

Function to minimize: $-\frac{g_{min}-u_{spec}-pv_{spec}}{T}$.

Author

MH, 2012-07-05

Parameters

in,out	beta	Vapour phase molar fraction [-]
out	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in,out	р	Pressure [Pa]
in	uspec	Specified internal energy [J/mol]
in	vspec	Specified specific volume [m3/mol]
in,out	phase	Phase identifier

5.63.2.14 twophaseuvsinglecomp()

```
subroutine, public uv_solver::twophaseuvsinglecomp (
    real, intent(inout) t,
    real, intent(inout) p,
    real, dimension(nc), intent(in) z,
```

```
real, intent(inout) beta,
real, intent(inout) betal,
real, dimension(nc), intent(inout) x,
real, dimension(nc), intent(inout) y,
real, intent(in) uspec,
real, intent(in) vspec,
integer, intent(inout) phase,
integer, intent(out), optional ierr)
```

Do UV-flash for single component.

Todo Need handling of solutions close to critical point

Author

MH, 2014

Parameters

in,out	beta	Vapour phase molar fraction [-]
in,out	betal	Liquid phase molar fraction [-]
in	Ζ	Overall molar compozition [-]
in,out	x	Liquid molar compozition [-]
in,out	У	Vapour molar compozition [-]
in,out	t	Temperature [K]
in,out	р	Pressure [Pa]
in	uspec	Specified internal energy [J/mol]
in	vspec	Specified specific volume [m3/mol]
in,out	phase	Phase identifier
out	ierr	Phase identifier

5.64 vls Module Reference

Interface handling both fluid and solid equation of state.

Data Types

type state

Thermo state, used for debugging.

Functions/Subroutines

- subroutine, public vlsthermo (t, p, z, phase, Infug, Infugt, Infugp, Infugx, ophase, metaextremum)
 Calculate fugasity coefficient and differentials given composition, temperature and pressure. Interface for vapour, liquid and solid.
- subroutine, public vlsspecificvolume (t, p, z, phase, v, dvdt, dvdp, dvdx)

Calculate single-phase specific volume given composition, temperature and pressure for fluid and solid phases.

- subroutine, public vlsenthalpy (t, p, z, phase, h, dhdt, dhdp, dhdx)
- *Calculate single-phase specific enthalpy given composition, temperature and pressure for fluid and solid phases.* • subroutine, public vlsentropy (t, p, z, phase, s, dsdt, dsdp, dsdx)
- *Calculate single-phase specific entropy given composition, temperature and pressure for fluid and solid phases.* • real function, public mpentropy (nd, t, p, beta, xx, phase)

Calculate multi-phase entropy given composition, temperature and pressure Unit: J/mol/K.

- real function, public mpenthalpy (nd, t, p, beta, xx, phase)
 - Calculate multi-phase enthalpy given composition, temperature and pressure Unit: J/mol.
- real function, public mpspecificvolume (nd, t, p, beta, xx, phase)
 - Calculate multi-phase entropy given composition, temperature and pressure Unit: J/mol/K.
- subroutine, public inversephasemappingvlws (z, betagas, y, gaspresent, betaliquid, x, liquidpresent, betawater, w, waterpresent, betasolid, ws, solidpresent, nd, beta, xx, phasevec)
- subroutine, public specificenthalpyvlws (nc, nph, t, p, z, betagas, y, gaspresent, betaliquid, x, liquidpresent, betawater, w, waterpresent, betasolid, ws, solidpresent, h)

Get the specific enthalpy from VLWS variables. Wrapper for mpEnthalpy.

 subroutine, public specificvolumevlws (nc, nph, t, p, z, betagas, y, gaspresent, betaliquid, x, liquidpresent, betawater, w, waterpresent, betasolid, ws, solidpresent, v)

Get the specific enthalpy from VLWS variables. Wrapper for mpSpecificVolume.

• subroutine, public specificentropyvlws (nc, nph, t, p, z, betagas, y, gaspresent, betaliquid, x, liquidpresent, betawater, w, waterpresent, betasolid, ws, solidpresent, s)

Get the entropy from VLWS variables. Wrapper for mpEntropy.

• subroutine, public printcurrentphases (nd, t, p, z, xx, beta, phasevec) Print info about current phases Used for debugging.

5.64.1 Detailed Description

Interface handling both fluid and solid equation of state.

Author

MH, 2016-06.

5.64.2 Function/Subroutine Documentation

5.64.2.1 inversephasemappingvlws()

```
subroutine, public vls::inversephasemappingvlws (
            real, dimension(nc) z,
             real, intent(in) betagas,
             real, dimension(nc), intent(in) y,
             logical, intent(in) gaspresent,
             real, intent(in) betaliquid,
             real, dimension(nc), intent(in) x,
             logical, intent(in) liquidpresent,
             real, intent(in) betawater,
             real, dimension(nc), intent(in) w,
             logical, intent(in) waterpresent,
             real, intent(in) betasolid,
             real, dimension(nc), intent(in) ws,
             logical, intent(in) solidpresent,
             integer, intent(out) nd,
             real, dimension(nph), intent(out) beta,
             real, dimension(nph,nc), intent(out) xx,
             integer, dimension(nph), intent(out) phasevec )
```

out	nd	Number of stabel phases found [-]
out	beta	Phase molar fractions [mol/mol]
out	XX	Phase molar compozition [mol/mol]
out	phasevec	Phase identifier. Not to be trused [-]

5.64.2.2 mpenthalpy()

```
real function, public vls::mpenthalpy (
    integer, intent(in) nd,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nph), intent(in) beta,
    real, dimension(nph,nc), intent(in) xx,
    integer, dimension(nph) phase )
```

Calculate multi-phase enthalpy given composition, temperature and pressure Unit: J/mol.

Author

MH, 2013-02

Parameters

in	nd	Numper of phases
in	t	K - Temperature
in	р	Pa - Pressure
	phase	Phase identifyer
in	beta	Phase fractions
in	xx	Composition

Returns

J/mol - Specifc enthalpy

5.64.2.3 mpentropy()

```
real function, public vls::mpentropy (
    integer, intent(in) nd,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nph), intent(in) beta,
    real, dimension(nph,nc), intent(in) xx,
    integer, dimension(nph) phase )
```

Calculate multi-phase entropy given composition, temperature and pressure Unit: J/mol/K.

Author

MH, 2013-02

Parameters

in	nd	Numper of phases
in	t	K - Temperature
in	р	Pa - Pressure
	phase	Phase identifyer
in	beta	Phase fractions
in	xx	Composition

Returns

J/mol/K - Specific entropy

5.64.2.4 mpspecificvolume()

Calculate multi-phase entropy given composition, temperature and pressure Unit: J/mol/K.

Author

MH, 2013-02

Parameters

in	nd	Numper of phases
in	t	K - Temperature
in	р	Pa - Pressure
	phase	Phase identifyer
in	beta	Phase fractions
in	XX	Composition

Returns

m3/mol - Specifc volume

5.64.2.5 printcurrentphases()

```
subroutine, public vls::printcurrentphases (
    integer, intent(in) nd,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, dimension(nph,nc), intent(in) xx,
    real, dimension(nph), intent(in) beta,
    integer, dimension(nph), intent(in) phasevec )
```

Print info about current phases Used for debugging.

Author

MH, 2018-04

Parameters

in *nd* Number of phases

5.64.2.6 specificenthalpyvlws()

```
subroutine, public vls::specificenthalpyvlws (
    integer, intent(in) nc,
    integer, intent(in) nph,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
```

```
real, intent(in) betagas,
real, dimension(nc), intent(in) y,
logical, intent(in) gaspresent,
real, intent(in) betaliquid,
real, dimension(nc), intent(in) x,
logical, intent(in) liquidpresent,
real, intent(in) betawater,
real, dimension(nc), intent(in) w,
logical, intent(in) waterpresent,
real, intent(in) betasolid,
real, dimension(nc), intent(in) ws,
logical, intent(in) solidpresent,
real, intent(in) solidpresent,
real, intent(out) h )
```

Get the specific enthalpy from VLWS variables. Wrapper for mpEnthalpy.

Author

HLS, 2018-08

Parameters

in	nc	Number of components
in	nph	Number of possible phases
in	t	Temperature [K]
in	p	Pressure [Pa]
in	Z	Overall molar compozition [-]
in	betagas	Gas phase molar fraction [-]
in	у	Gas phase molar composition [-]
in	gaspresent	Is gas phase detected?
in	betaliquid	Liquid phase molar fraction [-]
in	x	Liquid phase molar composition [-]
in	liquidpresent	Is liquid phase detected?
in	betawater	Water phase molar fraction [-]
in	W	Water phase molar composition [-]
in	waterpresent	Is water phase detected?
in	betasolid	Solid phase molar fraction [-]
in	WS	Solid phase molar composition [-]
in	solidpresent	Is solid phase detected?
out	h	Enthalpy [J/mol]

5.64.2.7 specificentropyvlws()

```
subroutine, public vls::specificentropyvlws (
    integer, intent(in) nc,
    integer, intent(in) nph,
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(nc), intent(in) z,
    real, intent(in) betagas,
    real, dimension(nc), intent(in) y,
    logical, intent(in) betaliquid,
    real, dimension(nc), intent(in) x,
    logical, intent(in) liquidpresent,
```
```
real, intent(in) betawater,
real, dimension(nc), intent(in) w,
logical, intent(in) waterpresent,
real, intent(in) betasolid,
real, dimension(nc), intent(in) ws,
logical, intent(in) solidpresent,
real, intent(out) s )
```

Get the entropy from VLWS variables. Wrapper for mpEntropy.

Author

HLS, 2018-08

Parameters

in	nc	Number of components
in	nph	Number of possible phases
in	t	Temperature [K]
in	p	Pressure [Pa]
in	Ζ	Overall molar compozition [-]
in	betagas	Gas phase molar fraction [-]
in	У	Gas phase molar composition [-]
in	gaspresent	Is gas phase detected?
in	betaliquid	Liquid phase molar fraction [-]
in	x	Liquid phase molar composition [-]
in	liquidpresent	Is liquid phase detected?
in	betawater	Water phase molar fraction [-]
in	w	Water phase molar composition [-]
in	waterpresent	Is water phase detected?
in	betasolid	Solid phase molar fraction [-]
in	ws	Solid phase molar composition [-]
in	solidpresent	Is solid phase detected?
out	S	Specific volume [J/(mol K)]

5.64.2.8 specificvolumevlws()

```
subroutine, public vls::specificvolumevlws (
             integer, intent(in) nc,
             integer, intent(in) nph,
             real, intent(in) t,
             real, intent(in) p,
             real, dimension(nc), intent(in) z,
             real, intent(in) betagas,
             real, dimension(nc), intent(in) y,
             logical, intent(in) gaspresent,
             real, intent(in) betaliquid,
             real, dimension(nc), intent(in) x,
             logical, intent(in) liquidpresent,
             real, intent(in) betawater,
             real, dimension(nc), intent(in) w,
             logical, intent(in) waterpresent,
             real, intent(in) betasolid,
             real, dimension(nc), intent(in) ws,
             logical, intent(in) solidpresent,
```

```
real, intent(out) v )
```

Get the specific enthalpy from VLWS variables. Wrapper for mpSpecificVolume.

Author

HLS, 2018-08

Parameters

in	nc	Number of components
in	nph	Number of possible phases
in	t	Temperature [K]
in	p	Pressure [Pa]
in	Ζ	Overall molar compozition [-]
in	betagas	Gas phase molar fraction [-]
in	У	Gas phase molar composition [-]
in	gaspresent	Is gas phase detected?
in	betaliquid	Liquid phase molar fraction [-]
in	x	Liquid phase molar composition [-]
in	liquidpresent	Is liquid phase detected?
in	betawater	Water phase molar fraction [-]
in	W	Water phase molar composition [-]
in	waterpresent	Is water phase detected?
in	betasolid	Solid phase molar fraction [-]
in	WS	Solid phase molar composition [-]
in	solidpresent	Is solid phase detected?
out	V	Specific volume [m^3/mol]

5.64.2.9 vlsenthalpy()

```
subroutine, public vls::vlsenthalpy (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) h,
    real, intent(out), optional dhdt,
    real, intent(out), optional dhdp,
    real, dimension(1:nc), intent(out), optional dhdx )
```

Calculate single-phase specific enthalpy given composition, temperature and pressure for fluid and solid phases.

Author

MH, 2016-06

Parameters

in	phase	Phase identifyer
in	t	K - Temperature
in	р	Pa - Pressure
in	Ζ	Compozition
out	h	J/mol - Specific enthalpy
out	dhdt	J/mol/K - Specific enthalpy differential wrpt. temperature

Parameters

out	dhdp	J/mol/Pa - Specific enthalpy differential wrpt. pressure
out	dhdx	J/mol - Specific enthalpy differential wrpt. mole numbers

5.64.2.10 vlsentropy()

```
subroutine, public vls::vlsentropy (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) s,
    real, intent(out), optional dsdt,
    real, intent(out), optional dsdp,
    real, dimension(1:nc), intent(out), optional dsdx )
```

Calculate single-phase specific entropy given composition, temperature and pressure for fluid and solid phases.

Author

MH, 2016-06

Parameters

in	phase	Phase identifyer
in	t	K - Temperature
in	р	Pa - Pressure
in	Ζ	Compozition
out	S	J/mol/K - Specific entropy
out	dsdt	J/mol/K^2 - Specific entropy differential wrpt. temperature
out	dsdp	J/mol/K/Pa - Specific entropy differential wrpt. pressure
out	dsdx	J/mol/K - Specific enthalpy differential wrpt. mole numbers

5.64.2.11 vlsspecificvolume()

```
subroutine, public vls::vlsspecificvolume (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    integer, intent(in) phase,
    real, intent(out) v,
    real, intent(out), optional dvdt,
    real, intent(out), optional dvdp,
    real, dimension(1:nc), intent(out), optional dvdx )
```

Calculate single-phase specific volume given composition, temperature and pressure for fluid and solid phases.

Author

MH, 2016-06

Parameters

in	phase	Phase identifyer
in	t	K - Temperature

Parameters

in	p	Pa - Pressure
in	Ζ	Compozition
out	V	m3/mol - Specific volume
out	dvdt	m3/mol/K - Specific volume differential wrpt. temperature
out	dvdp	m3/mol/Pa - Specific volume differential wrpt. pressure
out	dvdx	m3/mol - Specific volume differential wrpt. mole numbers

5.64.2.12 vlsthermo()

```
subroutine, public vls::vlsthermo (
    real, intent(in) t,
    real, intent(in) p,
    real, dimension(1:nc), intent(in) z,
    integer, intent(in) phase,
    real, dimension(1:nc), intent(out) lnfug,
    real, dimension(1:nc), intent(out), optional lnfugt,
    real, dimension(1:nc), intent(out), optional lnfugp,
    real, dimension(1:nc,1:nc), intent(out), optional lnfugx,
    integer, intent(out), optional ophase,
    logical, intent(in), optional metaextremum )
```

Calculate fugasity coefficient and differentials given composition, temperature and pressure. Interface for vapour, liquid and solid.

Author

MH, 2016-06

Parameters

in	phase	Phase identifyer
out	ophase	Phase identifyer for MINGIBBSPH
in	t	K - Temperature
in	p	Pa - Pressure
in	Ζ	Compozition
out	Infug	Logarithm of fugasity coefficient
out	Infugt	1/K - Logarithm of fugasity coefficient differential wrpt. temperature
out	Infugp	1/Pa - Logarithm of fugasity coefficient differential wrpt. pressure
out	Infugx	Logarithm of fugasity coefficient differential wrpt. mole numbers

5.65 volume_shift Module Reference

Calculate potenital corrections due to volume correction For documentation see memo: peneloux.pdf.

Functions/Subroutines

- integer function, public initvolumeshift (nc, comp, shiftid, eos, param_ref) Initialize volume shift parameters.
- real function, public eosvolumefromshiftedvolume (nc, comp, volumeshiftid, t, v, z)

Get the volume to feed to the EoS, given the actual (shifted) volume.

• subroutine, public volumeshiftzfac (nc, comp, volumeshiftid, t, p, z, phase, zfac, dzdt, dzdp, dzdz)

447

```
Calculate volume shift.
```

subroutine, public redefine_volume_shift (nc, j, comp, vlcurrent, vlexp)

Redefine volume shift for component j.

- subroutine, public vshift_f_terms (nc, comp, volumeshiftid, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn, f_vvv)
 - Volume shift of residual, reduced Helmholtz energy, F.
- subroutine, public vshift_f_differential_dependencies (nc, volumeshiftid, include_f_v, include_f_tv, include_ f_vv, include_f_vn, f_t, f_v, f_n, f_tt, f_tv, f_vv, f_tn, f_vn, f_nn)

Which additional differentials are needed for volume shift correction=.

Variables

- integer, parameter, public noshift =0
 - Volume shift identifyers.
- integer, parameter, public peneloux =1

5.65.1 Detailed Description

Calculate potenital corrections due to volume correction For documentation see memo: peneloux.pdf.

Author

MH, June 2014

5.65.2 Function/Subroutine Documentation

5.65.2.1 eosvolumefromshiftedvolume()

Author

MH, June 2014

Parameters

in	volumeshiftid	Volume shift identifier
in	t	K - Temperature
in	V	m3/mol - Actual, shifted volume
in	Z	Composition

Returns

m3/mol - EoS volume

5.65.2.2 initvolumeshift()

```
character(len=*), intent(in) shiftid,
character(len=*), intent(in) eos,
character(len=*), intent(in), optional param_ref )
Initialize volume shift parameters.
```

Author

MH, June 2014

Parameters

in	nc	Number of components
in,out	сотр	Component data
in	shiftid	String volume shif identifyer
in	eos	Eos string
in	param_ref	Parameter set

5.65.2.3 redefine_volume_shift()

Author

MH, May 2019

Parameters

in	nc	number of components
in	j	component
in,out	сотр	Component data
in	vlcurrent	specific volume with current ci [m3/mol]
in	vlexp	experimental volume [m3/mol]

5.65.2.4 volumeshiftzfac()

Author

MH, June 2014

Parameters

in	volumeshiftid	Volume shift identifyer
in	phase	Phase identifyer
in	t	K - Temperature
in	p	Pa - Pressure
in	Ζ	Compozition
out	zfac	- Compressibillity factor
out	dzdt	1/K - Compressibillity factor differential wrpt. temperature
out	dzdp	1/Pa - Compressibillity factor differential wrpt. pressure
out	dzdz	1/mol - Compressibillity factor differential wrpt. mol numbers

5.65.2.5 vshift_f_differential_dependencies()

```
subroutine, public volume_shift::vshift_f_differential_dependencies (
            integer, intent(in) nc,
             integer, intent(in) volumeshiftid,
             logical, intent(out) include_f_v,
             logical, intent(out) include_f_tv,
             logical, intent(out) include_f_vv,
             logical, intent(out) include_f_vn,
             real, intent(inout), optional f_t,
             real, intent(inout), optional f_v,
            real, dimension(nc), intent(inout), optional f_n,
             real, intent(inout), optional f_tt,
             real, intent(inout), optional f_tv,
             real, intent(inout), optional f_vv,
             real, dimension(nc), intent(inout), optional f_tn,
             real, dimension(nc), intent(inout), optional f_vn,
             real, dimension(nc,nc), intent(inout), optional f_nn )
```

Which additional differentials are needed for volume shift correction=.

Author

Morten Hammer, April 2023

Parameters

in	volumeshiftid	Volume shift identifier
----	---------------	-------------------------

5.65.2.6 vshift f terms()

```
subroutine, public volume_shift::vshift_f_terms (
            integer, intent(in) nc,
            type (gendata_pointer), dimension(nc), intent(in) comp,
            integer, intent(in) volumeshiftid,
            real, intent(in) t,
            real, intent(in) v,
            real, dimension(1:nc), intent(in) n,
            real, intent(inout), optional f,
            real, intent(inout), optional f_t,
```

Generated by Doxygen

```
real, intent(inout), optional f_v,
real, dimension(nc), intent(inout), optional f_n,
real, intent(inout), optional f_tt,
real, intent(inout), optional f_tv,
real, intent(inout), optional f_vv,
real, dimension(nc), intent(inout), optional f_tn,
real, dimension(nc), intent(inout), optional f_vn,
real, dimension(nc,nc), intent(inout), optional f_nn,
real, intent(inout), optional f_vvv )
```

Volume shift of residual, reduced Helmholtz energy, F. Temperature-dependent volume shift not implemented, but easy to do

Author

Ailo, May 2020

Parameters

in	volumeshiftid	Volume shift identifier
in	t	K - Temperature
in	V	m3 - Volume
in	n	Mole numbers

5.66 wong_sandler Module Reference

Wong-Sandler equation of state Cubic EOS with temperature dependent b-parameter.

Functions/Subroutines

real function, public fidel_alpha (tau12, tau21)

Does calcualtions realted to the Wang-Sandler mixing model.

• subroutine, public wongsandlermix (cbeos, t, zcomp)

5.66.1 Detailed Description

Wong-Sandler equation of state Cubic EOS with temperature dependent b-parameter.

See: Wong, D. S. H. and Sandler, S. I. (1992). "A theoretically correct mixing rule for cubic equations of state". AIChE Journal 38: 671-680. doi: 10.1002/aic.690380505.

Equation reference in this module is to appendix equations A1 etc. of the Wong-Sandler paper.

See also separate memo regarding the model and differentials, located in the doc folder.

Author

AA, 2015-02, MH, 2015-03

Chapter 6

Data Type Documentation

6.1 hyperdual_mod::abs Interface Reference

Public Member Functions

• elemental type(hyperdual) function abshyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.2 hyperdual_mod::acos Interface Reference

Public Member Functions

• elemental type(hyperdual) function acoshyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.3 saturation_curve::aep Type Reference

Public Member Functions

• procedure, public print (a)

Public Attributes

- integer type = AZ_NONE
- logical found = .false.
- real t = 0
- real **p** = 0
- real vg = 0
- real vI = 0
- real, dimension(2) x = 0

The documentation for this type was generated from the following file:

saturation_curve.f90

6.4 thermopack_var::allocate_and_init_intf Interface Reference

Public Member Functions

subroutine allocate_and_init_intf (eos, nc, eos_label)

6.4.1 Constructor & Destructor Documentation

6.4.1.1 allocate_and_init_intf()

Parameters

in	nc	Number of components
in	eos_label	EOS label

The documentation for this interface was generated from the following file:

thermopack_var.f90

6.5 multiparameter_base::alpha0_hd_intf Interface Reference

Public Member Functions

• type(hyperdual) function alpha0_hd_intf (this, delta, tau)

6.5.1 Constructor & Destructor Documentation

6.5.1.1 alpha0_hd_intf()

Parameters

in	delta	Reduced density (-)
in	tau	Reduced temperature (-)

Returns

Ideal reduced Helmholtz energy

The documentation for this interface was generated from the following file:

• multiparameter_base.f90

6.6 multiparameter_base::alpha0derivs_intf Interface Reference

Public Member Functions

• subroutine alpha0derivs_intf (this, delta, tau, alp0)

6.6.1 Constructor & Destructor Documentation

6.6.1.1 alpha0derivs_intf()

real, intent(in) tau, real, dimension(0:2,0:2), intent(out) alp0) [virtual]

Parameters

in	delta	Reduced density (-)
in	tau	Reduced temperature (-)
out	alp0	$alp0(i,j) = [(d_delta)^i(d_tau)^j alpha0]*delta^i*tau^j$

The documentation for this interface was generated from the following file:

• multiparameter_base.f90

6.7 cubic_eos::alpha_label_mapping Type Reference

Public Attributes

- integer alpha_idx
- integer n_param
- character(len=short_label_len) short_label
- character(len=label_len) description
- integer classic_for_eos_idx

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.8 compdata::alphadatadb Type Reference

Alpha correlation for cubic EoS.

Public Attributes

- character(len=uid_len) cid
 - The component ID.
- character(len=ref_len) ref
 Data group reference.
- character(len=eosid_len) eosid
 - EOS identifyer.
- real, dimension(3) coeff

6.8.1 Detailed Description

Alpha correlation for cubic EoS. The documentation for this type was generated from the following file:

· compdata.f90

6.9 multiparameter_base::alphares_hd_intf Interface Reference

Public Member Functions

• type(hyperdual) function alphares_hd_intf (this, delta, tau)

6.9.1 Constructor & Destructor Documentation

6.9.1.1 alphares_hd_intf()

Parameters

in	delta	Reduced density (-)
in	tau	Reduced temperature (-)

Returns

Residual reduced Helmholtz energy

The documentation for this interface was generated from the following file:

• multiparameter_base.f90

6.10 multiparameter_base::alpharesderivs_intf Interface Reference

Public Member Functions

subroutine alpharesderivs_intf (this, delta, tau, alpr)

6.10.1 Constructor & Destructor Documentation

6.10.1.1 alpharesderivs_intf()

Parameters

in	delta	Reduced density (-)
in	tau	Reduced temperature (-)
out	alpr	$alpr(i,j) = [(d_delta)^{i}(d_tau)^{j} alphaRes]*delta^{i}*tau^{j}$

The documentation for this interface was generated from the following file:

• multiparameter_base.f90

6.11 apparent_compostion::apparent_container Type Reference

Public Member Functions

- procedure, public apparent_to_real_mole_numbers (apparent, n, ne)
 - Map apparent mole numbers to real mole numbers used by model.
- procedure, public real_to_apparent_differentials (apparent, fe_n, fe_tn, fe_vn, fe_nn, f_n, f_tn, f_vn, f_nn)
 Map from real mole number differentials to apparent mole number differentials.
- procedure, public real_to_apparent_diff (apparent, fe_n, f_n)

Map from real mole number differential to apparent mole number differentials.

• procedure, public tp_Infug_apparent (apparent, nc, ne, n, p, Infug_real, Infug, dInfugdt_real, dInfugdp_real, dInfugdn_real, dInfugdt, dInfugdp, dInfugdn)

Convert logarithmic fugacity coefficient from real to apparent composition.

• procedure, public getmodfugacity (apparent, t, p, x, Infug, sumne)

- Back calculate logaritm of fugacity coefficient, by removing dependency of log(x) and log(xe)
- procedure, public update_v_sum (apparent)
- procedure, public set_v_stoich_ij (apparent, i, j, v)
- procedure, public **dealloc** (apparent)

Public Attributes

- real, dimension(:,:), allocatable v_stoich
- real, dimension(:), allocatable v_sum
- integer nc =0
- integer **nce** =0
- integer ncsym =0

Symmetrical upper left part of v_stoich.

6.11.1 Member Function/Subroutine Documentation

6.11.1.1 getmodfugacity()

Back calculate logaritm of fugacity coefficient, by removing dependency of log(x) and log(xe)

Author

MH, 2017-05

Parameters

in	t	Temperature (K)
in	р	Pressure (Pa)
in	x	Phase compozition

6.11.1.2 tp_Infug_apparent()

```
procedure, public apparent_compostion::apparent_container::tp_lnfug_apparent (
        class(apparent_container), intent(in) apparent,
        integer, intent(in) nc,
        real, dimension(apparent%nce), intent(in) ne,
        real, dimension(nc), intent(in) n,
        real, intent(in) p,
        real, dimension(apparent%nce), intent(in) lnfug_real,
        real, dimension(nc), intent(out) lnfug,
        real, dimension(apparent%nce), intent(in), optional dlnfugdt_real,
        real, dimension(apparent%nce), intent(in), optional dlnfugdt_real,
        real, dimension(apparent%nce), intent(in), optional dlnfugdt_real,
        real, dimension(apparent%nce,apparent%nce), intent(in), optional dlnfugdn_real,
        real, dimension(nc), intent(out), optional dlnfugdt,
        real, dimension(nc), intent(out), optional dlnfugdp,
        real, dimension(nc), intent(out), optional dlnfugdp,
        real, dimension(nc,nc), intent(out), optional dlnfugdn )
```

Convert logarithmic fugacity coefficient from real to apparent composition.

Author

Morten Hammer, 2017-03

Parameters

in	n	Apparent mole numbers [mols]
in	р	Pressure [Pa]

Parameters

in	ne	Real mole numbers [mols]
in	Infug_real	Log of real fugacities
out	Infug	Log of apparent fugacity

The documentation for this type was generated from the following file:

• apparent_composition.f90

6.12 hyperdual_mod::asin Interface Reference

Public Member Functions

• elemental type(hyperdual) function asinhyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.13 thermopack_var::assign_intf Interface Reference

Public Member Functions

• subroutine assign_intf (this, other)

The documentation for this interface was generated from the following file:

• thermopack_var.f90

6.14 multiparameter_base::assign_meos_intf Interface Reference

Public Member Functions

• subroutine assign_meos_intf (this, other)

The documentation for this interface was generated from the following file:

• multiparameter_base.f90

6.15 hyperdual_mod::assignment(=) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.16 association_var::association Type Reference

Collaboration diagram for association_var::association:

Public Member Functions

- procedure, public dealloc (assoc)
- procedure, public print (assoc)

Public Attributes

- integer saft_model
- · integer active
- integer saft
- integer model
- integer set
- integer to
- integer the
- integer correct
- integer eos
- integer index
- integer stored
- integer in
- integer **module**
- · integer eosdata
- integer numassocsites

Total number of associating sites.

integer numassoccomps

Number of associating components.

• integer, dimension(:), allocatable compidcs

Component indices of associating components.

integer, dimension(:,:), allocatable comp_vs_sites

comp_vs_sites is an (nc)x2-matrix. Row i holds information on component number i. Column 1 and column 2 both equal the integer noSitesFlag if the component does not self-associate. If the component does self-associate, the rows hold the first and last association site number.

real, dimension(:,:), allocatable beta_kl

Model parameters that control the association strength.

real, dimension(:,:), allocatable eps_kl

Association energy.

type(association_state) state

6.16.1 Member Data Documentation

6.16.1.1 beta_kl

real, dimension(:,:), allocatable association_var::association::beta_kl Model parameters that control the association strength. Effective association volume between site Ai and Bj (called \beta^{A_i B_j} in CPA). The documentation for this type was generated from the following file:

• association var.f90

6.17 association_var::association_state Type Reference

Current state for eos evaluation.

Public Member Functions

- procedure **init** (assoc_p, nc, t, v, n)
- procedure init_fmt (assoc_p, nc, t, n_fmt, m)
- procedure dealloc (assoc_p)

Public Attributes

- logical fmt_mode = .false.
- real t
- real v
- real, dimension(:), allocatable **n**
- real, dimension(:,:), allocatable n_fmt

6.17.1 Detailed Description

Current state for eos evaluation. The documentation for this type was generated from the following file:

association_var.f90

6.18 hyperdual_mod::atan Interface Reference

Public Member Functions

• elemental type(hyperdual) function atanhyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.19 hyperdual_mod::atan2 Interface Reference

Public Member Functions

• elemental type(hyperdual) function atan2hyperdual (v1, v2)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.20 thermopack_var::base_eos_param Type Reference

Inheritance diagram for thermopack_var::base_eos_param:

Collaboration diagram for thermopack_var::base_eos_param:

Public Member Functions

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

character(len=eosid_len) eosid

- Eos identifier.
- integer eosidx
 - Eos group index.
- integer subeosidx
 - Eos sub-index.
- integer volumeshiftid = 0
 - 0: No volume shift, 1:Peneloux shift
- logical **iselectrolyteeos** = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.20.1 Member Function/Subroutine Documentation

6.20.1.1 allocate_and_init()

```
integer, intent(in) nc,
character(len=*), intent(in) eos_label ) [pure virtual]
```

Parameters

in	nc	Number of components
in	eos_label	EOS label

The documentation for this type was generated from the following file:

· thermopack_var.f90

6.21 c_interface_module::c_strlen Interface Reference

Interface to std C library function strlen.

Public Member Functions

• pure integer(c_size_t) function c_strlen (s)

6.21.1 Detailed Description

Interface to std C library function strlen. The documentation for this interface was generated from the following file:

• external.f90

6.22 cubic_eos::cb_eos Type Reference

Inheritance diagram for cubic_eos::cb_eos:

Collaboration diagram for cubic_eos::cb_eos:

Public Member Functions

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public **assign_eos** (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- character(len=mix_len) mruleid
- character(len=20) name
- integer mruleidx
- logical **cubic_verbose** = .false.

- real m1
- real m2
- real dm1db
- real dm1dc
- real dm2db
- real dm2dc
- real d2m1db2
- real d2m1dc2
- real d2m2db2
- real d2m2dc2
- real d2m2dbdc
- real d2m1dbdc
- real delta
- real a
- real **b**
- real **c**

Dependent of component.

- real sumn
- real suma

[Pa*L^2/mol^2]

real sumb

Molfraction average of single-component b_i [L/mol].

- real sumc
- [L/mol]
- real pn
- real pa
- real pb
- real pc
- real pt
- real pv
- real ff
- real fft
- real fftt
- real ffn
- real ffnv
- real ffna
- real ffnb
- real ffnc
- real ffnn
- real ffnt
- real ffa
- real ffaa
- real ffab
- real ffac
- real ffat
- real ffb
- real ffbb
- real ffbc
- real ffbt
- real ffc
- real ffcc
- · real ffct
- real ffv
- real ffvt

- real ffvv
- real ffva
- real ffvb
- real ffvc
- real at
- real att
- real bt
- real btt
- real, dimension(:), allocatable ai
- real, dimension(:), allocatable ait
- real, dimension(:,:), allocatable aij
- real, dimension(:), allocatable bi
- real, dimension(:), allocatable bit
- real, dimension(:), allocatable bitt
- real, dimension(:), allocatable ci
- real, dimension(:,:), allocatable bij
- real, dimension(:,:), allocatable cij
- integer, dimension(2) extrm
- integer, dimension(2) nextrm
- integer, dimension(2) nzfac
- type(singledata), dimension(:), allocatable single
- real, dimension(:,:), allocatable kij
- real, dimension(:,:), allocatable lij
- real, dimension(:,:), allocatable lowcase_bij
- logical simple_covolmixing
- type(mixexcessgibbs) mixge
- type(mixwongsandler) mixws
- type(unifacdb), pointer unifdb => NULL()

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
 - Eos identifier.
- integer eosidx

Eos group index.

integer subeosidx

Eos sub-index.

• integer volumeshiftid = 0

0: No volume shift, 1:Peneloux shift

• logical **iselectrolyteeos** = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.22.1 Member Function/Subroutine Documentation

6.22.1.1 allocate_and_init()

Parameters

in eos_label EOS label

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.23 cubic::cbbig Type Reference

Public Attributes

- real *a*
- real b
- real c

The documentation for this type was generated from the following file:

• cubic.f90

6.24 compdata::cidatadb Type Reference

Volume shift parameters.

Public Member Functions

- procedure, public get_vol_trs_c (cid, t, ci, cit, cit, ci_temp_dep)
- procedure, public set_zero_vol_trs (cid)

Public Attributes

- character(len=uid_len) cid
 - The component ID.
- character(len=ref_len) ref
 Data group reference.
- character(len=eosid_len) eosid
 EOS identifyer.
- character(len=bibref_len) bib_ref
- *Bibliograpich reference.* • integer **c_type** = VS_CONSTANT
 - VS_CONSTANT, VS_LINEAR, VS_QUADRATIC.
- real **cia** = 0
 - Volume shift (m3/mol)
- real cib = 0

Volume shift (m3/mol/K)

real cic = 0

Volume shift (m3/mol/K/K)

real cidd = 0

Volume shift (m3/mol/K/K/K)

real cie = 0

Volume shift (m3/mol/K/K/K/K)

real cif = 0

Volume shift (m3/mol/K/K/K/K/K)

6.24.1 Detailed Description

Volume shift parameters.

6.24.2 Member Function/Subroutine Documentation

6.24.2.1 get_vol_trs_c()

Parameters

in	t	Temperature (K)
out	ci	Volume translation (m3/mol)
out	cit	Volume translation differential (m3/mol/K)
out	citt	Volume translation second differential (m3/mol/K2)
out	ci_temp_dep	Volume translation is temp. dependent

The documentation for this type was generated from the following file:

· compdata.f90

6.25 hyperdual_mod::cos Interface Reference

Public Member Functions

• elemental type(hyperdual) function coshyperdual (v1)

The documentation for this interface was generated from the following file:

· hyperdual_mod.f90

6.26 hyperdual_mod::cosh Interface Reference

Public Member Functions

• elemental type(hyperdual) function coshhyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.27 cubic_eos::cpa_eos Type Reference

Inheritance diagram for cubic_eos::cpa_eos:

Collaboration diagram for cubic_eos::cpa_eos:

Additional Inherited Members

Public Member Functions inherited from cubic_eos::cb_eos

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes inherited from cubic_eos::cb_eos

- character(len=mix_len) mruleid
- character(len=20) name
- integer mruleidx

- logical cubic_verbose = .false.
- real m1
- real m2
- real dm1db
- real dm1dc
- real dm2db
- real dm2dc
- real d2m1db2
- real d2m1dc2
- real d2m2db2
- real d2m2dc2
- real d2m2dbdc
- real d2m1dbdc
- real delta
- real *a*
- real b
- real c

Dependent of component.

- real sumn
- real suma

 $[Pa*L^2/mol^2]$

• real sumb

Molfraction average of single-component b_i [L/mol].

• real sumc

[L/mol]

- real pn
- real pa
- real pb
- real pc
- real pt
- real pv
- real ff
- real fft
- real fftt
- real ffn
- iou ini
- real ffnv
- real ffna
- real ffnb
- real ffnc
- real ffnn
- real ffnt
- real ffa
- real ffaa
- real ffab
- real ffac
- real ffat
- real ffb
- real ffbb
- real ffbc
- real ffbt
- real ffc
- real ffcc
- real ffct
- real ffv

- real ffvt
- real ffvv
- real ffva
- real ffvb
- real ffvc
- real at
- real att
- real bt
- real btt
- real, dimension(:), allocatable ai
- real, dimension(:), allocatable ait
- real, dimension(:,:), allocatable aij
- real, dimension(:), allocatable bi
- real, dimension(:), allocatable bit
- real, dimension(:), allocatable bitt
- real, dimension(:), allocatable ci
- real, dimension(:,:), allocatable bij
- real, dimension(:,:), allocatable cij
- integer, dimension(2) extrm
- integer, dimension(2) nextrm
- integer, dimension(2) nzfac
- type(singledata), dimension(:), allocatable single
- real, dimension(:,:), allocatable kij
- real, dimension(:,:), allocatable lij
- real, dimension(:,:), allocatable lowcase_bij
- logical simple_covolmixing
- type(mixexcessgibbs) mixge
- type(mixwongsandler) mixws
- type(unifacdb), pointer unifdb => NULL()

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
- Eos identifier.
- integer eosidx
 - Eos group index.
- integer subeosidx
 - Eos sub-index.
- integer volumeshiftid = 0
 - 0: No volume shift, 1:Peneloux shift
- logical iselectrolyteeos = .false.
 - Used to enable electrolytes.
- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.28 compdata::cpadata Type Reference

Pure component parameters. This data structure stores pure component parameters for the CPA-SRK and CPA-PR equations of state.

Public Attributes

- character(len=eosid_len) eosid
- character(len=uid_len) compname
- real a0

[Pa*L[^]2/mol[^]2]. The usual a0 parameter.

real **b**

[L/mol]. The usual b parameter.

• real, dimension(3) alphaparams

Up to three parameters for use in alpha corr.

integer alphacorridx

Either cpaClassicIdx, cpaTwuIdx, cpaMcIdx.

real eps

[J/mol]. Caveat: people sometimes tabulate epsilon/R.

real beta

[-]

- integer assoc_scheme
- character(len=ref len) ref
- character(len=bibref_len) bib_reference

6.28.1 Detailed Description

Pure component parameters. This data structure stores pure component parameters for the CPA-SRK and CPA-PR equations of state.

The documentation for this type was generated from the following file:

• compdata.f90

6.29 cubic_eos::cpakijdata Type Reference

Temperature-independent interaction parameters for.

Public Attributes

- character(len=eosid_len) eosid
- character(len=uid_len) uid1
- character(len=uid_len) uid2
- character(len=ref_len) ref
- character(len=bibref_len) bib_ref
- real kij a
- integer eps_comb_rule
- integer beta_comb_rule
- real kij_eps
- real kij_beta

6.29.1 Detailed Description

Temperature-independent interaction parameters for.

- · the a parameter in the vdW mixing rules,
- the eps parameter (can be modeled by arithmetic or geometric mean)
- the beta parameter (can be modeled by arithmetic or geometric mean) Geometric mean is numbered 0, arithmetic mean is numbered 1. (It also depends on the scheme used for the two components, but we assume that each component only has one scheme stored in the database.)

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.30 compdata::cpdata Type Reference

Ideal heat capacity at constant pressure.

Public Attributes

character(len=uid_len) cid

```
The component ID.
```

- character(len=ref_len) ref
 - Data group reference.
- character(len=bibref_len) bib_ref
- character(len=bibref_len) bibliograpich
- character(len=bibref_len) reference
- integer cptype
- integer, dimension(10) correlation
- integer, dimension(see above) type
- real, dimension(10) cp
- real, dimension(10) correlation
- real, dimension(10) parameters
- real tcpmin
- real lower
- real temperature
- real limit
- real **k**
- real tcpmax
- · real upper

6.30.1 Detailed Description

Ideal heat capacity at constant pressure. The documentation for this type was generated from the following file:

• compdata.f90

6.31 eosdata::eos_label_mapping Type Reference

Public Attributes

- integer eos_idx
- integer eos_subidx
- character(len=short_label_len) short_label
- character(len=label_len) label
- logical need_alternative_eos

The documentation for this type was generated from the following file:

eosdata.f90

6.32 thermopack_var::eos_param_pointer Type Reference

Public Attributes

- class(base_eos_param), pointer p_eos
 - A trivial type that only contains a pointer to base_eos_param. This type is needed because gfortran does not allow arrays of pointer to base_eos_param, whereas arrays of the eos_param_pointer type is allowed.

The documentation for this type was generated from the following file:

• thermopack_var.f90

6.33 mbwr::eosmbwr Type Reference

MBWR model type for mbwr19 and mbwr32. Collaboration diagram for mbwr::eosmbwr:

Public Member Functions

· procedure, public dealloc (refeosmbwr)

Public Attributes

- character(len=8) compid
 - Is needed to associate the component to the parameters in MBWRdata.
- character(len=8) eosid
 - Not used per now.
- character(len=18) name
- Not used per now.
- integer eqno
- integer setno
- integer lowprop
- integer highprop
- type(nijlarray) pcoeff_rhot

Pressure explicit terms, in the rho-T form. Doesn't take rho*R*T-term into account.

type(nijlarray) zcoeff_redrhoinvredt

Compressibility explicit terms. J: exponent for inverse reduced temperature. I: exponent for reduced density. Doesn't take rho*R*T-term into account.

type(nijlarray) redreshelmcoeff_redrhot

Helmholtz explicit terms, using reduced temperature (J) and reduced density (I). Takes all terms into account.

- integer ipol
- integer iexp
- · integer bplen
- integer belen
- integer helmlength

Number of terms in the integrated Helmholtz expression.

integer helm_poly_len

Number of polynomial terms in the integrated Helmholtz expression.

· real ttriple

Triple point temperature.

· real ptriple

Triple point pressure.

- real tc
 - Critical temperature.
- real pc

Critical pressure.

real rc

Critical density (mol/L)

real zc

Critical compressibility factor.

real acf

Acentric factor, used in the SRK initial value method in the density solver.

real gamma

The parameter gamma in the MBWR equation.

- real **b_srk**
- real m_srk
- real a0_srk
- real, dimension(:), allocatable mbwrparameters

6.33.1 Detailed Description

MBWR model type for mbwr19 and mbwr32. The documentation for this type was generated from the following file:

• mbwr.f90

6.34 optimizers::error_function Interface Reference

Public Member Functions

• real function error_function (n, x, nparam, param, of, dofdx, of_old)

6.34.1 Constructor & Destructor Documentation

6.34.1.1 error_function()

```
real function optimizers::error_function::error_function (
    integer, intent(in) n,
    real, dimension(n), intent(in) x,
    integer, intent(in) nparam,
    real, dimension(nparam), intent(in) param,
    real, intent(in) of,
    real, dimension(n), intent(in) dofdx,
    real, intent(in) of_old ) [virtual]
```

Parameters

in	n	Dimension of X
in	x	Variables
in	nparam	Dimension of param
in	param	Parameter vector
in	of	Objective function value
in	dofdx	Differential of objective function
in	of_old	Old objective function value

Returns

Calculated error

The documentation for this interface was generated from the following file:

• optimizer.f90

6.35 hyperdual_mod::exp Interface Reference

Public Member Functions

• elemental type(hyperdual) function exphyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.36 extcsp::extcsp_eos Type Reference

Inheritance diagram for extcsp::extcsp_eos:

Collaboration diagram for extcsp::extcsp_eos:

Public Member Functions

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- type(cb_eos) shapeeos
- type(cb_eos) shapeeosref
- type(cb_eos) cbrefeos
- type(eosmbwr), pointer mbwrrefeos => NULL()
- class(meos), pointer nistrefeos => NULL()
- type(shape_diff) sd
- integer refnc = 0

This is set to 1 in subroutine init_component_data_from_db.

• type(gendata_pointer), dimension(:), allocatable refcomp

Will be made to have length refNc=1 in subroutine init_component_data_from_db.

- integer refeostype
 - Is set to either cubic or mbwr.
- real tc0
- real pc0

Critical constants for reference component.

- real m0
- real **bc0**
- real ac0
 - Parameters for the cubic shape eos.

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
- Eos identifier.
- integer eosidx

Eos group index.

- integer subeosidx
 - Eos sub-index.
- integer volumeshiftid = 0

0: No volume shift, 1:Peneloux shift

- logical iselectrolyteeos = .false.
 - Used to enable electrolytes.
- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.36.1 Member Function/Subroutine Documentation

6.36.1.1 allocate_and_init()

Parameters

in	nc	Number of components
in	eos_label	EOS and component label

The documentation for this type was generated from the following file:

• extcsp.f90

6.37 cubic_eos::fraction Type Reference

Public Attributes

- real, dimension(ndegreepoly+1) pnum
 - Numerator polynom.
- real, dimension(ndegreepoly+1) pden Denominator polynom.

6.37.1 Member Data Documentation

6.37.1.1 pden

```
real, dimension(ndegreepoly+1) cubic_eos::fraction::pden
Denominator polynom.
y = (pNum(1)+pNum(2)*x+...pNum(n-1)*x**n)/(pDen(1)+pDen(2)*x+...pDen(n-1)*x**n) where n = nDegreePoly.
Generally pDen(1) = 1.0
The documentation for this type was generated from the following file:
```

• cubic eos.f90

6.38 nonlinear_solvers::function_template Interface Reference

Public Member Functions

• subroutine function_template (f, x, p)

The documentation for this interface was generated from the following file:

• nonlinear_solvers.f90

6.39 compdata::gendata Type Reference

Inheritance diagram for compdata::gendata:

compdata::gendatadb		
compdata::gendata		

Collaboration diagram for compdata::gendata:

Public Member Functions

- procedure, public init_from_name gendata_init_from_name
- procedure, pass, public assign_comp (this, cmp)
 - Assignment operator for gendata.

Public Member Functions inherited from compdata::gendatadb

• procedure, pass, public assign_comp (this, cmp)

Assignment operator for gendatadb.

generic, public assignment assign_comp

Public Attributes

type(cpdata) id_cp

Ideal gas Cp correlation.

type(cidatadb) cid

Volume shift parameters.

• integer assoc_scheme

Association scheme for use in the SAFT model. The various schemes are defined in saft_parameters_db.f90.

Public Attributes inherited from compdata::gendatadb

- character(len=uid_len) ident
 - The component ID.
- character(len=formula_len) formula
 - Chemical formula.
- character(len=comp_name_len) name
 - The component name.
- real **mw**

Mole weight[g/mol].

- real tc
 - Critical temperature [K].
- real pc

Critical pressure [Pa].

- real zc
 - Critical compressibility [-].
- real acf
 - Acentric factor [-].
real **tb**

Normal boiling point [K].

- real ttr
 - Triple point temperature [K].
- real ptr

Triple point temperature [K].

real sref

Reference entropy [J/mol/K].

real href

Reference enthalpy [J/mol].

real dfh

Enthalpy of formation [J/mol].

real dfg

Gibbs energy of formation [J/mol].

integer psatcode

Vapour pressure correlation 1: Antoine 2: Wilson (Michelsen) 3: Starling.

• real, dimension(3) ant

Vapour pressure correlation parameters.

real tantmin

Vapour pressure correlation lower temperature limit [K].

real tantmax

Vapour pressure correlation upper temperature limit [K].

real zra

Rackett compressibility factor.

• real mu_dipole

Electric dipole moment (D)

real q_quadrupole
 Electric quadrupole moment (ÃåD)

The documentation for this type was generated from the following file:

• compdata.f90

6.40 compdata::gendata_pointer Type Reference

Public Attributes

class(gendata), pointer p_comp => NULL()

The documentation for this type was generated from the following file:

· compdata.f90

6.41 compdata::gendatadb Type Reference

Inheritance diagram for compdata::gendatadb:

Public Member Functions

- procedure, pass, public assign_comp (this, cmp)
 - Assignment operator for gendatadb.
- generic, public assignment assign_comp

Public Attributes

- character(len=uid_len) ident
 - The component ID.
- character(len=formula_len) formula
 - Chemical formula.
- character(len=comp_name_len) name
 - The component name.
- real mw
 - Mole weight[g/mol].
- real tc
 - Critical temperature [K].
- real pc
 - Critical pressure [Pa].
- real zc

Critical compressibility [-].

real acf

Acentric factor [-].

real tb

Normal boiling point [K].

real ttr

Triple point temperature [K].

• real ptr

Triple point temperature [K].

real sref

Reference entropy [J/mol/K].

real href

Reference enthalpy [J/mol].

real dfh

481

Enthalpy of formation [J/mol].

real dfg

Gibbs energy of formation [J/mol].

integer psatcode

Vapour pressure correlation 1: Antoine 2: Wilson (Michelsen) 3: Starling.

• real, dimension(3) ant

Vapour pressure correlation parameters.

real tantmin

Vapour pressure correlation lower temperature limit [K].

real tantmax

Vapour pressure correlation upper temperature limit [K].

real zra

Rackett compressibility factor.

real mu_dipole

Electric dipole moment (D)

real q_quadrupole

Electric quadrupole moment (ÃåD)

The documentation for this type was generated from the following file:

• compdata.f90

6.42 gergmixdb::gerg_mix_data Type Reference

Public Attributes

- character(len=uid_len) ident1
 - The component ID.
- character(len=uid_len) ident2

The component ID.

real fij

Departure function parameter.

```
    integer num_mix
```

Number of parameters.

- real, dimension(12) n_mix
- real, dimension(12) t_mix
- integer, dimension(12) d_mix
- real, dimension(12) eta_mix
- real, dimension(12) gamma_mix
- real, dimension(12) epsilon_mix
- real, dimension(12) **beta_mix**
- integer num_exp

Number of exponential terms.

The documentation for this type was generated from the following file:

· gergmixdb.f90

6.43 gergmixdb::gerg_mix_reducing Type Reference

Public Attributes

- character(len=uid_len) ident1
 - The component ID.
- character(len=uid_len) ident2

The component ID.

real beta_v

Reducing density parameter.

real gamma_v

Reducing density parameter.

real beta_t

Reducing temperature parameter.

real gamma_t

Reducing temperature parameter.

The documentation for this type was generated from the following file:

• gergmixdb.f90

6.44 gergdatadb::gergdata Type Reference

Public Attributes

character(len=uid_len) ident

```
The component ID.
```

- character(len=comp_name_len) name
 - The component name.
- real mw

Mole weight (g/mol)

- real ttr
 - Triple point temperature (K)
- real ptr

Triple point pressure (kPa)

- real tc
 - Critical temperature (K)
- real **pc**

Critical pressure (kPa)

real rhoc

Critical density (mol/l)

real tr

Reducing temperature (K)

real rhor

Reducing density (mol/l)

- real rgas
 - Gas constant (J/mol-K)
- real acf

Acentric factor.

real t_max

```
Reducing temperature (K)
```

real p_max

Reducing temperature (kPa)

- integer n_eos
- real, dimension(24) a_eos
- real, dimension(24) t_eos
- integer, dimension(24) d_eos
- integer, dimension(24) I_eos
- integer n_cosh
- integer n_sinh
- real, dimension(7) n_id
- real, dimension(7) t_id

The documentation for this type was generated from the following file:

• gergdatadb.f90

6.45 idealh2::h2func Interface Reference

Public Member Functions

• integer function geth2index (ident)

The documentation for this interface was generated from the following file:

· idealh2.f90

6.46 hardsphere_bmcsl::hs_diameter Type Reference

Container for temperature dependent hard-sphere diameter and differentials. Collaboration diagram for hardsphere_bmcsl::hs_diameter:

Public Member Functions

• procedure, public allocate (dhs, nc)

Allocated hs_diameter memory.

- procedure, public deallocate (dhs)
 - Free allocated hs_diameter memory.
- procedure, public assign_hs_diameter (this, other)
- generic, public assignment (this, other)

Public Attributes

- real, dimension(:), allocatable d
 - Hard sphere diameter.
- real, dimension(:), allocatable d_t
 - Temperature differential of hard sphere diameter.
- real, dimension(:), allocatable $\textbf{d_tt}$

Second temperature differential of hard sphere diameter.

real t_update = 0
 d calculated for T:

6.46.1 Detailed Description

Container for temperature dependent hard-sphere diameter and differentials. The documentation for this type was generated from the following file:

hardsphere_bmcsl.f90

6.47 hyperdual_mod::hyperdual Type Reference

Derived type for hyperdual numbers.

Public Attributes

```
• real(dp) f0 = 0
```

real part of the hyperdual number

real(dp) f1 = 0

 ε_1 -part of the hyperdual number

• real(dp) f2 = 0

 ε_2 -part of the hyperdual number

real(dp) f3 = 0

 $arepsilon_3$ -part of the hyperdual number

real(dp) f12 = 0

 $arepsilon_1arepsilon_2$ -part of the

• real(dp) f13 = 0

 $\varepsilon_1 \varepsilon_3$ -part of the

- real(dp) f23 = 0
 - $\varepsilon_2 \varepsilon_3$ -part of the
- real(dp) f123 = 0

 $\varepsilon_1 \varepsilon_2 \varepsilon_3$ -part of the

• integer order = 2

Overall order of differential. Defaults to 2. Order 3 must be activated.

6.47.1 Detailed Description

Derived type for hyperdual numbers.

Hyperdual numbers are represented by the tuple $\mathbf{f} = [f_0, f_1, f_2, f_3, f_{12}, f_{13}, f_{23}, f_{123}] = f_0 + f_1\varepsilon_1 + f_2\varepsilon_2 + f_3\varepsilon_3 + f_{12}\varepsilon_1\varepsilon_2 + f_{13}\varepsilon_1\varepsilon_3 + f_{23}\varepsilon_2\varepsilon_3 + f_{123}\varepsilon_1\varepsilon_2\varepsilon_3$. Calculations specificaions are defined in module hyperdual_mod. The documentation for this type was generated from the following file:

hyperdual_mod.f90

6.48 hyperdual_utility::hyperdual_fres Interface Reference

Public Member Functions

• type(hyperdual) function hyperdual_fres (p_eos, nc, t, v, n)

The documentation for this interface was generated from the following file:

hyperdual_utility.f90

6.49 multiparameter_base::init_intf Interface Reference

Public Member Functions

• subroutine init_intf (this, use_rgas_fit)

The documentation for this interface was generated from the following file:

• multiparameter_base.f90

6.50 hyperdual_mod::int Interface Reference

Public Member Functions

• elemental integer function inthyperdual (v1)

The documentation for this interface was generated from the following file:

· hyperdual_mod.f90

6.51 cubic_eos::intergedatadb Type Reference

Public Attributes

- character(len=eosid_len) eosid
- character(len=eosid_len) mruleid
- character(len=ref_len) ref
- character(len=bibref_len) bib_ref
- character(len=uid_len) uid1
- character(len=uid_len) uid2
- · real kijvalue
- integer correlation
- real, dimension(2) alphaijvalue
- real, dimension(3) polyij
- real, dimension(3) polyji

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.52 nonlinear_solvers::jacobian_template Interface Reference

Public Member Functions

• subroutine jacobian_template (j, x, p)

The documentation for this interface was generated from the following file:

• nonlinear_solvers.f90

6.53 cubic_eos::kijdatadb Type Reference

Public Attributes

- character(len=eosid_len) eosid
- character(len=eosid_len) mruleid
- character(len=ref_len) ref
- character(len=bibref_len) bib_ref
- character(len=uid_len) uid1
- character(len=uid_len) uid2
- real kijvalue

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.54 cubic_eos::lijdatadb Type Reference

Public Attributes

- character(len=eosid_len) eosid
- character(len=eosid_len) mruleid
- character(len=ref_len) ref
- character(len=bibref_len) bib_ref
- character(len=uid_len) uid1
- character(len=uid_len) uid2
- real lijvalue

The documentation for this type was generated from the following file:

cubic_eos.f90

6.55 multiparameter_lj::lj_param Type Reference

Noble gas parameters for LJ EOS. Collaboration diagram for multiparameter_lj::lj_param:

Public Attributes

- character(len=20) comp_name
- real eps_divk
- real sigma

6.55.1 Detailed Description

Noble gas parameters for LJ EOS. The documentation for this type was generated from the following file:

• multiparameter_lj.f90

6.56 lj_splined::ljs_bh_eos Type Reference

Inheritance diagram for lj_splined::ljs_bh_eos:

Collaboration diagram for lj_splined::ljs_bh_eos:

Public Member Functions

- procedure, public set_sigma_eps (ljs, sigma, eps_depth_divk)
- procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from saftvrmie_containers::saftvrmie_eos

• procedure, public dealloc (eos)

- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public **assign_eos** (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- logical use_lafitte_a3 = .false.
- logical enable_chi_correction = .true.
- logical enable_hs = .true.
- logical enable_a1 = .true.
- logical enable_a2 = .true.
- logical enable_a3 = .true.

Public Attributes inherited from saftvrmie_containers::saftvrmie_eos

- logical ovner_of_saftvrmie_param = .false.
- type(saftvrmie_param_container), pointer saftvrmie_param => NULL()
- type(saftvrmie_var_container), pointer saftvrmie_var => NULL()
- logical ovner_of_svrm_opt = .false.
- type(saftvrmie_opt), pointer svrm_opt => NULL()

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
 - Eos identifier.
- integer eosidx
 - Eos group index.
- integer subeosidx

Eos sub-index.

- integer volumeshiftid = 0
 - 0: No volume shift, 1:Peneloux shift
- logical iselectrolyteeos = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

The documentation for this type was generated from the following file:

• lj_splined.f90

6.57 lj_splined::ljs_wca_eos Type Reference

Inheritance diagram for lj_splined::ljs_wca_eos:

Collaboration diagram for lj_splined::ljs_wca_eos:

Public Member Functions

- procedure, public set_sigma_eps (ljs, sigma, eps_depth_divk)
- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public **assign_eos** (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- real sigma
- real eps_divk
- type(saftvrmie_dhs) dhs

```
The hard-sphere diameter.
```

type(saftvrmie_zeta) eta_hs

```
Packing fraction.
```

- logical enable_cavity = .true.
- logical enable_hs = .true.
- logical enable_a1 = .true.
- logical **enable_a2** = .true.
- logical enable a3 = .true.
- logical enable_a4 = .true.
- logical ovner_of_svrm_opt = .false.
- type(saftvrmie_opt), pointer svrm_opt => NULL()

Public Attributes inherited from thermopack_var::base_eos_param

• character(len=eosid_len) eosid

Eos identifier.

integer eosidx

Eos group index.

integer subeosidx

Eos sub-index.

• integer **volumeshiftid** = 0

0: No volume shift, 1:Peneloux shift

• logical iselectrolyteeos = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.57.1 Member Function/Subroutine Documentation

6.57.1.1 allocate_and_init()

Parameters

in eos_label EOS label

The documentation for this type was generated from the following file:

• lj_splined.f90

6.58 lj_splined::ljx_ux_eos Type Reference

Inheritance diagram for lj_splined::ljx_ux_eos:

Collaboration diagram for lj_splined::ljx_ux_eos:

Public Member Functions

• procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from lj_splined::ljs_wca_eos

- procedure, public set_sigma_eps (ljs, sigma, eps_depth_divk)
- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public **assign_eos** (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- logical lj_potential
- logical is_uf_theory
- logical enable_virial_term = .true.
- logical use_temperature_dependent_u_fraction = .false.

Public Attributes inherited from lj_splined::ljs_wca_eos

- real sigma
- real eps_divk
- type(saftvrmie_dhs) dhs
- The hard-sphere diameter.
- type(saftvrmie_zeta) eta_hs

Packing fraction.

- logical enable_cavity = .true.
- logical **enable_hs** = .true.
- logical enable_a1 = .true.
- logical **enable_a2** = .true.
- logical enable_a3 = .true.
- logical **enable_a4** = .true.
- logical ovner_of_svrm_opt = .false.
- type(saftvrmie_opt), pointer svrm_opt => NULL()

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
 - Eos identifier.
- integer eosidx

Eos group index.

integer subeosidx

Eos sub-index.

• integer **volumeshiftid** = 0

0: No volume shift, 1:Peneloux shift

• logical iselectrolyteeos = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

The documentation for this type was generated from the following file:

lj_splined.f90

6.59 cubic_eos::lk_eos Type Reference

Inheritance diagram for cubic_eos::lk_eos:

Collaboration diagram for cubic_eos::lk_eos:

Additional Inherited Members

Public Member Functions inherited from cubic_eos::cb_eos

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from thermopack var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes inherited from cubic_eos::cb_eos

- character(len=mix_len) mruleid
- character(len=20) name
- integer mruleidx

- logical cubic_verbose = .false.
- real m1
- real m2
- real dm1db
- real dm1dc
- real dm2db
- real dm2dc
- real d2m1db2
- real d2m1dc2
- real d2m2db2
- real d2m2dc2
- real d2m2dbdc
- real d2m1dbdc
- real delta
- real *a*
- real b
- real c

Dependent of component.

- real sumn
- real suma

 $[Pa*L^2/mol^2]$

real sumb

Molfraction average of single-component b_i [L/mol].

• real sumc

[L/mol]

- real pn
- real pa
- real pb
- real pc
- real pt
- real pv
- real ff
- real fft
- real fftt
- real ffn
- real ffnv
- real ffna
- real ffnb
- real ffnc
- real ffnn
- real ffnt
- real ffa
- real ffaa
- real ffab
- real ffac
- real ffat
- real ffb
- real ffbb
- real ffbc
- real ffbt
- real ffc
- real ffcc
- real ffct
- real ffv

- real ffvt
- real ffvv
- real ffva
- real ffvb
- real ffvc
- real at
- real att
- real bt
- real btt
- real, dimension(:), allocatable ai
- real, dimension(:), allocatable ait
- real, dimension(:,:), allocatable aij
- real, dimension(:), allocatable **bi**
- real, dimension(:), allocatable bit
- real, dimension(:), allocatable bitt
- real, dimension(:), allocatable ci
- real, dimension(:,:), allocatable bij
- real, dimension(:,:), allocatable cij
- integer, dimension(2) extrm
- integer, dimension(2) nextrm
- integer, dimension(2) nzfac
- type(singledata), dimension(:), allocatable single
- real, dimension(:,:), allocatable kij
- real, dimension(:,:), allocatable lij
- real, dimension(:,:), allocatable lowcase_bij
- logical simple_covolmixing
- type(mixexcessgibbs) mixge
- type(mixwongsandler) mixws
- type(unifacdb), pointer unifdb => NULL()

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
 - Eos identifier.
- integer eosidx

Eos group index.

- integer subeosidx
 - Eos sub-index.
- integer **volumeshiftid** = 0
 - 0: No volume shift, 1:Peneloux shift
- logical iselectrolyteeos = .false.
 - Used to enable electrolytes.
- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.60 hyperdual_mod::log Interface Reference

Public Member Functions

elemental type(hyperdual) function loghyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.61 hyperdual_mod::log10 Interface Reference

Public Member Functions

• elemental type(hyperdual) function log10hyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.62 hyperdual_mod::max Interface Reference

Public Member Functions

- elemental type(hyperdual) function max_dd (v1, v2)
- elemental type(hyperdual) function max_ddd (v1, v2, v3)
- elemental type(hyperdual) function max_dr (v1, v2)
- elemental type(hyperdual) function max_rd (v1, v2)

The documentation for this interface was generated from the following file:

• hyperdual_mod.f90

6.63 mbwrdata::mbwr19data Type Reference

Public Attributes

- integer eqno
- character(len=10) comid
- integer setno
- integer lowprop
- integer highprop
- integer ndata
- real *8, dimension(20) coeff

The documentation for this type was generated from the following file:

• mbwrdata.f90

6.64 mbwrdata::mbwr32data Type Reference

Public Attributes

- integer eqno
- character(len=10) comid
- integer setno
- integer lowprop
- integer highprop
- integer ndata
- real *8, dimension(33) coeff

The documentation for this type was generated from the following file:

• mbwrdata.f90

6.65 multiparameter_base::meos Type Reference

Base class for multiparameter equations of state. Inheritance diagram for multiparameter_base::meos:

Public Member Functions

procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)

Pressure and (optionally) its derivatives.

- procedure, public **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_f** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn) *Calculate reduced ideal Helmholtz energy and differentials.*
- procedure, public **calc_zfac** (this, t, p, n, phase, z, z_t, z_p, z_n)
- procedure, public calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- procedure, public **calc_entropy** (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- procedure, public calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)
- procedure, public calc_resgibbs (this, t, p, n, phase, g, g_t, g_p, g_n)
- procedure, public densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)
- procedure, public alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- procedure, public alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- procedure, public alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- procedure, public getcritpoint (this, tcrit, pcrit, rhocrit)
- procedure(init_intf), deferred, public init (this, use_rgas_fit)
 - Initiate compName, critical point and triple point.
- procedure, public cv (this, t, v)

```
Isochoric heat capacity.
```

- procedure, public cp (this, t, v)
 - Isobaric heat capacity.

- procedure, public speed_of_sound (this, t, v)
 - [m/s]
- procedure, public get_ref_state_spec (this, ref_state, t, p, phase, solve)
 - Get specification for the current reference state.
- procedure, public **set_ref_state** (this, t, p, v, h, s) Set reference state.
- procedure(satdeltaestimate_intf), deferred, public satdeltaestimate (this, tau, phase) An estimate delta_sat(tau_sat) for use in density solver.
- procedure(alpha0derivs_intf), deferred, public alpha0derivs_taudelta (this, delta, tau, alp0)
 [d^{j}alpha0/(d_tau)^j]*tau^j
- procedure(alpharesderivs_intf), deferred, public alpharesderivs_taudelta (this, delta, tau, alpr)
 [d[{]{i+j}alphaRes/(d_delta)ⁱ(d_tau)^j]*deltaⁱ*tau^j
- procedure(alpha0_hd_intf), deferred, public alpha0_hd_taudelta (this, delta, tau)
 Calculate alpha0 using hyperdual numbers.
- procedure(alphares_hd_intf), deferred, public alphares_hd_taudelta (this, delta, tau) *Calculate alphaRes using hyperdual numbers.*
- procedure, public **assign_meos_base** (this, other)
- procedure(assign_meos_intf), deferred, pass, public assign_meos (this, other)
- generic, public assignment assign_meos

Public Attributes

• character(len=20), public compname

Parameters in SI units. These are set in the deferred init routine.

- real, public tc
- real, public pc
- real, public rc
- real, public acf
- real, public t_triple
- real, public **p_triple**
- real, public rholig triple
- real, public rhovap triple
- real, public molarmass

(kg/mol)

- real, public maxt
- real, public maxp

```
(K), (Pa)
```

- real, public rgas_meos = Rgas_default
- real, public rgas_fit

6.65.1 Detailed Description

Base class for multiparameter equations of state.

6.65.2 Member Function/Subroutine Documentation

6.65.2.1 alpha0_hd_taudelta()

in	delta	Reduced density (-)
in	tau	Reduced temperature (-)

Returns

Ideal reduced Helmholtz energy

6.65.2.2 alpha0derivs_taudelta()

procedure(alpha0derivs_intf), deferred, public multiparameter_base::meos::alpha0derivs_↔
taudelta (

```
class(meos) this,
    real, intent(in) delta,
    real, intent(in) tau,
    real, dimension(0:2,0:2), intent(out) alp0) [pure virtual]
[d^{j}alpha0/(d_tau)^j]*tau^j
```

Parameters

in	delta	Reduced density (-)	
in	tau	Reduced temperature (-)	
out	alp0	$alp0(i,j) = [(d_delta)^i(d_tau)^j alpha0]*delta^i*tau^j$	

6.65.2.3 alphaderivs_tv()

Parameters

	this	Calling class	
in	v	Temperature (K) and molar volume (m^3/mol)	
out	alp	A/(nRT)	

6.65.2.4 alphaidderivs_tv()

```
real, intent(out), optional alp_tt,
real, intent(out), optional alp_tv,
real, intent(out), optional alp_vv,
real, intent(out), optional alp_n,
real, intent(out), optional alp_tn,
real, intent(out), optional alp_vn,
real, intent(out), optional alp_nn)
```

	this	Calling class	
in	v	Temperature (K) and molar volume (m 3 /mol)	
out	alp	A/(nRT)	

6.65.2.5 alphares_hd_taudelta()

```
procedure(alphares_hd_intf), deferred, public multiparameter_base::meos::alphares_hd_taudelta
(
```

```
class(meos) this,
type(hyperdual), intent(in) delta,
type(hyperdual), intent(in) tau) [pure virtual]
```

Calculate alphaRes using hyperdual numbers.

Parameters

in	delta	Reduced density (-)
in	tau	Reduced temperature (-)

Returns

Residual reduced Helmholtz energy

6.65.2.6 alpharesderivs_taudelta()

```
procedure(alpharesderivs_intf), deferred, public multiparameter_base::meos::alpharesderivs_\leftrightarrow taudelta (
```

```
class(meos) this,
real, intent(in) delta,
real, intent(in) tau,
real, dimension(0:2,0:2), intent(out) alpr) [pure virtual]
```

```
[d^{i+j}alphaRes/(d_delta)^i(d_tau)^j]*delta^i*tau^j
```

Parameters

in	delta	Reduced density (-)	
in	tau	Reduced temperature (-)	
out	alpr	$alpr(i,j) = [(d_delta)^i(d_tau)^j alphaRes]*delta^i*tau^j$	

6.65.2.7 alpharesderivs_tv()

```
real, intent(out), optional alpr,
real, intent(out), optional alpr_t,
real, intent(out), optional alpr_v,
real, intent(out), optional alpr_tt,
real, intent(out), optional alpr_tv,
real, intent(out), optional alpr_vv,
real, intent(out), optional alpr_n,
real, intent(out), optional alpr_vn,
real, intent(out), optional alpr_vn,
real, intent(out), optional alpr_n)
```

	this	Calling class	
in	v	Temperature (K) and molar volume (m 3 /mol)	
out	alpr	A/(nRT)	

6.65.2.8 cp()

isoballe lieat capa

Parameters

	this	Calling class	
in	V	Temperature (K) and molar volume (m 3 /mol)	

Returns

[J/(mol*K)]

6.65.2.9 cv()

Isochoric heat capacity.

Parameters

	this	Calling class	
in	V	Temperature (K) and molar volume (m 3 /mol)	

Returns

[J/(mol*K)]

6.65.2.10 densitysolver()

```
real, intent(in) t_spec,
real, intent(in) p_spec,
integer, intent(in) phase_spec,
real, intent(out) rho,
integer, intent(out), optional phase_found,
integer, intent(out), optional ierr)
```

	this	The calling class.
in	p_spec	Temperature (K) and pressure (Pa)
in	phase_spec	Phase flag.
out	rho	Density (mol/m [^] 3)

6.65.2.11 satdeltaestimate()

```
procedure(satdeltaestimate_intf), deferred, public multiparameter_base::meos::satdeltaestimate
(
```

class(meos) this, real, intent(in) tau, integer, intent(in) phase) [pure virtual]

An estimate delta_sat(tau_sat) for use in density solver.

Parameters

in	tau	Reduced temperature (-)
in	phase	Phase flag

Returns

Reduced density (-)

6.65.2.12 speed_of_sound()

[m/s]

Parameters

	this	Calling class
in	V	Temperature (K) and molar volume (m^3/mol)

Returns

[m/s]

The documentation for this type was generated from the following file:

multiparameter_base.f90

6.66 multiparameter_c3::meos_c3 Type Reference

C3 multiparameter equations of state (Lemmon, McLinden and Wagner 2009).

Inheritance diagram for multiparameter_c3::meos_c3:

Collaboration diagram for multiparameter_c3::meos_c3:

Public Member Functions

- procedure, public alpha0derivs_taudelta (this, delta, tau, alp0)
- procedure, public alpharesderivs_taudelta (this, delta, tau, alpr)
- procedure, public satdeltaestimate (this, tau, phase)
- procedure, public init (this, use rgas fit)
- procedure, public alpha0_hd_taudelta (this, delta, tau)
- procedure, public alphares_hd_taudelta (this, delta, tau)
- procedure, pass, public assign_meos (this, other)

Public Member Functions inherited from multiparameter base::meos

- procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)
 - Pressure and (optionally) its derivatives.
- procedure, public **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)

- procedure, public **calc_f** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn) *Calculate reduced ideal Helmholtz energy and differentials.*
- procedure, public **calc_zfac** (this, t, p, n, phase, z, z_t, z_p, z_n)
- procedure, public calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- procedure, public calc_entropy (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- procedure, public calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)
- procedure, public **calc_resgibbs** (this, t, p, n, phase, g, g_t, g_p, g_n)
- procedure, public densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)
- procedure, public alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- procedure, public alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- procedure, public alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- procedure, public getcritpoint (this, tcrit, pcrit, rhocrit)
- procedure(init_intf), deferred, public init (this, use_rgas_fit)
 - Initiate compName, critical point and triple point.
- procedure, public $\ensuremath{\mathsf{cv}}$ (this, t, v)

Isochoric heat capacity.

procedure, public cp (this, t, v)

Isobaric heat capacity.

procedure, public speed_of_sound (this, t, v)

[m/s]

- procedure, public get_ref_state_spec (this, ref_state, t, p, phase, solve)
 Get specification for the current reference state.
- procedure, public set_ref_state (this, t, p, v, h, s)

Set reference state.

- procedure(satdeltaestimate_intf), deferred, public satdeltaestimate (this, tau, phase)
 An estimate delta_sat(tau_sat) for use in density solver.
- procedure(alpha0derivs_intf), deferred, public alpha0derivs_taudelta (this, delta, tau, alp0)
 [d^{j}alpha0/(d_tau)^j]*tau^j
- procedure(alpharesderivs_intf), deferred, public alpharesderivs_taudelta (this, delta, tau, alpr)
 [d[^]{i+i}alphaRes/(d_delta)[^]i(d_tau)[^]j]*delta[^]i*tau[^]j
- procedure(alpha0_hd_intf), deferred, public alpha0_hd_taudelta (this, delta, tau)
 Calculate alpha0 using hyperdual numbers.
- procedure(alphares_hd_intf), deferred, public alphares_hd_taudelta (this, delta, tau)
 Calculate alphaRes using hyperdual numbers.
- procedure, public assign_meos_base (this, other)
- procedure(assign_meos_intf), deferred, pass, public assign_meos (this, other)
- generic, public assignment assign_meos

Public Attributes

- real deltasatliq_cache
- real deltasatvap_cache
- real, dimension(1:uppol) prefactors_pol_cache
- real, dimension(uppol+1:upexp) prefactors_exp_cache
- real, dimension(upexp+1:upexpexp) prefactors_expexp_cache

504

Public Attributes inherited from multiparameter_base::meos

- character(len=20), public compname
 - Parameters in SI units. These are set in the deferred init routine.
- real, public tc
- real, public pc
- real, public rc
- · real, public acf
- real, public t triple
- real, public p_triple
- real, public rholiq_triple
- real, public rhovap_triple
- real, public molarmass
 - (kg/mol)
- real, public maxt
- · real, public maxp

```
(K), (Pa)
```

- real, public rgas_meos = Rgas_default
- real, public rgas_fit

6.66.1 Detailed Description

C3 multiparameter equations of state (Lemmon, McLinden and Wagner 2009).

6.66.2 Member Function/Subroutine Documentation

6.66.2.1 alpha0derivs_taudelta()

Parameters

out | alp0 | $alp0(i,j) = [(d_delta)^i(d_tau)^j alpha0]*delta^i*tau^j$

6.66.2.2 alpharesderivs_taudelta()

Parameters

out | alpr | $alpr(i,j) = (d_delta)^{i}(d_tau)^{j} alphaRes$

The documentation for this type was generated from the following file:

• multiparameter_c3.f90

6.67 gerg::meos_gerg Type Reference

GERG-2008 multiparameter equations of state. Inheritance diagram for gerg::meos_gerg:

Collaboration diagram for gerg::meos_gerg:

Public Member Functions

- procedure, public alpha0derivs_taudelta (this, delta, tau, alp0) Specific reduced Helmholtz energy - ideal gas contributuion.
- procedure, public alpharesderivs_taudelta (this, delta, tau, alpr)
 - Specific residual reduced Helmholtz energy.
- procedure, public **satdeltaestimate** (this, tau, phase) Estimate saturated densities for density solver.

- procedure, public init (this, use_rgas_fit)
- procedure, public allocate_param (this)
- procedure, public alpha0_hd_taudelta (this, delta, tau)
 - Specific reduced Helmholtz energy ideal gas contributuion. Hyperdual numbers.
- procedure, public **alphares_hd_taudelta** (this, delta, tau) Specific residual reduced Helmholtz energy. Hyperdual numbers.
- procedure, pass, public **assign_meos** (this, other)

Public Member Functions inherited from multiparameter_base::meos

procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)

Pressure and (optionally) its derivatives.

- procedure, public **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_f** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn) *Calculate reduced ideal Helmholtz energy and differentials.*
- procedure, public **calc_zfac** (this, t, p, n, phase, z, z_t, z_p, z_n)
- procedure, public calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- procedure, public calc_entropy (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- procedure, public calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)
- procedure, public **calc_resgibbs** (this, t, p, n, phase, g, g_t, g_p, g_n)
- procedure, public densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)
- procedure, public alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- procedure, public alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- procedure, public alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- · procedure, public getcritpoint (this, tcrit, pcrit, rhocrit)
- procedure(init_intf), deferred, public init (this, use_rgas_fit)

Initiate compName, critical point and triple point.

- procedure, public $\ensuremath{\mathsf{cv}}$ (this, t, v)

- Isochoric heat capacity.
- procedure, public cp (this, t, v)

Isobaric heat capacity.

procedure, public speed_of_sound (this, t, v)

[m/s]

- procedure, public **get_ref_state_spec** (this, ref_state, t, p, phase, solve) Get specification for the current reference state.
- procedure, public set_ref_state (this, t, p, v, h, s)

```
Set reference state.
```

- procedure(satdeltaestimate_intf), deferred, public satdeltaestimate (this, tau, phase) An estimate delta sat(tau sat) for use in density solver.
- procedure(alpha0derivs_intf), deferred, public alpha0derivs_taudelta (this, delta, tau, alp0)
 [d^{j}alpha0/(d_tau)^j]*tau^j
- procedure(alpharesderivs_intf), deferred, public alpharesderivs_taudelta (this, delta, tau, alpr)
 [d[{]{i+j}alphaRes/(d_delta)^i(d_tau)^j]*delta^i*tau^j
- procedure(alpha0_hd_intf), deferred, public alpha0_hd_taudelta (this, delta, tau) *Calculate alpha0 using hyperdual numbers.*
- procedure(alphares_hd_intf), deferred, public alphares_hd_taudelta (this, delta, tau) *Calculate alphaRes using hyperdual numbers.*
- procedure, public assign_meos_base (this, other)
- procedure(assign_meos_intf), deferred, pass, public assign_meos (this, other)
- generic, public assignment assign_meos

Public Attributes

- integer i_comp = 0
- integer index
- integer, dimension(:), allocatable of
- integer component
- integer, dimension(:), allocatable in
- integer gergdatadb
- integer n_cosh = 0
- integer number
- integer, dimension(:), allocatable cosh
- integer, dimension(:), allocatable terms
- integer n_sinh = 0
- integer and
- integer, dimension(:), allocatable sinh
- real, dimension(3) n
- real constants
- real, dimension(:), allocatable v
- real, dimension(:), allocatable prefactor
- real, dimension(:), allocatable ideal
- real, dimension(:), allocatable terms
- real, dimension(:), allocatable b
- real, dimension(:), allocatable cosh
- real, dimension(:), allocatable sinh
- real, dimension(:), allocatable parameter
- real, dimension(:), allocatable for
- integer **uppol** = 0
- integer, dimension(:), allocatable polynomial
- integer **upexp** = 0
- integer, dimension(:), allocatable exponential
- real, dimension(:), allocatable **n_pol**
- real, dimension(:), allocatable polynomial
- real, dimension(:), allocatable n exp
- real, dimension(:), allocatable exponential
- real, dimension(:), allocatable t_pol
- real, dimension(:), allocatable tau
- real, dimension(:), allocatable exponent
- real, dimension(:), allocatable t_exp
- real, dimension(:), allocatable in
- integer, dimension(:), allocatable d_pol
- integer, dimension(:), allocatable delta
- integer, dimension(:), allocatable exponent
- integer, dimension(:), allocatable d_exp
- integer, dimension(:), allocatable for
- integer, dimension(:), allocatable prefactor
- integer, dimension(:), allocatable I_exp
- integer, dimension(:), allocatable term
- type(sat densities) dl
- type(sat_densities) parameters
- type(sat_densities) liquid
- type(sat_densities) saturated
- type(sat_densities) density
- type(sat_densities) dv
- type(sat_densities) vapor

Public Attributes inherited from multiparameter_base::meos

- character(len=20), public compname
 - Parameters in SI units. These are set in the deferred init routine.
- real, public tc
- real, public pc
- real, public rc
- · real, public acf
- real, public t triple
- real, public p_triple
- real, public rholiq_triple
- real, public rhovap_triple
- real, public molarmass
 - (kg/mol)
- real, public maxt
- · real, public maxp

```
(K), (Pa)
```

- real, public rgas_meos = Rgas_default
- real, public rgas_fit

6.67.1 Detailed Description

GERG-2008 multiparameter equations of state.

6.67.2 Member Function/Subroutine Documentation

6.67.2.1 alpha0derivs_taudelta()

Specific reduced Helmholtz energy - ideal gas contributuion.

Parameters

out $| alp0 | alp0(i,j) = [(d_delta)^i(d_tau)^j alpha0]*delta^i*tau^j$

6.67.2.2 alpharesderivs_taudelta()

•

Parameters

out | alpr | $alpr(i,j) = (d_delta)^i(d_tau)^j alphaRes$

The documentation for this type was generated from the following file:

• gerg.f90

6.68 gergmix::meos_gergmix Type Reference

GERG-2008 multiparameter equations of state. Inheritance diagram for gergmix::meos_gergmix:

Collaboration diagram for gergmix::meos_gergmix:

Public Member Functions

- procedure, public allocate_param (this, nc)
- procedure, public alpha0_hd (this, x, rho, t)
 - Specific reduced Helmholtz energy ideal gas contributuion.
- procedure, public **alphares_hd** (this, x, delta, tau)

Specific residual reduced Helmholtz energy.

- procedure, public zfac (eos, t, p, z, phase, zfac, phase_found)
- procedure, pass, public assign_meos (this, other)
- procedure, public **calc_delta** (this, x, rho)

Calculate mixture delta.

procedure, public calc_tau (this, x, t)

Calculate mixture tau.

procedure, public calc_del_alpha_r (this, x, tau, delta)

Calculate departure function for mixing.

- procedure, public pressure (this, rho, x, t_spec, p, p_rho, p_rhorho)
 Pressure method using hyperdual numbers for differentials.
- procedure, public densitysolver (this, x, t_spec, p_spec, phase_spec, rho, phase_found, ierr) Density solver. Specified T,P and composition,.
- procedure, public fake_density (this, x, t_spec, p_spec, phase_spec, rho, ierr, phase_found) Calculate fake phase.

Public Member Functions inherited from eos_parameters::single_eos

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- real, dimension(:, :), allocatable inv_rho_pow
- real, dimension(:, :), allocatable binary
- real, dimension(:, :), allocatable mixed
- real, dimension(:, :), allocatable critical
- real, dimension(:, :), allocatable density
- real, dimension(:, :), allocatable tc_prod_sqrt
- real, dimension(:, :), allocatable temperature
- real, dimension(:, :), allocatable beta_t
- real, dimension(:, :), allocatable mixing
- real, dimension(:, :), allocatable parameter
- real, dimension(:, :), allocatable beta_v
- real, dimension(:, :), allocatable gamma_t
- real, dimension(:, :), allocatable gamma_v
- integer, dimension(:, :), allocatable mix_data_index
- integer, dimension(:, :), allocatable index
- integer, dimension(:, :), allocatable in
- integer, dimension(:, :), allocatable database

Public Attributes inherited from eos_parameters::single_eos

- type(eosmbwr), dimension(:), allocatable mbwr_meos
- type(nist_meos_ptr), dimension(:), allocatable nist

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
 - Eos identifier.
- integer eosidx

Eos group index.

integer subeosidx

Eos sub-index.

• integer volumeshiftid = 0

0: No volume shift, 1:Peneloux shift

• logical iselectrolyteeos = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.68.1 Detailed Description

GERG-2008 multiparameter equations of state.

6.68.2 Member Function/Subroutine Documentation

6.68.2.1 densitysolver()

```
procedure, public gergmix::meos_gergmix::densitysolver (
        class(meos_gergmix) this,
        real, dimension(nce), intent(in) x,
        real, intent(in) t_spec,
        real, intent(in) p_spec,
        integer, intent(in) phase_spec,
        real, intent(out) rho,
        integer, intent(out), optional phase_found,
        integer, intent(out), optional ierr)
```

Density solver. Specified T,P and composition,.

Parameters

	this	The calling class.
in	x	Temperature (K) and pressure (Pa)
in	phase_spec	Phase flag.
out	rho	Density (mol/m [^] 3)

6.68.2.2 fake_density()

```
procedure, public gergmix::meos_gergmix::fake_density (
        class(meos_gergmix) this,
        real, dimension(nce), intent(in) x,
        real, intent(in) t_spec,
        real, intent(in) p_spec,
        integer, intent(in) phase_spec,
        real, intent(out) rho,
```

integer, intent(out) ierr, integer, intent(out), optional phase_found) Calculate fake phase.

Parameters

	this	The calling class.
in	x	Temperature (K) and pressure (Pa)
in	phase_spec	Phase flag
out	rho	Density (mol/m [^] 3)

The documentation for this type was generated from the following file:

• gergmix.f90

6.69 eos_parameters::meos_idealmix Type Reference

Inheritance diagram for eos_parameters::meos_idealmix:

Collaboration diagram for eos_parameters::meos_idealmix:

Additional Inherited Members

Public Member Functions inherited from eos_parameters::single_eos

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes inherited from eos_parameters::single_eos

- type(eosmbwr), dimension(:), allocatable mbwr_meos
- type(nist_meos_ptr), dimension(:), allocatable nist

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
 - Eos identifier.
- integer eosidx
 - Eos group index.
- integer subeosidx
 - Eos sub-index.
- integer volumeshiftid = 0
 - 0: No volume shift, 1:Peneloux shift
• logical iselectrolyteeos = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

The documentation for this type was generated from the following file:

eos_parameters.f90

6.70 multiparameter_lj::meos_lj Type Reference

LJ multiparameter equations of state (Thol, Vrabec and Span). Inheritance diagram for multiparameter_lj::meos_lj:

Collaboration diagram for multiparameter_lj::meos_lj:

Public Member Functions

- procedure, public alpha0derivs_taudelta (this, delta, tau, alp0)
- procedure, public alpharesderivs_taudelta (this, delta, tau, alpr)
- procedure, public satdeltaestimate (this, tau, phase)
- procedure, public **init** (this, use_rgas_fit)
- procedure, public alpha0_hd_taudelta (this, delta, tau)
- procedure, public alphares_hd_taudelta (this, delta, tau)
- procedure, pass, public assign_meos (this, other)

Public Member Functions inherited from multiparameter_base::meos

- procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)
 Pressure and (optionally) its derivatives.
- procedure, public **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_f** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn) *Calculate reduced ideal Helmholtz energy and differentials.*
- procedure, public **calc_zfac** (this, t, p, n, phase, z, z_t, z_p, z_n)
- procedure, public calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- procedure, public calc_entropy (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- procedure, public calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)
- procedure, public **calc_resgibbs** (this, t, p, n, phase, g, <u>g_t</u>, <u>g_p</u>, <u>g_n</u>)
- procedure, public densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)
- procedure, public alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- procedure, public alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- procedure, public alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- procedure, public **getcritpoint** (this, tcrit, pcrit, rhocrit)
- procedure(init_intf), deferred, public init (this, use_rgas_fit)
 - Initiate compName, critical point and triple point.
- procedure, public cv (this, t, v) Isochoric heat capacity.
- procedure, public cp (this, t, v)

Isobaric heat capacity.

procedure, public speed_of_sound (this, t, v)

[m/s]

- procedure, public get_ref_state_spec (this, ref_state, t, p, phase, solve)
 - Get specification for the current reference state.
- procedure, public set_ref_state (this, t, p, v, h, s) Set reference state.
- procedure(satdeltaestimate_intf), deferred, public satdeltaestimate (this, tau, phase)

An estimate delta_sat(tau_sat) for use in density solver.

- procedure(alpha0derivs_intf), deferred, public alpha0derivs_taudelta (this, delta, tau, alp0)
 [d^{j}alpha0/(d_tau)^j]*tau^j
- procedure(alpharesderivs_intf), deferred, public alpharesderivs_taudelta (this, delta, tau, alpr)
 [d^{i+j}alphaRes/(d_delta)^i(d_tau)^j]*delta^i*tau^j
- procedure(alpha0_hd_intf), deferred, public alpha0_hd_taudelta (this, delta, tau) *Calculate alpha0 using hyperdual numbers.*
- procedure(alphares_hd_intf), deferred, public alphares_hd_taudelta (this, delta, tau) *Calculate alphaRes using hyperdual numbers.*
- procedure, public assign_meos_base (this, other)
- procedure(assign_meos_intf), deferred, pass, public assign_meos (this, other)
- generic, public assignment assign_meos

Public Attributes

- real sigma
- real eps_divk
- real, dimension(:), allocatable a
- integer uppol = 0
- integer upexp = 0
- integer upexpexp = 0
- real, dimension(:), allocatable n_pol
- real, dimension(:), allocatable n_exp
- real, dimension(:), allocatable n_expexp
- real, dimension(:), allocatable t_pol
- real, dimension(:), allocatable t_exp
- real, dimension(:), allocatable t_expexp
- integer, dimension(:), allocatable d_pol
- integer, dimension(:), allocatable d_exp
- integer, dimension(:), allocatable d_expexp
- integer, dimension(:), allocatable I_exp
- real, dimension(:), allocatable eta_expexp
- real, dimension(:), allocatable beta_expexp
- real, dimension(:), allocatable gam_expexp
- real, dimension(:), allocatable eps_expexp
- integer satp_liq = 0
- integer satp_vap = 0
- real, dimension(:), allocatable n_liqsat
- real, dimension(:), allocatable expo_liqsat
- real, dimension(:), allocatable n_vapsat
- real, dimension(:), allocatable expo_vapsat

Public Attributes inherited from multiparameter_base::meos

- character(len=20), public compname
 - Parameters in SI units. These are set in the deferred init routine.
- real, public tc
- real, public **pc**
- real, public rc
- real, public acf
- real, public t_triple
- real, public p_triple
- real, public rholiq_triple
- real, public rhovap_triple
- real, public molarmass
 - (kg/mol)
- real, public maxt
- real, public maxp

(K), (Pa)

- real, public rgas_meos = Rgas_default
- real, public rgas_fit

6.70.1 Detailed Description

LJ multiparameter equations of state (Thol, Vrabec and Span).

6.70.2 Member Function/Subroutine Documentation

6.70.2.1 alpha0derivs_taudelta()

Parameters

out	alp0	$alp0(i,i) = [(d delta)^{i}(d tau)^{i} alpha0] * delta^{i} * tau^{i}$

6.70.2.2 alpharesderivs_taudelta()

Parameters

out alpr alpr(i,j) = (d_delta)^i(d_tau)^j alphaRes

The documentation for this type was generated from the following file:

• multiparameter_lj.f90

6.71 meosmix::meos_mix Type Reference

Multiparameter equations of state.

Inheritance diagram for meosmix::meos_mix:

Collaboration diagram for meosmix::meos_mix:

Public Member Functions

- procedure, public rgas_mix (this, x)
- procedure, public calc_del_alpha_r (this, x, tau, delta)
- procedure, public fake_density (this, x, t_spec, p_spec, phase_spec, rho, ierr, phase_found) *Calculate extremas in pressure and determine if a fake root is needed.*

Public Member Functions inherited from gergmix::meos_gergmix

- procedure, public allocate_param (this, nc)
- procedure, public alpha0_hd (this, x, rho, t)
 - Specific reduced Helmholtz energy ideal gas contributuion.
- procedure, public alphares_hd (this, x, delta, tau)
 - Specific residual reduced Helmholtz energy.
- procedure, public zfac (eos, t, p, z, phase, zfac, phase_found)
- procedure, pass, public assign_meos (this, other)
- procedure, public calc_delta (this, x, rho)

Calculate mixture delta.

- procedure, public $\textbf{calc_tau}$ (this, x, t)
 - Calculate mixture tau.
- procedure, public calc_del_alpha_r (this, x, tau, delta)
 Calculate departure function for mixing.
- procedure, public **pressure** (this, rho, x, t_spec, p, p_rho, p_rhorho) *Pressure method using hyperdual numbers for differentials.*
- procedure, public densitysolver (this, x, t_spec, p_spec, phase_spec, rho, phase_found, ierr) Density solver. Specified T,P and composition,.
- procedure, public fake_density (this, x, t_spec, p_spec, phase_spec, rho, ierr, phase_found)
 Calculate fake phase.

Public Member Functions inherited from eos_parameters::single_eos

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public **assign_eos** (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Additional Inherited Members

Public Attributes inherited from gergmix::meos_gergmix

- real, dimension(:, :), allocatable inv_rho_pow
- real, dimension(:, :), allocatable binary
- real, dimension(:, :), allocatable mixed
- real, dimension(:, :), allocatable critical
- real, dimension(:, :), allocatable density
- real, dimension(:, :), allocatable tc_prod_sqrt
- real, dimension(:, :), allocatable temperature
- real, dimension(:, :), allocatable beta_t

- real, dimension(:, :), allocatable mixing
- real, dimension(:, :), allocatable parameter
- real, dimension(:, :), allocatable beta_v
- real, dimension(:, :), allocatable gamma_t
- real, dimension(:, :), allocatable gamma_v
- integer, dimension(:, :), allocatable mix_data_index
- integer, dimension(:, :), allocatable $\ensuremath{\text{index}}$
- integer, dimension(:, :), allocatable in
- integer, dimension(:, :), allocatable database

Public Attributes inherited from eos_parameters::single_eos

- type(eosmbwr), dimension(:), allocatable mbwr_meos
- type(nist_meos_ptr), dimension(:), allocatable nist

Public Attributes inherited from thermopack_var::base_eos_param

• character(len=eosid_len) eosid

Eos identifier.

- integer eosidx
 - Eos group index.
- integer subeosidx

Eos sub-index.

• integer volumeshiftid = 0

0: No volume shift, 1:Peneloux shift

• logical iselectrolyteeos = .false.

```
Used to enable electrolytes.
```

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.71.1 Detailed Description

Multiparameter equations of state.

6.71.2 Member Function/Subroutine Documentation

6.71.2.1 fake_density()

```
procedure, public meosmix::meos_mix::fake_density (
        class(meos_mix) this,
        real, dimension(nce), intent(in) x,
        real, intent(in) t_spec,
        real, intent(in) p_spec,
        integer, intent(in) phase_spec,
        real, intent(out) rho,
        integer, intent(out) ierr,
        integer, intent(out), optional phase_found )
```

Calculate extremas in pressure and determine if a fake root is needed.

Parameters

	this	The calling class.
in	x Temperature (K) and pressure (F	
in	phase_spec	Phase flag
out	rho	Density (mol/m [^] 3)
out	phase_found	Phase flag of detected phase

The documentation for this type was generated from the following file:

• meosmix.f90

6.72 meosmixdb::meos_mix_data Type Reference

Public Attributes

- character(len=uid_len) ident1
 - The component ID.
- character(len=uid_len) ident2
 The component ID.
- character(len=bibref_len) bibref
 - Digital Object Identifier (DOI) or reference.
- real fij

Departure function parameter.

- integer num_mix
 - Number of parameters.
- real, dimension(12) n_mix
- real, dimension(12) t_mix
- integer, dimension(12) d_mix
- integer, dimension(12) I_mix
- real, dimension(12) eta_mix
- real, dimension(12) gamma_mix
- real, dimension(12) epsilon_mix
- real, dimension(12) beta_mix
- integer num_exp

Number of exponential terms.

integer num_gauss

Number of Gaussian terms.

The documentation for this type was generated from the following file:

meosmixdb.f90

6.73 meosmixdb::meos_mix_reducing Type Reference

Public Attributes

- character(len=uid_len) ident1
 - The component ID.
- character(len=uid_len) ident2
 - The component ID.
- character(len=bibref_len) bibref

Digital Object Identifier (DOI) or reference.

real beta_v

Reducing density parameter.

real gamma_v

Reducing density parameter.

real beta_t

Reducing temperature parameter.

real gamma_t

Reducing temperature parameter.

The documentation for this type was generated from the following file:

meosmixdb.f90

6.74 multiparameter_normal_h2::meos_normal_h2 Type Reference

Inheritance diagram for multiparameter_normal_h2::meos_normal_h2:

Collaboration diagram for multiparameter_normal_h2::meos_normal_h2:

Public Member Functions

- procedure, public alpha0derivs_taudelta (this, delta, tau, alp0)
- procedure, public alpharesderivs taudelta (this, delta, tau, alpr)
- procedure, public satdeltaestimate (this, tau, phase)
- procedure, public **init** (this, use_rgas_fit)
- procedure, public alpha0_hd_taudelta (this, delta, tau)
- procedure, public alphares_hd_taudelta (this, delta, tau)
- procedure, pass, public assign_meos (this, other)

Public Member Functions inherited from multiparameter_base::meos

procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)
 Pressure and (optionally) its derivatives.

- procedure, public **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_f** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn) *Calculate reduced ideal Helmholtz energy and differentials.*
- procedure, public **calc_zfac** (this, t, p, n, phase, z, z, t, z, p, z, n)
- procedure, public calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- procedure, public calc_entropy (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- procedure, public calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)
- procedure, public calc_resgibbs (this, t, p, n, phase, g, g_t, g_p, g_n)
- procedure, public densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)
- procedure, public alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- procedure, public alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- procedure, public alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- procedure, public getcritpoint (this, tcrit, pcrit, rhocrit)
- procedure(init_intf), deferred, public init (this, use_rgas_fit)

Initiate compName, critical point and triple point.

• procedure, public cv (this, t, v)

Isochoric heat capacity.

- procedure, public cp (this, t, v)
 - Isobaric heat capacity.
- procedure, public speed_of_sound (this, t, v)

[m/s]

• procedure, public get_ref_state_spec (this, ref_state, t, p, phase, solve)

Get specification for the current reference state.

• procedure, public set_ref_state (this, t, p, v, h, s)

Set reference state.

procedure(satdeltaestimate_intf), deferred, public satdeltaestimate (this, tau, phase)
 An estimate delta_sat(tau_sat) for use in density solver.

- procedure(alpha0derivs_intf), deferred, public alpha0derivs_taudelta (this, delta, tau, alp0)
 [d^{j}alpha0/(d_tau)^j]*tau^j
- procedure(alpharesderivs_intf), deferred, public alpharesderivs_taudelta (this, delta, tau, alpr)
 [d^{(i+i)alphaRes/(d delta)^i(d tau)^j]*delta^i*tau^j
- procedure(alpha0_hd_intf), deferred, public alpha0_hd_taudelta (this, delta, tau)
 Calculate alpha0 using hyperdual numbers.
- procedure(alphares_hd_intf), deferred, public alphares_hd_taudelta (this, delta, tau) *Calculate alphaRes using hyperdual numbers.*
- procedure, public assign_meos_base (this, other)
- procedure(assign_meos_intf), deferred, pass, public assign_meos (this, other)
- generic, public assignment assign_meos

Public Attributes

- real deltasatliq_cache
- real deltasatvap_cache
- real, dimension(1:uppol) prefactors_pol_cache
- real, dimension(uppol+1:upexp) prefactors_exp_cache
- real, dimension(upexp+1:upexpexp) prefactors_expexp_cache

Public Attributes inherited from multiparameter_base::meos

- character(len=20), public compname
 - Parameters in SI units. These are set in the deferred init routine.
- real, public \boldsymbol{tc}
- real, public pc
- real, public rc
- · real, public acf
- real, public t triple
- real, public p_triple
- real, public rholiq_triple
- real, public rhovap_triple
- real, public **molarmass**
 - (kg/mol)
- real, public maxt
- real, public maxp

```
(K), (Pa)
```

- real, public rgas_meos = Rgas_default
- real, public rgas_fit

6.74.1 Member Function/Subroutine Documentation

6.74.1.1 alpha0derivs_taudelta()

```
\label{eq:procedure, public multiparameter_normal_h2::meos_normal_h2::alpha0derivs\_taudelta (
```

```
class(meos_normal_h2) this,
real, intent(in) delta,
real, intent(in) tau,
real, dimension(0:2,0:2), intent(out) alp0)
```

Parameters

```
out | alp0 | alp0(i,j) = [(d_delta)^i(d_tau)^j alpha0]*delta^i*tau^j
```

6.74.1.2 alpharesderivs_taudelta()

Parameters

out	alpr	$alpr(i,j) = (d_delta)^{i}(d_tau)^{j} alphaRes$
-----	------	---

The documentation for this type was generated from the following file:

multiparameter_normal_h2.f90

6.75 multiparameter_ortho_h2::meos_ortho_h2 Type Reference

Inheritance diagram for multiparameter_ortho_h2::meos_ortho_h2:

Collaboration diagram for multiparameter_ortho_h2::meos_ortho_h2:

Public Member Functions

- procedure, public alpha0derivs_taudelta (this, delta, tau, alp0)
- procedure, public alpharesderivs_taudelta (this, delta, tau, alpr)
- procedure, public satdeltaestimate (this, tau, phase)
- procedure, public **init** (this, use_rgas_fit)
- procedure, public alpha0_hd_taudelta (this, delta, tau)
- procedure, public alphares_hd_taudelta (this, delta, tau)
- procedure, pass, public assign_meos (this, other)

Public Member Functions inherited from multiparameter_base::meos

procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)
 Pressure and (optionally) its derivatives.

- procedure, public **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_f** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- *Calculate reduced ideal Helmholtz energy and differentials.* • procedure, public **calc_zfac** (this, t, p, n, phase, z, z, t, z, p, z, n)
- procedure, public calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- procedure, public **calc_entropy** (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- procedure, public calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)
- procedure, public calc_resgibbs (this, t, p, n, phase, g, g_t, g_p, g_n)
- procedure, public densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)
- procedure, public alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- procedure, public alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- procedure, public alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- procedure, public getcritpoint (this, tcrit, pcrit, rhocrit)
- procedure(init_intf), deferred, public init (this, use_rgas_fit)

Initiate compName, critical point and triple point.

• procedure, public cv (this, t, v)

Isochoric heat capacity.

- procedure, public cp (this, t, v)
 - Isobaric heat capacity.
- procedure, public speed_of_sound (this, t, v)

[m/s]

• procedure, public get_ref_state_spec (this, ref_state, t, p, phase, solve)

Get specification for the current reference state.

• procedure, public **set_ref_state** (this, t, p, v, h, s)

Set reference state.

- procedure(satdeltaestimate_intf), deferred, public satdeltaestimate (this, tau, phase)
 An estimate delta_sat(tau_sat) for use in density solver.
- procedure(alpha0derivs_intf), deferred, public alpha0derivs_taudelta (this, delta, tau, alp0)
 [d^{j}alpha0/(d_tau)^j]*tau^j
- procedure(alpharesderivs_intf), deferred, public alpharesderivs_taudelta (this, delta, tau, alpr)
 [d[{]{i+j}alphaRes/(d_delta)ⁱ(d_tau)^j]*deltaⁱ*tau^j
- procedure(alpha0_hd_intf), deferred, public alpha0_hd_taudelta (this, delta, tau)
 Calculate alpha0 using hyperdual numbers.
- procedure(alphares_hd_intf), deferred, public alphares_hd_taudelta (this, delta, tau) *Calculate alphaRes using hyperdual numbers.*
- procedure, public assign_meos_base (this, other)
- procedure(assign_meos_intf), deferred, pass, public assign_meos (this, other)
- generic, public assignment assign_meos

Public Attributes

- real deltasatliq_cache
- real deltasatvap_cache
- real, dimension(1:uppol) prefactors_pol_cache
- real, dimension(uppol+1:upexp) prefactors_exp_cache
- real, dimension(upexp+1:upexpexp) prefactors_expexp_cache

Public Attributes inherited from multiparameter_base::meos

• character(len=20), public compname

```
Parameters in SI units. These are set in the deferred init routine.
```

- real, public tc
- real, public pc
- real, public rc
- real, public acf
- real, public t_triple
- real, public p_triple
- real, public rholiq_triple
- real, public rhovap triple
- real, public molarmass
 - (kg/mol)
- real, public maxt
- real, public maxp

(K), (Pa)

- real, public rgas_meos = Rgas_default
- real, public rgas_fit

6.75.1 Member Function/Subroutine Documentation

6.75.1.1 alpha0derivs_taudelta()

Parameters

```
out alp0 alp0(i,j) = [(d_delta)^i(d_tau)^j alpha0]*delta^i*tau^j
```

6.75.1.2 alpharesderivs_taudelta()

Parameters

out	alpr	$alpr(i,j) = (d_delta)^{i}(d_tau)^{j} alphaRes$
-----	------	---

The documentation for this type was generated from the following file:

multiparameter_ortho_h2.f90

6.76 multiparameter_para_h2::meos_para_h2 Type Reference

Inheritance diagram for multiparameter_para_h2::meos_para_h2:

Collaboration diagram for multiparameter_para_h2::meos_para_h2:

Public Member Functions

- procedure, public alpha0derivs_taudelta (this, delta, tau, alp0)
- procedure, public alpharesderivs_taudelta (this, delta, tau, alpr)
- procedure, public satdeltaestimate (this, tau, phase)
- procedure, public **init** (this, use_rgas_fit)
- procedure, public alpha0_hd_taudelta (this, delta, tau)
- procedure, public alphares_hd_taudelta (this, delta, tau)
- procedure, pass, public assign_meos (this, other)

Public Member Functions inherited from multiparameter_base::meos

procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)
 Pressure and (optionally) its derivatives.

- procedure, public **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_f** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn) *Calculate reduced ideal Helmholtz energy and differentials.*
- procedure, public **calc_zfac** (this, t, p, n, phase, z, z, t, z, p, z, n)
- procedure, public calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- procedure, public calc_entropy (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- procedure, public calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)
- procedure, public calc_resgibbs (this, t, p, n, phase, g, g_t, g_p, g_n)
- procedure, public densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)
- procedure, public alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- procedure, public alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- procedure, public alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- procedure, public getcritpoint (this, tcrit, pcrit, rhocrit)
- procedure(init_intf), deferred, public init (this, use_rgas_fit)

Initiate compName, critical point and triple point.

• procedure, public cv (this, t, v)

Isochoric heat capacity.

- procedure, public cp (this, t, v)
 - Isobaric heat capacity.
- procedure, public speed_of_sound (this, t, v)

[m/s]

• procedure, public get_ref_state_spec (this, ref_state, t, p, phase, solve)

Get specification for the current reference state.

• procedure, public set_ref_state (this, t, p, v, h, s)

Set reference state.

procedure(satdeltaestimate_intf), deferred, public satdeltaestimate (this, tau, phase)
 An estimate delta_sat(tau_sat) for use in density solver.

- procedure(alpha0derivs_intf), deferred, public alpha0derivs_taudelta (this, delta, tau, alp0)
 [d^{j}alpha0/(d_tau)^j]*tau^j
- procedure(alpharesderivs_intf), deferred, public alpharesderivs_taudelta (this, delta, tau, alpr)
 [d[{]{i+j}alphaRes/(d_delta)ⁱ(d_tau)^j]*deltaⁱ*tau^j
- procedure(alpha0_hd_intf), deferred, public alpha0_hd_taudelta (this, delta, tau) *Calculate alpha0 using hyperdual numbers.*
- procedure(alphares_hd_intf), deferred, public alphares_hd_taudelta (this, delta, tau) *Calculate alphaRes using hyperdual numbers.*
- procedure, public assign_meos_base (this, other)
- procedure(assign_meos_intf), deferred, pass, public assign_meos (this, other)
- generic, public assignment assign_meos

Public Attributes

- real deltasatliq_cache
- real deltasatvap_cache
- real, dimension(1:uppol) prefactors_pol_cache
- real, dimension(uppol+1:upexp) prefactors_exp_cache
- real, dimension(upexp+1:upexpexp) prefactors_expexp_cache

Public Attributes inherited from multiparameter_base::meos

- character(len=20), public compname
 - Parameters in SI units. These are set in the deferred init routine.
- real, public \boldsymbol{tc}
- real, public pc
- real, public rc
- · real, public acf
- real, public t triple
- real, public p_triple
- real, public rholiq_triple
- real, public rhovap triple
- real, public **molarmass**
 - (kg/mol)
- · real, public maxt
- real, public maxp

```
(K), (Pa)
```

- real, public rgas_meos = Rgas_default
- real, public rgas_fit

6.76.1 Member Function/Subroutine Documentation

6.76.1.1 alpha0derivs_taudelta()

Parameters

```
out | alp0 | alp0(i,j) = [(d_delta)^i(d_tau)^j alpha0]*delta^i*tau^j
```

6.76.1.2 alpharesderivs_taudelta()

Parameters

out	alpr	$alpr(i,j) = (d_delta)^i (d_tau)^j alphaRes$
-----	------	--

The documentation for this type was generated from the following file:

multiparameter_para_h2.f90

6.77 pure_fluid_meos::meos_pure Type Reference

Constructor for generic multiparameter equations of state.

Inheritance diagram for pure_fluid_meos::meos_pure:

Collaboration diagram for pure_fluid_meos::meos_pure:

Public Member Functions

• procedure, public alpha0derivs_taudelta (this, delta, tau, alp0)

Specific reduced Helmholtz energy - ideal gas contributuion.

- procedure, public alpharesderivs_taudelta (this, delta, tau, alpr)
- Specific reduced residual Helmholtz energy.
- procedure, public init (this, use_rgas_fit)
- procedure, public allocate_param (this)
- procedure, public alpha0_hd_taudelta (this, delta, tau)
 Specific reduced Helmholtz energy ideal gas contributuion. HYperdual numbers.
- procedure, public alphares_hd_taudelta (this, delta, tau)
 - Specific reduced residual Helmholtz energy hyperdual numbers.
- procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)
 Pressure and (optionally) its derivatives.
- procedure, public **satdeltaestimate** (this, tau, phase)
 - Provide initial guess for liquid and vapor densities.
- procedure, public **get_ref_state_spec** (this, ref_state, t, p, phase, solve) Get information on reference state.
- procedure, public **set_ref_state** (this, t, p, v, h, s) Set calculated reference state.
- procedure, pass, public assign_meos (this, other)

Public Member Functions inherited from gerg::meos_gerg

- procedure, public alpha0derivs_taudelta (this, delta, tau, alp0)
 Specific reduced Helmholtz energy ideal gas contributuion.
- procedure, public alpharesderivs_taudelta (this, delta, tau, alpr) Specific residual reduced Helmholtz energy.
- procedure, public satdeltaestimate (this, tau, phase)
- Estimate saturated densities for density solver.
- procedure, public init (this, use rgas fit)
- procedure, public allocate param (this)
- procedure, public alpha0_hd_taudelta (this, delta, tau)
 - Specific reduced Helmholtz energy ideal gas contributuion. Hyperdual numbers.
- procedure, public alphares_hd_taudelta (this, delta, tau)
 - Specific residual reduced Helmholtz energy. Hyperdual numbers.
- procedure, pass, public **assign_meos** (this, other)

Public Member Functions inherited from multiparameter_base::meos

procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)

Pressure and (optionally) its derivatives.

- procedure, public **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_f** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn) *Calculate reduced ideal Helmholtz energy and differentials.*
- procedure, public **calc_zfac** (this, t, p, n, phase, z, z_t, z_p, z_n)
- procedure, public calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- procedure, public calc_entropy (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- procedure, public calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)
- procedure, public calc_resgibbs (this, t, p, n, phase, g, g_t, g_p, g_n)
- procedure, public densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)

- procedure, public alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- procedure, public alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- procedure, public alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- procedure, public getcritpoint (this, tcrit, pcrit, rhocrit)
- procedure(init_intf), deferred, public init (this, use_rgas_fit) Initiate compName, critical point and triple point.
- procedure, public cv (this, t, v) Isochoric heat capacity.
- procedure, public cp (this, t, v)
 - Isobaric heat capacity.
- procedure, public speed of sound (this, t, v)

[m/s]

• procedure, public get_ref_state_spec (this, ref_state, t, p, phase, solve)

Get specification for the current reference state.

- procedure, public set_ref_state (this, t, p, v, h, s)
 - Set reference state.
- procedure(satdeltaestimate_intf), deferred, public satdeltaestimate (this, tau, phase) An estimate delta_sat(tau_sat) for use in density solver.
- procedure(alpha0derivs_intf), deferred, public alpha0derivs_taudelta (this, delta, tau, alp0)
 [d^{(j)alpha0/(d_tau)^j]*tau^j
- procedure(alpharesderivs_intf), deferred, public alpharesderivs_taudelta (this, delta, tau, alpr)
 [d[{]{i+j}alphaRes/(d_delta)^i(d_tau)^j]*delta^i*tau^j
- procedure(alpha0_hd_intf), deferred, public alpha0_hd_taudelta (this, delta, tau)
 - Calculate alpha0 using hyperdual numbers.
- procedure(alphares_hd_intf), deferred, public alphares_hd_taudelta (this, delta, tau) *Calculate alphaRes using hyperdual numbers.*
- procedure, public assign_meos_base (this, other)
- procedure(assign_meos_intf), deferred, pass, public assign_meos (this, other)
- generic, public assignment assign_meos

Public Attributes

- real t_nbp = 0.0
- real normal
- real boiling
- real point
- real temperature
- character(len=comp_name_len) ref_state
- character(len=comp_name_len) reference
- character(len=comp_name_len) state
- integer n1 id = 0
- integer number
- · integer, dimension(:), allocatable of
- integer, dimension(:), allocatable polynomial
- integer, dimension(:), allocatable terms
- integer, dimension(:), allocatable in
- integer ideal
- integer gas
- integer cp
- integer n_id = 0
- integer and

- integer einstein
- real a1_id = 0
- real integration
- real constant
- real entropy
- real a2_id = 0
- real enthalpy
- real, dimension(:), allocatable c_id
- real, dimension(:), allocatable prefactor
- real, dimension(:), allocatable parameter
- real, dimension(:), allocatable t_id
- real, dimension(:), allocatable tau
- real, dimension(:), allocatable exponent
- integer n_gauss = 0
- integer, dimension(:), allocatable gauss
- integer n_nona = 0
- integer, dimension(:), allocatable **non**
- integer, dimension(:), allocatable analytical
- integer n_assoc = 0
- integer association
- real, dimension(:), allocatable g_exp
- real, dimension(:), allocatable scaling
- real, dimension(:), allocatable inside
- real, dimension(:), allocatable exponential
- real, dimension(:), allocatable term
- real, dimension(:), allocatable n_g
- real, dimension(:), allocatable for
- real, dimension(:), allocatable gauss
- real, dimension(:), allocatable terms
- real, dimension(:), allocatable t_g
- real, dimension(:), allocatable polynomial
- real, dimension(:), allocatable in
- integer, dimension(:), allocatable d_g
- integer, dimension(:), allocatable delta
- integer, dimension(:), allocatable exponent
- integer, dimension(:), allocatable for
- integer, dimension(:), allocatable prefactor
- real, dimension(:), allocatable eta_g
- real, dimension(:), allocatable delta
- real, dimension(:), allocatable function
- real, dimension(:), allocatable of
- real, dimension(:), allocatable the
- real, dimension(:), allocatable beta_g
- real, dimension(:), allocatable gamma_g
- real, dimension(:), allocatable offset
- real, dimension(:), allocatable epsilon_g
- integer, dimension(:), allocatable tauexp_g
- integer, dimension(:), allocatable tau
- integer, dimension(:), allocatable term
- integer, dimension(:), allocatable inside
- integer, dimension(:), allocatable exponential
- integer, dimension(:), allocatable function
- integer, dimension(:), allocatable the
- integer, dimension(:), allocatable delexp_g
- real, dimension(:), allocatable b_assoc_g

- real, dimension(:), allocatable b
- real, dimension(:), allocatable modefied
- real, dimension(:), allocatable used
- real, dimension(:), allocatable with
- real, dimension(:), allocatable associating
- real, dimension(:), allocatable fluids
- real, dimension(:), allocatable n_na
- real, dimension(:), allocatable non
- real, dimension(:), allocatable analytical
- real, dimension(:), allocatable a_na
- real, dimension(:), allocatable a
- real, dimension(:), allocatable **b_na**
- real, dimension(:), allocatable beta_na
- real, dimension(:), allocatable beta
- real, dimension(:), allocatable big_a_na
- real, dimension(:), allocatable big_b_na
- real, dimension(:), allocatable big_c_na
- real, dimension(:), allocatable c
- real, dimension(:), allocatable big_d_na
- real, dimension(:), allocatable ${\bf d}$

Public Attributes inherited from gerg::meos_gerg

- integer i_comp = 0
- integer index
- integer, dimension(:), allocatable of
- integer component
- integer, dimension(:), allocatable in
- integer gergdatadb
- integer n_cosh = 0
- integer number
- integer, dimension(:), allocatable cosh
- integer, dimension(:), allocatable terms
- integer n_sinh = 0
- integer and
- integer, dimension(:), allocatable sinh
- real, dimension(3) n
- real constants
- real, dimension(:), allocatable v
- real, dimension(:), allocatable prefactor
- real, dimension(:), allocatable ideal
- real, dimension(:), allocatable terms
- real, dimension(:), allocatable b
- real, dimension(:), allocatable cosh
- real, dimension(:), allocatable sinh
- real, dimension(:), allocatable parameter
- real, dimension(:), allocatable for
- integer **uppol** = 0
- integer, dimension(:), allocatable polynomial
- integer **upexp** = 0
- integer, dimension(:), allocatable exponential
- real, dimension(:), allocatable n_pol
- real, dimension(:), allocatable polynomial
- real, dimension(:), allocatable n_exp
- real, dimension(:), allocatable exponential

- real, dimension(:), allocatable t_pol
- real, dimension(:), allocatable tau
- real, dimension(:), allocatable exponent
- real, dimension(:), allocatable t_exp
- real, dimension(:), allocatable in
- integer, dimension(:), allocatable d_pol
- integer, dimension(:), allocatable delta
- integer, dimension(:), allocatable exponent
- integer, dimension(:), allocatable $\textbf{d_exp}$
- integer, dimension(:), allocatable for
- integer, dimension(:), allocatable prefactor
- integer, dimension(:), allocatable I_exp
- integer, dimension(:), allocatable term
- type(sat_densities) dl
- type(sat_densities) parameters
- type(sat_densities) liquid
- type(sat_densities) saturated
- type(sat_densities) density
- type(sat_densities) dv
- type(sat_densities) vapor

Public Attributes inherited from multiparameter_base::meos

- character(len=20), public compname
 - Parameters in SI units. These are set in the deferred init routine.
- real, public tc
- real, public pc
- real, public rc
- real, public acf
- real, public t_triple
- real, public **p_triple**
- real, public rholiq_triple
- real, public rhovap_triple
- real, public molarmass

(kg/mol)

- real, public maxt
- · real, public maxp

(K), (Pa)

- real, public rgas_meos = Rgas_default
- real, public rgas_fit

6.77.1 Detailed Description

Constructor for generic multiparameter equations of state.

6.77.2 Member Function/Subroutine Documentation

6.77.2.1 alpha0derivs_taudelta()

Parameters

out	alp0	$alp0(i,j) = [(d_delta)^i(d_tau)^j alpha0]*delta^i*tau^j$
-----	------	---

6.77.2.2 alpharesderivs_taudelta()

Parameters

out alpr $alpr(i,j) = (d_delta)^{i}(d_tau)^{j} alphaRes$

The documentation for this type was generated from the following file:

• pure_fluid_meos.f90

6.78 multiparameter_r134a::meos_r134a Type Reference

R134A multiparameter equation of state (R. Tillner-Roth and H. Dieter Baehr). Inheritance diagram for multiparameter_r134a::meos_r134a:

Collaboration diagram for multiparameter_r134a::meos_r134a:

Public Member Functions

- procedure, public alpha0derivs_taudelta (this, delta, tau, alp0)
- procedure, public alpharesderivs_taudelta (this, delta, tau, alpr)
- procedure, public satdeltaestimate (this, tau, phase)
- procedure, public init (this, use_rgas_fit)
- procedure, public alpha0_hd_taudelta (this, delta, tau)
- procedure, public alphares_hd_taudelta (this, delta, tau)
- procedure, pass, public assign_meos (this, other)

Public Member Functions inherited from multiparameter_base::meos

procedure, public mp_pressure (this, rho, t, p, p_rho, p_t)

Pressure and (optionally) its derivatives.

- procedure, public **alpha_to_f_conversion** (this, t, v, n, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_f** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
- procedure, public **calc_fid** (this, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn) *Calculate reduced ideal Helmholtz energy and differentials.*
- procedure, public **calc_zfac** (this, t, p, n, phase, z, z_t, z_p, z_n)
- procedure, public calc_Inphi (this, t, p, n, phase, Inphi, Inphi_t, Inphi_p, Inphi_n)
- procedure, public calc_entropy (this, t, p, n, phase, s, s_t, s_p, s_n, residual)
- procedure, public calc_enthalpy (this, t, p, n, phase, h, h_t, h_p, h_n, residual)
- procedure, public calc_resgibbs (this, t, p, n, phase, g, g_t, g_p, g_n)
- procedure, public densitysolver (this, t_spec, p_spec, phase_spec, rho, phase_found, ierr)
- procedure, public alphaderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, residual)
- procedure, public alpharesderivs_tv (this, t, v, alpr, alpr_t, alpr_v, alpr_tt, alpr_tv, alpr_vv, alpr_n, alpr_tn, alpr_vn, alpr_nn)
- procedure, public alphaidderivs_tv (this, t, v, alp, alp_t, alp_v, alp_tt, alp_tv, alp_vv, alp_n, alp_tn, alp_vn, alp_nn)
- procedure, public getcritpoint (this, tcrit, pcrit, rhocrit)
- procedure(init_intf), deferred, public init (this, use_rgas_fit) Initiate compName, critical point and triple point.
- procedure, public cv (this, t, v)
 - Isochoric heat capacity.
- procedure, public cp (this, t, v)
 - Isobaric heat capacity.

- procedure, public speed_of_sound (this, t, v)
 Im/sl
- procedure, public **get_ref_state_spec** (this, ref_state, t, p, phase, solve) Get specification for the current reference state.
- procedure, public **set_ref_state** (this, t, p, v, h, s)
 - Set reference state.
- procedure(satdeltaestimate_intf), deferred, public satdeltaestimate (this, tau, phase) An estimate delta_sat(tau_sat) for use in density solver.
- procedure(alpha0derivs_intf), deferred, public alpha0derivs_taudelta (this, delta, tau, alp0)
 [d[^]{j}alpha0/(d_tau)[^]j]*tau[^]j
- procedure(alpharesderivs_intf), deferred, public alpharesderivs_taudelta (this, delta, tau, alpr)
 [d^{i+j}alphaRes/(d_delta)^i(d_tau)^j]*delta^i*tau^j
- procedure(alpha0_hd_intf), deferred, public alpha0_hd_taudelta (this, delta, tau)
 Calculate alpha0 using hyperdual numbers.
- procedure(alphares_hd_intf), deferred, public alphares_hd_taudelta (this, delta, tau) *Calculate alphaRes using hyperdual numbers.*
- procedure, public **assign_meos_base** (this, other)
- procedure(assign_meos_intf), deferred, pass, public assign_meos (this, other)
- generic, public assignment assign_meos

Additional Inherited Members

Public Attributes inherited from multiparameter_base::meos

- character(len=20), public compname
 - Parameters in SI units. These are set in the deferred init routine.
- real, public tc
- real, public pc
- real, public rc
- real, public acf
- real, public t_triple
- real, public p_triple
- real, public **rholiq_triple**
- real, public rhovap_triple
- real, public molarmass
 - (kg/mol)
- real, public maxt
- real, public maxp
 - (K), (Pa)
- real, public rgas_meos = Rgas_default
- real, public rgas_fit

6.78.1 Detailed Description

R134A multiparameter equation of state (R. Tillner-Roth and H. Dieter Baehr).

6.78.2 Member Function/Subroutine Documentation

6.78.2.1 alpha0derivs_taudelta()

Parameters

out |a|p0| $|a|p0(i,j) = [(d_delta)^i(d_tau)^j alpha0]*delta^i*tau^j$

6.78.2.2 alpharesderivs_taudelta()

Parameters

out $| alpr | alpr(i,j) = (d_delta)^{i}(d_tau)^{j} alphaRes$

The documentation for this type was generated from the following file:

multiparameter_r134a.f90

6.79 meosdatadb::meosdata Type Reference

Public Attributes

```
    character(len=uid_len) ident
```

```
The component ID.
```

character(len=comp_name_len) name

The component name.

character(len=comp_name_len) default_ref_state

The default reference state.

character(len=bibref_len) bibref

Digital Object Identifier (DOI) or reference.

real mw

Mole weight (g/mol)

- real **ttr** Triple point temperature (K)
- real ptr

Triple point pressure (kPa)

real t_nbp

Normal boiling point temperature (K)

real tc

Critical temperature (K)

real pc

Critical pressure (kPa)

real rhoc

Critical density (mol/l)

real tr

Reducing temperature (K)

real rhor

Reducing density (mol/l)

• real rgas

Gas constant (J/mol-K)

 real acf Acentric factor. real t max Maximum temperature (K) real p_max Maximum pressure (kPa) integer n_poly_eos Number of polynomial terms. integer n_exp_eos Number of exponential terms. integer n_gauss_eos Number of Gaussian bell-shaped terms. integer n_nona_eos Number of non-analytical terms. integer n_assoc_eos Number of association terms. real, dimension(meos_max_n) n_eos Prefactor. real, dimension(meos_max_n) t_eos Tau exponent. integer, dimension(meos_max_n) d_eos Delta exponent. • integer, dimension(meos_max_n) I_eos Exponential delta exponent. real, dimension(meos_max_n) g_eos Exponential delta prefactor. real, dimension(meos_max_n_gauss) eta_eos Prefactor delta term. real, dimension(meos_max_n_gauss) beta_eos Prefactor tau term. • real, dimension(meos_max_n_gauss) gamma_eos Tau correction. real, dimension(meos_max_n_gauss) epsilon_eos Delta correction. integer, dimension(meos_max_n_gauss) tau_exp_eos Tau term exponent. integer, dimension(meos max n gauss) del exp eos Delta term exponent. real, dimension(2) b_assoc_eos Association b. real, dimension(meos max n nona) n na Prefactor non-analytical terms. real, dimension(meos_max_n_nona) a_na Non-analytical parameter a. real, dimension(meos_max_n_nona) b_na Non-analytical parameter b. • real, dimension(meos_max_n_nona) beta_na Non-analytical parameter beta. real, dimension(meos max n nona) big a na Non-analytical parameter A.

• real, dimension(meos_max_n_nona) big_b_na

Non-analytical parameter B.

- real, dimension(meos_max_n_nona) big_c_na
 Non-analytical parameter C.
- real, dimension(meos_max_n_nona) big_d_na
 Non-analytical parameter D.
- integer n1_id

Number of polynomial terms.

integer n_id

Overall number of ID terms.

- real, dimension(meos_id_max_n) c_id
 - Polynomial parameter/Einstein function parameter.
- real, dimension(meos_id_max_n) t_id

Einstein function exp-parameter.

real a1_id

Integration constant for entropy.

• real **a2_id** Integration constant for enthalpy.

The documentation for this type was generated from the following file:

• meosdatadb.f90

6.80 saftvrmie_datadb::miekijdata Type Reference

INTERACTION PARAMETERS FOR THE SAFT-VR-MIE DISPERSION TERM.

Public Attributes

- integer eosidx
- character(len=uid_len) uid1
- character(len=uid_len) uid2
- character(len=ref_len) ref
- character(len=bibref_len) bib_ref
- · real kijvalue

6.80.1 Detailed Description

INTERACTION PARAMETERS FOR THE SAFT-VR-MIE DISPERSION TERM. The documentation for this type was generated from the following file:

saftvrmie_datadb.f90

6.81 hyperdual_mod::min Interface Reference

Public Member Functions

- elemental type(hyperdual) function min_dd (v1, v2)
- elemental type(hyperdual) function min_dr (v1, v2)
- elemental type(hyperdual) function min_rd (v1, v2)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.82 cubic_eos::mix_label_mapping Type Reference

Public Attributes

- integer mix_idx_group
- integer mix_idx
- character(len=short_label_len) short_label
- character(len=label_len) label
- character(len=label_len) alias

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.83 cubic_eos::mixexcessgibbs Type Reference

Public Member Functions

- procedure, public **dealloc** (mixge)
- procedure, public excess_gibbs_allocate_and_init (mixge, nc)
- procedure assign_excess_gibbs_mix (mixge1, mixge2)
- generic, public assignment (mixge1, mixge2)

Public Attributes

- integer mge
- integer, dimension(:,:), allocatable correlation
- real, dimension(:,:), allocatable alpha
- real, dimension(:,:), allocatable **age**
- real, dimension(:,:), allocatable **bge**
- real, dimension(:,:), allocatable cge

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.84 cubic_eos::mixwongsandler Type Reference

Collaboration diagram for cubic_eos::mixwongsandler:

cubi	c_eos::fraction	
	f_tauij	
	I	
cubic_eos::mixwongsandler		

Public Member Functions

- procedure, public dealloc (mixws)
- procedure, public ws_allocate_and_init (mixws, nc)
- procedure assign_ws_mix (mixws1, mixws2)
- generic, public assignment (mixws1, mixws2)

Public Attributes

- real, dimension(:,:), allocatable alphaij
- type(fraction), dimension(:,:), allocatable f_kij
- type(fraction), dimension(:,:), allocatable f_tauij

The documentation for this type was generated from the following file:

· cubic_eos.f90

6.85 multipol_var::multipol_param Type Reference

Public Member Functions

procedure, public init_multipol_param (self, nce, mu, q, m, sigma_ij, eps_divk_ij)

Public Attributes

- real, dimension(:), allocatable mu_star_2 Reduced dipol moment squared [-].
- real, dimension(:), allocatable q_star_2
 Reduced quadrupol moment squared [-].
- integer, dimension(:), allocatable l_mu
 Number of dipol moments per molecule.
- integer, dimension(:), allocatable I_q
 Number of quadrupol moments per molecule.
- real, dimension(:), allocatable m
- real, dimension(:,:), allocatable eps_divk_ij
- real, dimension(:,:), allocatable sigma_ij
- real, dimension(:,:), allocatable sigma_ij_3
- real, dimension(:,:), allocatable sigma_ij_5
- real, dimension(:,:,:), allocatable a_ij_qq
- real, dimension(:,:,:), allocatable b_ij_qq
- real, dimension(:,:,:,:), allocatable c_ijk_qq
- real, dimension(:,:,:), allocatable a_ij_dd
- real, dimension(:,:,:), allocatable b_ij_dd
- real, dimension(:,:,:,:), allocatable c_ijk_dd
- real, dimension(:,:,:), allocatable a_ij_dq
- real, dimension(:,:,:), allocatable b_ij_dq
- real, dimension(:,:,:,:), allocatable c_ijk_dq
- integer, dimension(:), allocatable mu_indices
- integer, dimension(:), allocatable q_indices
- integer num_mu

Number of diplo moments different from zero.

integer num_q

Number of diplo moments different from zero.

- logical enable_qq = .true.
- logical enable_dd = .true.
- logical enable_dq = .true.

6.85.1 Member Function/Subroutine Documentation

6.85.1.1 init_multipol_param()

```
procedure, public multipol_var::multipol_param::init_multipol_param (
        class(multipol_param), intent(inout) self,
        integer, intent(in) nce,
        real, dimension(nce), intent(in) mu,
        real, dimension(nce), intent(in) q,
        real, dimension(nce), intent(in) m,
        real, dimension(nce,nce), intent(in) sigma_ij,
        real, dimension(nce,nce), intent(in) eps_divk_ij)
```

Parameters

in	ти	[D]
in	q	[ÃåD]

The documentation for this type was generated from the following file:

• multipol_var.f90

6.86 mbwr::nijlarray Type Reference

Public Attributes

- integer len
- real, dimension(:), allocatable n
- integer, dimension(:), allocatable i
- real, dimension(:), allocatable j
- integer, dimension(:), allocatable I
- · real gamma

The documentation for this type was generated from the following file:

• mbwr.f90

6.87 hyperdual_mod::nint Interface Reference

Public Member Functions

• elemental integer function **ninthyperdual** (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.88 multiparameter_base::nist_meos_ptr Type Reference

Public Attributes

class(meos), pointer meos

The documentation for this type was generated from the following file:

• multiparameter_base.f90

6.89 nonlinear_solvers::nonlinear_solver Type Reference

A type that contains solver information.

Public Attributes

• integer isolver = NS_NEWTON_LS

Solver choice.

- integer max_it = 100
 - Maximum number of iterations, if applicable.
- integer iter = 0

Number of iterations to solution.

real rel_tol = 1e-20

```
Relative tolerance.
```

• real **abs_tol** = 1e-10

Absolute tolerance.logical analyt_jac = .true.

Whether the Jacobian should be computed analytically with a user-provided procedure, or approximated using approximate_jacobian.

- integer analyt_jac_order = 1
- logical **analyt_hess** = .false.

Whether the inverse of the Hessian should be computed analytically with a user-provided procedure, or approximated by inverting the Jacobian.

• logical **verbose** = .false.

Whether to output information about the solution.

integer ls_max_it = 10

Number of line search trials.

logical limit_x_values = .true.

Limit x to make sure: xmin <= x <= xmax.

logical symmetric_jac = .false.

Is the Jacobean symmetric?

integer exitflag = 0

Status flag. 0 - Solver converged 1 - No solution found after max_it iterations 2 - Could not invert jacobian 3 - Floating point error, probably divergence.

real error_on_exit = 0.0

6.89.1 Detailed Description

A type that contains solver information. The documentation for this type was generated from the following file:

• nonlinear solvers.f90

6.90 hyperdual_mod::operator(*) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.91 hyperdual_mod::operator(**) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.92 hyperdual_mod::operator(+) Interface Reference

The documentation for this interface was generated from the following file:

· hyperdual_mod.f90

6.93 hyperdual_mod::operator(-) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.94 hyperdual_mod::operator(.eq.) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.95 hyperdual_mod::operator(.ge.) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.96 hyperdual_mod::operator(.gt.) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.97 hyperdual_mod::operator(.le.) Interface Reference

The documentation for this interface was generated from the following file:

• hyperdual_mod.f90

6.98 hyperdual_mod::operator(.lt.) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.99 hyperdual_mod::operator(.ne.) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.100 hyperdual_mod::operator(/) Interface Reference

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.101 optimizers::optim_param Type Reference

A type that contains solver information.

Public Attributes

```
• integer ioptim = NO_MOD_NEWTON
```

Optimizer choice.

- integer max_iter = 1000
 - Maximum number of iterations, if applicable.
- real rel_tol = 1.0e5*machine_prec

Relative tolerance.

• real **wolfe** = 1.0e-3

Line search parameter.

```
• integer max_line_search_iter = 10
```

Number of line search trials.

• logical gradient_termination = .false.

Terminate besed on gradient infinity norm.

• logical line_search_control = .false.

Turn off/on line search control (line search controlled by last param element)

• integer iter = 0

Number of iterations to solution.

real of = 0.0

Objective function value at return.

real error = 0.0

Error at return.

```
    integer exitflag = 0
```

Status flag. 0 - Solver converged 1 - No solution found after max_it iterations -1 - Premature return.

• logical testeigenvalues = .false.

Test eigenvalues of the Jacobean.

6.101.1 Detailed Description

A type that contains solver information. The documentation for this type was generated from the following file:

• optimizer.f90

6.102 hardsphere_bmcsl::packing_fraction_hs Type Reference

Container for zeta's (0, 1, 2, 3 and mu). These are moments of the number density.

Collaboration diagram for hardsphere_bmcsl::packing_fraction_hs:

Public Member Functions

- procedure, public allocate (zeta, nc)
 - Allocated zetaeta memory and initialize to zero.
- procedure, public deallocate (zeta)
 Free allocated packing_fraction_hs memory.
- procedure, public assign_packing_fraction_hs (this, other)
- generic, public assignment (this, other)

Public Attributes

• real, dimension(5) zet

Moments of the number density.

• real, dimension(5) zet_t

Temperature differential of the moments of the number density and mu.

real, dimension(5) zet_tt

Second temperature differential of the moments of the number density and mu.

- real, dimension(5) zet_v
 - Volume differential of the moments of the number density and mu.
- real, dimension(5) zet_vv

Second volume differential of the moments of the number density and mu.

- real, dimension(5) zet_tv
 - Temperature and volume differential of the moments of the number density and mu.
- real, dimension(:,:), allocatable zet_n

Mol number differential of the moments of the number density and mu.

• real, dimension(:,:), allocatable zet_vn

Mol number and volume differential of the moments of the number density and mu.

real, dimension(:,:), allocatable zet_tn

Mol number and temperature differential of the moments of the number density and mu.
6.102.1 Detailed Description

Container for zeta's (0, 1, 2, 3 and mu). These are moments of the number density. The documentation for this type was generated from the following file:

hardsphere_bmcsl.f90

6.103 pc_saft_datadb::pc_saft_data Type Reference

PURE COMPONENT PARAMETERS. This data structure stores pure component parameters for the PC-SAFT equation of state.

Public Attributes

- integer eosidx
- character(len=uid_len) compname
- real m
 - [-]. Mean number of segments.
- real sigma

[m]. Temperature-independent segment diameter.

real eps_depth_divk

[K]. Well depth divided by Boltzmann's c.

• real eps

[J/mol].

real beta

[-]. Also known as kappa in SAFT literature.

• integer assoc_scheme

Association scheme.

real mu

Dipole-moment [D].

real q

Quadrupol-moment [ÃåD].

- character(len=bibref_len) bib_ref
- character(len=ref_len) ref

6.103.1 Detailed Description

PURE COMPONENT PARAMETERS. This data structure stores pure component parameters for the PC-SAFT equation of state.

The documentation for this type was generated from the following file:

• pc_saft_datadb.f90

6.104 pc_saft_datadb::pckijdata Type Reference

TEMPERATURE-INDEPENDENT INTERACTION PARAMETERS FOR PC-SAFT DISPERSION TERM.

Public Attributes

- integer eosidx
- character(len=uid_len) uid1
- character(len=uid_len) uid2
- character(len=ref_len) ref
- character(len=bibref_len) bib_ref
- · real kijvalue
- integer eps_comb_rule
- integer beta_comb_rule

6.104.1 Detailed Description

TEMPERATURE-INDEPENDENT INTERACTION PARAMETERS FOR PC-SAFT DISPERSION TERM. The documentation for this type was generated from the following file:

pc_saft_datadb.f90

6.105 pc_saft_nonassoc::pcsaft_eos Type Reference

Inheritance diagram for pc_saft_nonassoc::pcsaft_eos:

Collaboration diagram for pc_saft_nonassoc::pcsaft_eos:

Public Member Functions

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from pc_saft_nonassoc::spcsaft_eos

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- type(hs_diameter) dhs
- type(packing_fraction_hs) zeta

Public Attributes inherited from pc_saft_nonassoc::spcsaft_eos

• real, dimension(:), allocatable m

[-]

- real, dimension(:,:), allocatable sigma
 [m]
- real, dimension(:,:), allocatable eps_depth_divk

Įr

real, dimension(:,:), allocatable sigma_cube
 [m[^]3]

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
 - Eos identifier.
- integer eosidx

Eos group index.

- integer subeosidx
 - Eos sub-index.
- integer volumeshiftid = 0

0: No volume shift, 1:Peneloux shift

• logical iselectrolyteeos = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.105.1 Member Function/Subroutine Documentation

6.105.1.1 allocate_and_init()

Parameters

in	nc	Number of components
in	eos_label	EOS label

The documentation for this type was generated from the following file:

pc_saft_nonassoc.f90

6.106 pets::pets_eos Type Reference

Inheritance diagram for pets::pets_eos:

Collaboration diagram for pets::pets_eos:

Public Member Functions

- procedure, public f_pets_tvn (eos, t, v, n, f, f_t, f_v, f_n, f_tt, f_tv, f_tn, f_vv, f_vn, f_nn)
 - Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PETS' hard-sphere and dispersion contributions. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$
- procedure, public alpha_disp (eos, rho, t, n, alp, alp_rho, alp_t, alp_n, alp_rhorho, alp_rhot, alp_rhon, alp_tt, alp_tn, alp_nn)

- procedure, public alpha_disp_tvn (eos, v, t, n, alp, alp_v, alp_t, alp_n, alp_vv, alp_vt, alp_vn, alp_tt, alp_tn, alp_nn)
 - The reduced, molar Helmholtz energy contribution from dispersion.
- procedure, public alpha_pets_hs (eos, rho, t, n, alp, alp_rho, alp_t, alp_n, alp_rhorho, alp_rhot, alp_rhon, alp_tt, alp_tn, alp_tn, alp_nn)
- procedure, public alpha_hs_tvn (eos, v, t, n, alp, alp_v, alp_t, alp_n, alp_vv, alp_vt, alp_vn, alp_tt, alp_tn, alp_nn)

The reduced, molar Helmholtz energy contribution from hard-sphere.

• procedure, public alpha_pets (eos, rho, t, n, alp, alp_rho, alp_t, alp_n, alp_rhorho, alp_rhot, alp_rhon, alp_tt, alp_tn, alp_tn, alp_nn)

alpha_PETS = alp^{hard_sphere} + alpha^{dispersion}

- procedure, public calc_d_pets (eos, t, d, d_t, d_tt)
- procedure, public calc_potential_pets (eos, n, r, pot)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public **assign_eos** (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- real sigma_pets
 - [m]
- real epsdivk_pets
 - [K]

Public Attributes inherited from thermopack_var::base_eos_param

character(len=eosid_len) eosid

Eos identifier.

• integer eosidx

Eos group index.

integer subeosidx

Eos sub-index.

• integer volumeshiftid = 0

0: No volume shift, 1:Peneloux shift

• logical iselectrolyteeos = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.106.1 Member Function/Subroutine Documentation

6.106.1.1 allocate_and_init()

Parameters

in	nc	Number of components
in	eos_label	EOS label

6.106.1.2 alpha_disp()

The reduced, molar Helmholtz energy contribution from dispersion.

Parameters

in *n* [mol/m[^]3], [K], [mol]

6.106.1.3 alpha_disp_tvn()

The reduced, molar Helmholtz energy contribution from dispersion.

Parameters

in *n* [mol/m³], [K], [mol]

6.106.1.4 alpha_hs_tvn()

```
real, intent(in) v,
real, intent(in) t,
real, dimension(nce), intent(in) n,
real, intent(out), optional alp,
real, intent(out), optional alp_v,
real, intent(out), optional alp_t,
real, dimension(nce), intent(out), optional alp_n,
real, intent(out), optional alp_vv,
real, intent(out), optional alp_vt,
real, dimension(nce), intent(out), optional alp_vn,
real, intent(out), optional alp_tt,
real, dimension(nce), intent(out), optional alp_tn,
real, dimension(nce), intent(out), optional alp_nn)
```

Parameters

in *n* [mol/m[^]3], [K], [mol]

6.106.1.5 alpha_pets()

alpha_PETS = alp^{hard_sphere} + alpha^{dispersion}

Parameters

in	n	[mol/m 3], [K], [mol]
out	alp	[-]

6.106.1.6 alpha_pets_hs()

real, dimension(nce), intent(out), optional alp_rhon, real, intent(out), optional alp_tt, real, dimension(nce), intent(out), optional alp_tn, real, dimension(nce,nce), intent(out), optional alp_nn)

Parameters

in	n	[mol/m^3], [K], [mol]
out	alp	[-]

6.106.1.7 calc_d_pets()

Parameters

in	t	[mol/m^3], [K], [mol]
out	d	[m]

6.106.1.8 calc_potential_pets()

```
procedure, public pets::pets_eos::calc_potential_pets (
        class (pets_eos), intent(in) eos,
        integer, intent(in) n,
        real, dimension(:), intent(in) r,
        real, dimension(:), intent(out) pot )
```

Parameters

in	r	[m]
out	pot	[K]

6.106.1.9 f_pets_tvn()

Gives the contribution to the reduced, residual Helmholtz function F [mol] coming from PETS' hard-sphere and dispersion contributions. All variables are in base SI units. F is defined by $F(T,V,n) = sumn*alpha_PC(rho,T,n) = sumn*alpha_PC(sumn/V,T,n)$

Parameters

out f [mol]

The documentation for this type was generated from the following file:

• pets.f90

6.107 hyperdual_mod::real Interface Reference

Public Member Functions

• elemental real(dp) function realhyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.108 utilities::safe_exp Interface Reference

Exponential function which will return "huge" instead of overflowing. Generic interface for both reals and arrays of reals.

Public Member Functions

• real function safe_exp_real (x)

Exponential function which will return "huge" instead of overflowing. Version for reals. Called through the generic interface safe_exp.

real function, dimension(size(x)) safe_exp_array (x)

Exponential function which will return "huge" instead of overflowing. Version for arrays of reals. Called through the generic interface safe_exp.

6.108.1 Detailed Description

Exponential function which will return "huge" instead of overflowing. Generic interface for both reals and arrays of reals.

Author

EA, 2013-07-19

6.108.2 Member Function/Subroutine Documentation

6.108.2.1 safe_exp_array()

real function, dimension(size(x)) utilities::safe_exp_array (

real, dimension(:), intent(in) x)

Exponential function which will return "huge" instead of overflowing. Version for arrays of reals. Called through the generic interface safe_exp.

Author

EA, 2013-07-19

6.108.2.2 safe_exp_real()

Exponential function which will return "huge" instead of overflowing. Version for reals. Called through the generic interface safe_exp.

Author

EA, 2013-07-19

The documentation for this interface was generated from the following file:

• utilities.f90

6.109 saftvrmie_containers::saftvrmie_aij Type Reference

Container for a_ij and differentials.

Public Member Functions

- procedure, public **mirror** (this)
- procedure, public assign_saftvrmie_aij (this, other)
- generic, public assignment (this, other)

Public Attributes

- real, dimension(:,:), allocatable am
- real, dimension(:,:), allocatable am_t
- real, dimension(:,:), allocatable am_v
- real, dimension(:,:), allocatable am_tt
- real, dimension(:,:), allocatable am_vv
- real, dimension(:,:), allocatable am_tv
- real, dimension(:,:), allocatable am_vvv
- real, dimension(:,:), allocatable am_vvt
- real, dimension(:,:), allocatable am_vtt
- real, dimension(:,:,:), allocatable am_n
- real, dimension(:,:,:), allocatable am_tn
- real, dimension(:,:,:), allocatable am_vn
- real, dimension(:,:,:), allocatable am_vvn
- real, dimension(:,:,:), allocatable am vtn
- real, dimension(:,:,:,:), allocatable am_nn
- real, dimension(:,:,:,:), allocatable am_vnn

6.109.1 Detailed Description

Container for a_ij and differentials.

The documentation for this type was generated from the following file:

saftvrmie_containers.f90

6.110 saftvrmie_datadb::saftvrmie_data Type Reference

PURE COMPONENT PARAMETERS. This data structure stores pure component parameters for the SAFT-VRQ Mie EoS.

Public Attributes

- integer eosidx
- character(len=uid_len) compname
- real m
 - [-]. Mean number of segments.
- real sigma

[m]. Temperature-independent segment diameter.

- real eps_depth_divk
 [K]. Well depth divided by Boltzmann's c.
- real lambda a

[] attractive exponent of the Mie potential

real lambda_r

[] repulsive exponent of the Mie potential

real mass

Segment mass, i.e. molecule mass dividided by number of segments [kg].

• real eps

[J/mol].

real beta

[-]. Also known as kappa in SAFT literature.

- integer assoc_scheme
- integer fh_order
- character(len=bibref_len) bib_ref
- character(len=ref_len) ref

6.110.1 Detailed Description

PURE COMPONENT PARAMETERS. This data structure stores pure component parameters for the SAFT-VRQ Mie EoS.

The documentation for this type was generated from the following file:

saftvrmie_datadb.f90

6.111 saftvrmie_containers::saftvrmie_dhs Type Reference

Container for hard-sphere diameter and differentials Also used for the Feynman-Hibbs D variable.

Public Member Functions

- procedure, public update_symmetric_diameters (this)
- procedure, public assign_saftvrmie_dhs (this, other)
- generic, public assignment (this, other)

Public Attributes

real, dimension(:,:), allocatable d

Hard sphere diameter.

real, dimension(:,:), allocatable d_t

Temperature differential of hard sphere diameter.

• real, dimension(:,:), allocatable **d_tt** Second temperature differential of hard sphere diameter.

6.111.1 Detailed Description

Container for hard-sphere diameter and differentials Also used for the Feynman–Hibbs D variable. The documentation for this type was generated from the following file:

• saftvrmie_containers.f90

6.112 saftvrmie_containers::saftvrmie_eos Type Reference

Inheritance diagram for saftvrmie_containers::saftvrmie_eos:

Collaboration diagram for saftvrmie_containers::saftvrmie_eos:

Public Member Functions

- procedure, public **dealloc** (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public **assign_eos** (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- logical ovner_of_saftvrmie_param = .false.
- type(saftvrmie_param_container), pointer saftvrmie_param => NULL()
- type(saftvrmie_var_container), pointer saftvrmie_var => NULL()
- logical ovner_of_svrm_opt = .false.
- type(saftvrmie_opt), pointer svrm_opt => NULL()

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
 - Eos identifier.
- integer eosidx

Eos group index.

- integer subeosidx
 - Eos sub-index.
- integer volumeshiftid = 0

0: No volume shift, 1:Peneloux shift

- logical **iselectrolyteeos** = .false.
 - Used to enable electrolytes.
- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.112.1 Member Function/Subroutine Documentation

6.112.1.1 allocate_and_init()

Parameters

in eos_label EOS label

The documentation for this type was generated from the following file:

• saftvrmie_containers.f90

6.113 saftvrmie_options::saftvrmie_opt Type Reference

Public Member Functions

- procedure, public saftvrmieaij_model_options (svrm_o, model, hs_reference) Model options....
- procedure, public set_r_cut (svrm_o, r_c) Set r_cut, and enable truncation correction.

- procedure, public truncation_correction_model_control (svrm_o, truncation, shift)
 - Enable/disable truncation and shift correction.
- procedure, public check_model_consitency (svrm_o)
 - Check that model parameters are consistent.
- procedure, public set_lafitte_option (svrm_o)
- procedure, public set_hs_reference (svrm_o, hs_reference)
- procedure, public test_fmt_compatibility (this, is_fmt_consistent, na_enabled)
- Test if SAFT-VR Mie model setup is comaptible with the Fundamental Measure Theory (FMT)
- procedure, public print (this)
- procedure, public assign_saftvrmie_model_options (this, other)
- generic, public assignment (this, other)

Public Attributes

- integer quantum_correction = 0
- integer quantum_correction_hs = 0
- integer quantum_correction_spec = 0
- logical quantum_correct_a2 = .true.
- logical use_epsrule_lafitte = .true.
- logical exact_binary_dhs =.false.
- logical exact_crosspot_eff =.true.
- integer zeta_mixing_rule = ZETA_LAFITTE
- integer hardsphere_eos = HS_EOS_ORIGINAL
- integer khs_eos = KHS_EOS_LAFITTE
- integer pure_hs_eos = PURE_HS_CS
- logical enable_hs_extra = .false.
- logical option
- · logical to
- logical enable
- logical disable
- logical extra
- logical term
- logical hard
- logical sphere
- logical reference
- integer **a3_model** = A3_LAFITTE
- logical enable_hs = .true.
- logical contribution
- logical enable_a1 = .true.
- logical a1
- logical enable_a3 = .true.
- logical a3
- logical enable_a2 = .true.
- logical a2
- logical enable_chain = .true.
- logical chain
- logical enable_truncation_correction = .false.
- logical truncation
- logical correction
- logical enable_shift_correction = .false.
- · logical shift
- real r_cut = 3.5
- real truncation
- real radius
- logical use_temp_cache = .false.

6.113.1 Member Function/Subroutine Documentation

6.113.1.1 check_model_consitency()

```
Check that model parameters are consistent.
```

Author

Morten Hammer, March 2019

6.113.1.2 saftvrmieaij_model_options()

Model options....

Author

Morten Hammer, January 2019

6.113.1.3 set_r_cut()

Morten Hammer, November 2018

6.113.1.4 truncation_correction_model_control()

Morten Hammer, November 2018

The documentation for this type was generated from the following file:

saftvrmie_options.f90

6.114 saftvrmie_containers::saftvrmie_param_container Type Reference

Container for SAFT-VR Mie static parameters. Collaboration diagram for saftvrmie_containers::saftvrmie_param_container:

Public Member Functions

- procedure, public print (this)
- procedure, public assign_saftvrmie_param_container (this, other)
- generic, public assignment (this, other)

Public Attributes

- type(saftvrmie_data), dimension(:), allocatable comp Component parameters.
- real, dimension(:,:), allocatable kij
 - Binary interaction parameters for the well depth.
- real, dimension(:,:), allocatable gamma_ij
 Binary interaction parameters for the repulsive exponent.
- real, dimension(:,:), allocatable lij
 Binary interaction parameters for sigma.
- real, dimension(:,:), allocatable alpha_ij
 van der Waals-like attractive constant
- real, dimension(:,:,:), allocatable f_alpha_ij
 Function of alpha.
- real, dimension(:,:), allocatable lambda_a_ij
 Binary attractive exponent of the Mie potential.
- real, dimension(:,:), allocatable lambda_r_ij
 Binary repulsive exponent of the Mie potential.
- real, dimension(:,:), allocatable sigma_ij
 Temperature-independent segment diameter (m)
- real, dimension(:,:), allocatable eps_divk_ij
 Binary well depth divided by Boltzmann's k (K)
- real, dimension(:,:), allocatable cij

Binary Mie C factor.

- real, dimension(:,:), allocatable dfeynhibbsparam_ij
 T-independent part of binary Feynman–Hibbs D parameter.
- real, dimension(:), allocatable **ms**

Copy of comp(:)ms for easy looping.

- real, dimension(:,:), allocatable sigma_ij_cube
 Cube of temperature-independent segment diameter (m3)
- real, dimension(:,:), allocatable quantum_const_1a_ij Parameters in the quantum correction, first order - attractive.
- real, dimension(:,:), allocatable quantum_const_1r_ij
 Parameters in the quantum correction, first order repulsive.
- real, dimension(:,:), allocatable quantum_const_2a_ij
 Parameters in the quantum correction, second order attractive.
- real, dimension(:,:), allocatable quantum_const_2r_ij
 Parameters in the quantum correction, second order repulsive.
- logical **isselfassociating** = .false.
- type(saftvrmie hydrogen bound container) hbc

6.114.1 Detailed Description

Container for SAFT-VR Mie static parameters. The documentation for this type was generated from the following file:

• saftvrmie_containers.f90

6.115 saftvrmie_containers::saftvrmie_var_container Type Reference

Container for SAFT-VR Mie common variables To be claculated only once per state. Collaboration diagram for saftvrmie_containers::saftvrmie_var_container:

Public Member Functions

- procedure, public assign_saftvrmie_var_container (this, other)
- generic, public assignment (this, other)

Public Attributes

- real temperature_dhs = -1.0
 - Temperature of last update.
- real temperature_eps = -1.0
- type(saftvrmie_dhs) dhs Hard sphere diameter.
- type(saftvrmie_dhs) sigma_eff

Effective sigma for the quantum corrected potential.

- type(saftvrmie_dhs) eps_divk_eff
 - Effective epsilon for the quantum corrected potential.
- type(saftvrmie_dhs) dfeynhibbsij

Feynman-Hibbs D variable.

type(saftvrmie_dhs) d2feynhibbsij

Feynman–Hibbs D variable squared.

• type(saftvrmie_dhs) alpha Dimensionless van der Waals energy.

```
    type(saftvrmie_zeta_hs) zeta_hs

      Moments of the number density for hs-module.
• type(saftvrmie_zeta) zeta
      Hypotetical pure fluid packing fraction.

    type(saftvrmie_zeta) zeta_bar

      Packing fraction.

    type(saftvrmie_zeta) zeta_a3

      Zeta used as prefactor in a3.

    type(saftvrmie_zeta) khs

      Isothermal hard sphere compressibillity factor.

    type(saftvrmie_zeta) eta_hs

      Hard sphere packing fraction.

    type(saftvrmie_zeta) d_pure

      Pure fluid reference HS diameter.

    type(saftvrmie_zeta) rho_star

      Rho star.

    type(saftvrmie_aij) a1ij

      A1 ij.

    type(saftvrmie aij) a1ijqcorr

      Additive quantum corrections to A1_ij.

    type(saftvrmie_aij) a2chij

      (A2/(1-chi)) ij

    type(saftvrmie_aij) a2chijqcorr

      Additive quantum corrections to A2chij.

    type(saftvrmie_aij) a2ij

      A2_ij.
```

- type(saftvrmie_aij) a3ij
 - A3_ij.

6.115.1 Detailed Description

Container for SAFT-VR Mie common variables To be claculated only once per state. The documentation for this type was generated from the following file:

saftvrmie_containers.f90

6.116 saftvrmie_containers::saftvrmie_zeta Type Reference

Container for zeta and differentials (also used for functions of zeta)

Public Member Functions

- procedure, public assign_saftvrmie_zeta (this, other)
- generic, public assignment (this, other)

Public Attributes

- real zx
 - Hypotetical pure fluid packing fraction.
- real zx_t

Temperature differential of hypotetical pure fluid packing fraction.

real zx_tt

Second temperature differential of hypotetical pure fluid packing fraction.

real zx_v

Volume differential of hypotetical pure fluid packing fraction.

- real zx_vv
- Second volume differential of hypotetical pure fluid packing fraction.
- real zx_tv

Temperature and volume differential of hypotetical pure fluid packing fraction.

- real, dimension(:), allocatable zx_n
 - Mol number differential of hypotetical pure fluid packing fraction.
- real, dimension(:), allocatable zx_vn

Mol number and volume differential of hypotetical pure fluid packing fraction.

real, dimension(:), allocatable zx_tn

Mol number and temperature differential of hypotetical pure fluid packing fraction.

real, dimension(:,:), allocatable zx_nn

Second mol number differential of hypotetical pure fluid packing fraction.

real zx_vvv

Three time volume differential of hypotetical pure fluid packing fraction.

real zx_vvt

Temperature and twice volume differential of hypotetical pure fluid packing fraction.

real zx_vtt

Twice temperature and volume differential of hypotetical pure fluid packing fraction.

real, dimension(:), allocatable zx_vtn

Mol number, temperature and volume differential of hypotetical pure fluid packing fraction.

real, dimension(:), allocatable zx_vvn

Mol number and twice volume and volume differential of hypotetical pure fluid packing fraction.

real, dimension(:,:), allocatable zx_vnn

Volume and twice mol number and temperature differential of hypotetical pure fluid packing fraction.

6.116.1 Detailed Description

Container for zeta and differentials (also used for functions of zeta) The documentation for this type was generated from the following file:

• saftvrmie_containers.f90

6.117 saftvrmie_containers::saftvrmie_zeta_hs Type Reference

Container for mu and zeta's (2 and 3). These are moments of the number density (2,3) and mu (1)

Public Member Functions

- procedure, public assign_saftvrmie_zeta_hs (this, other)
- generic, public assignment (this, other)

Public Attributes

- real, dimension(3) zet
 - Moments of the number density and mu.
- real, dimension(3) zet_t
 - Temperature differential of the moments of the number density and mu.
- real, dimension(3) zet_tt

Second temperature differential of the moments of the number density and mu.

real, dimension(3) zet_v
 Volume differential of the moments of the number density and mu.

- real, dimension(3) zet_vv
 - Second volume differential of the moments of the number density and mu.
- real, dimension(3) zet_tv
 - Temperature and volume differential of the moments of the number density and mu.
- real, dimension(:,:), allocatable zet_n
 - Mol number differential of the moments of the number density and mu.
- real, dimension(:,:), allocatable zet_vn
 Mol number and volume differential of the moments of the number density and mu.
- real, dimension(:,:), allocatable zet_tn
 Mol number and temperature differential of the moments of the number density and mu.

6.117.1 Detailed Description

Container for mu and zeta's (2 and 3). These are moments of the number density (2,3) and mu (1) The documentation for this type was generated from the following file:

saftvrmie_containers.f90

6.118 saturated_densities::sat_densities Type Reference

Class calculating saturated densities.

Public Member Functions

- procedure, public init (this, comp_name, phase)
- procedure, public density (this, t)

Public Attributes

- character(len=40), public compname
- integer correlation_id = 0
- real, public t_reducing
- real, public rho_reducing
- integer n_param = 0
- real, dimension(6) n_sat
- real, dimension(6) expo_sat

6.118.1 Detailed Description

Class calculating saturated densities. The documentation for this type was generated from the following file:

saturated densities.f90

6.119 multiparameter_base::satdeltaestimate_intf Interface Reference

Public Member Functions

real function satdeltaestimate_intf (this, tau, phase)

6.119.1 Constructor & Destructor Documentation

6.119.1.1 satdeltaestimate_intf()

Parameters

in	tau	Reduced temperature (-)
in	phase	Phase flag

Returns

Reduced density (-)

The documentation for this interface was generated from the following file:

• multiparameter_base.f90

6.120 satdensdatadb::satdensdata Type Reference

Public Attributes

character(len=8) ident

```
The component ID.
```

- character(len=40) name
 - The component name.
- character(len=1) phase
 Phase (G/L)
- real tr

Reducing temperature (K)

real rhor

Reducing density (mol/l)

- integer correlation_id
- integer n_param
- real, dimension(6) n
- real, dimension(6) t

The documentation for this type was generated from the following file:

· satdensdatadb.f90

6.121 extcsp::shape_diff Type Reference

Derivatives. Uses the notation on pages 115-120 in Michelsen & Mollerup.

Public Member Functions

- procedure, public shape_diff_alloc (sdiff, nce)
 - Allocate differential struct.
- procedure, public shape_diff_dealloc (sdiff) Deallocate differential struct.

Public Attributes

- real h
- real f
- real ht
- real ft
- real htt
- real ftt
- real, dimension(:), allocatable hi

- real, dimension(:), allocatable hit
- real, dimension(:), allocatable ${\bf fi}$
- real, dimension(:), allocatable fit
- real, dimension(:,:), allocatable hij
- real, dimension(:,:), allocatable fij
- real v0v
- real v0vv
- real t0t
- real t0tt
- real, dimension(:), allocatable t0ti
- real, dimension(:), allocatable t0i
- real, dimension(:), allocatable v0vi
- real, dimension(:), allocatable v0i
- real, dimension(:,:), allocatable v0ij
- real, dimension(:,:), allocatable t0ij
- real **d**
- real **b**
- real bt
- real dt
- real btt
- real dtt
- real, dimension(:), allocatable bi
- real, dimension(:), allocatable bit
- real, dimension(:), allocatable di
- real, dimension(:), allocatable dit
- real, dimension(:,:), allocatable bij
- real, dimension(:,:), allocatable dij
- real m
- real mt0
- real mt0t0
- real mt0v0
- real mv0
- real mv0v0
- real ff
- real ff_t
- real ff_v
- real ff tt
- real ff_vv
- real ff tv
- real, dimension(:), allocatable ff_i
- real, dimension(:), allocatable ff_ti
- real, dimension(:), allocatable ff_vi
- real, dimension(:,:), allocatable ff_ij
- logical v0i_set = .false.

6.121.1 Detailed Description

Derivatives. Uses the notation on pages 115-120 in Michelsen & Mollerup.

6.121.2 Member Function/Subroutine Documentation

6.121.2.1 shape_diff_alloc()

Author

MH, 2013-11-27

6.121.2.2 shape_diff_dealloc()

Deallocate differential struct.

Author

MH, 2013-11-27

The documentation for this type was generated from the following file:

• extcsp.f90

6.122 hyperdual_mod::sign Interface Reference

Public Member Functions

- elemental type(hyperdual) function sign_dd (v1, v2)
- elemental type(hyperdual) function sign_dr (v1, v2)
- elemental type(hyperdual) function sign_rd (v1, v2)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.123 hyperdual_mod::sin Interface Reference

Public Member Functions

• elemental type(hyperdual) function sinhyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.124 eos_parameters::single_eos Type Reference

Inheritance diagram for eos_parameters::single_eos:

Collaboration diagram for eos_parameters::single_eos:

Public Member Functions

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public assign_eos (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

- type(eosmbwr), dimension(:), allocatable mbwr_meos
- type(nist_meos_ptr), dimension(:), allocatable nist

Public Attributes inherited from thermopack_var::base_eos_param

character(len=eosid_len) eosid

Eos identifier.

- integer eosidx
 - Eos group index.

• integer **subeosidx**

Eos sub-index.

• integer volumeshiftid = 0

0: No volume shift, 1:Peneloux shift

logical iselectrolyteeos = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.124.1 Member Function/Subroutine Documentation

6.124.1.1 allocate_and_init()

Parameters

in	nc	Number of components
in	eos_label	EOS label

The documentation for this type was generated from the following file:

· eos_parameters.f90

6.125 cubic_eos::singledata Type Reference

Public Attributes

- · real omegaa
 - Cubic EoS quantities for individual components.
- · real omegab
- · real omegac
- real zcrit
- real *a*

```
Energy constant in front of alpha. Units: Pa*L^2/mol^2.

    real b

      Covolume parameter. Units: L/mol.
• real c
      Parameter in Patel-Teja EoS. Units: L/mol.

    real acf

      Acentric factor to use for the cubic EoS [-].

    real tc

      Critical temperature to use in the cubic EoS [K].

    real pc

      Critical pressure to use in the cubic EoS [Pa].

    integer alphamethod =-1

    character(len=short_label_len) alphacorrname

· real alpha

    real dalphadt

    real d2alphadt2

      alpha is dimensionless

    real, dimension(3) alphaparams =-1e10

• integer betamethod =1

    character(len=12) betacorrname = "Classic "

    real beta

    real dbetadt

• real d2betadt2
      beta is dimensionless
```

• real, dimension(3) betaparams =-1e10

The documentation for this type was generated from the following file:

• cubic_eos.f90

6.126 hyperdual_mod::sinh Interface Reference

Public Member Functions

• elemental type(hyperdual) function sinhhyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.127 solid_correlation_datadb::solid_correlation_data Type Reference

This data structure stores parameters for sublimation and melting line correlations.

Public Attributes

- character(len=uid_len) compname
- character(len=4) correlation
 Correlations type.
- real triple_temperature
 - [K]. Triple point temperature.
- real minimum_temperature

[K]. Minimum temperature for sublimation line.

real maximum_temperature

577

```
[K]. Maximum temperature for melting line.real reducing_pressure
```

[Pa]. Pressure scaling parameter.

real reducing_temperature

[K]. Temperature reducing parameter.

- integer n_coeff
 Number of coefficients.
- integer n_coeff_1

Number of coefficients for type one terms.

integer n_coeff_2

Number of coefficients for type two terms.

integer n_coeff_3

Number of coefficients for type three terms.

real, dimension(6) coeff

Correlation coefficients.

• real, dimension(6) exponents

Correlation exponents.

- character(len=bibref_len) bib_ref
 - Bibliograpic reference.
- character(len=ref_len) ref

Parameter set.

6.127.1 Detailed Description

This data structure stores parameters for sublimation and melting line correlations. The documentation for this type was generated from the following file:

solid_correlation_datadb.f90

6.128 pc_saft_nonassoc::spcsaft_eos Type Reference

Inheritance diagram for pc_saft_nonassoc::spcsaft_eos:

Collaboration diagram for pc_saft_nonassoc::spcsaft_eos:

Public Member Functions

- procedure, public dealloc (eos)
- procedure, public allocate_and_init (eos, nc, eos_label)
- procedure, pass, public **assign_eos** (this, other)

Public Member Functions inherited from thermopack_var::base_eos_param

- procedure(allocate_and_init_intf), deferred, public allocate_and_init (eos, nc, eos_label)
- procedure, public dealloc (eos)
- procedure(assign_intf), deferred, pass, public assign_eos (this, other)
- generic, public assignment assign_eos
- procedure, public assign_base_eos_param (this, other)

Public Attributes

• real, dimension(:), allocatable m

• real, dimension(:,:), allocatable sigma

[m]

real, dimension(:,:), allocatable eps_depth_divk

[K]

• real, dimension(:,:), allocatable sigma_cube

[m^3]

Public Attributes inherited from thermopack_var::base_eos_param

- character(len=eosid_len) eosid
 - Eos identifier.
- integer eosidx
 - Eos group index.
- integer **subeosidx**

Eos sub-index.

• integer **volumeshiftid** = 0

0: No volume shift, 1:Peneloux shift

• logical iselectrolyteeos = .false.

Used to enable electrolytes.

- type(association), pointer assoc => NULL()
- type(multipol_param), pointer mpol_param => NULL()

6.128.1 Member Function/Subroutine Documentation

6.128.1.1 allocate_and_init()

Parameters

in	nc	Number of components
in	eos_label	EOS label

The documentation for this type was generated from the following file:

pc_saft_nonassoc.f90

6.129 hyperdual_mod::sqrt Interface Reference

Public Member Functions

• elemental type(hyperdual) function sqrthyperdual (v1)

The documentation for this interface was generated from the following file:

· hyperdual_mod.f90

6.130 vls::state Type Reference

Thermo state, used for debugging.

Public Member Functions

- procedure set_state (st, nd, t, p, z, beta, xx, phasevec)
- procedure get state (st, nd, t, p, z, beta, xx, phasevec)
- procedure get_state_no_z (st, nd, t, p, beta, xx, phasevec)
- procedure print_state (st)

Public Attributes

- integer nd
- real t
- real p
- real, dimension(:), allocatable z
- real, dimension(:), allocatable beta
- real, dimension(:,:), allocatable xx
- integer, dimension(:), allocatable phasevec

6.130.1 Detailed Description

Thermo state, used for debugging.

6.130.2 Member Function/Subroutine Documentation

6.130.2.1 get_state()

```
procedure vls::state::get_state (
    class(state), intent(in) st,
    integer, intent(out) nd,
    real, intent(out) t,
    real, intent(out) p,
```

real, dimension(:), intent(out) z,
real, dimension(:), intent(out) beta,
real, dimension(:,:), intent(out) xx,

```
integer, dimension(:), intent(out) phasevec )
```

Parameters

out	nd	Number of stabel phases found [-]
out	beta	Phase molar fractions [mol/mol]
out	XX	Phase molar compozition [mol/mol]
out	Ζ	Overall molar compozition [mol/mol]
out	t	Temperature [K]
out	р	Specified pressure [Pa]
out	phasevec	Phase identifier. Not to be trused [-]

6.130.2.2 get_state_no_z()

```
procedure vls::state::get_state_no_z (
    class(state), intent(in) st,
    integer, intent(out) nd,
    real, intent(out) t,
    real, intent(out) p,
    real, dimension(:), intent(out) beta,
    real, dimension(:,:), intent(out) xx,
    integer, dimension(:), intent(out) phasevec )
```

Parameters

out	nd	Number of stabel phases found [-]
out	beta	Phase molar fractions [mol/mol]
out	XX	Phase molar compozition [mol/mol]
out	t	Temperature [K]
out	р	Specified pressure [Pa]

Parameters

out phasevec Phase identifier. Not to be trused [-]

6.130.2.3 set_state()

```
procedure vls::state::set_state (
                class(state), intent(inout) st,
                integer, intent(in) nd,
                real, intent(in) t,
                real, intent(in) p,
                real, dimension(:), intent(in) z,
                real, dimension(:), intent(in) beta,
                real, dimension(:,:), intent(in) xx,
                integer, dimension(:), intent(in) phasevec )
```

Parameters

in	nd	Number of stabel phases found [-]
in	beta	Phase molar fractions [mol/mol]
in	XX	Phase molar compozition [mol/mol]
in	Ζ	Overall molar compozition [mol/mol]
in	t	Temperature [K]
in	р	Specified pressure [Pa]
in	phasevec	Phase identifier. Not to be trused [-]

The documentation for this type was generated from the following file:

• vls.f90

6.131 hyperdual_mod::sum Interface Reference

Public Member Functions

- pure type(hyperdual) function sumhyperdual (v1, mask)
- pure type(hyperdual) function, dimension(:), allocatable sumhyperdual2 (v1, dim)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.132 hyperdual_mod::tan Interface Reference

Public Member Functions

• elemental type(hyperdual) function tanhyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.133 hyperdual_mod::tanh Interface Reference

Public Member Functions

elemental type(hyperdual) function tanhhyperdual (v1)

The documentation for this interface was generated from the following file:

hyperdual_mod.f90

6.134 thermopack_var::thermo_model Type Reference

Collaboration diagram for thermopack_var::thermo_model:

apparent_compositon ::apparent_container	apparent
compdata::gendata_pointer	
thermopack_var::eos _param_pointer	eos

Public Member Functions

- procedure, public dealloc (model)
- procedure, public is_model_container (model, index)

Public Attributes

integer model_idx

A complete ThermoPack model. Holds information about the EoS, the mixture, and the computational solver options.

- integer **nph** =3
- integer nc =0
- integer eoslib =0
- integer eosidx =0
- character(len=label_len) label
- integer liq_vap_discr_method =PSEUDO_CRIT_MOLAR_VOLUME Gas constant usde by current model.
- real rgas = Rgas_default
 - J/mol/K.
- real krgas = 1000.0*Rgas_default

J/kmol/K Temperature/pressure min/max values used for solvers.

• real **tptmax** = 999.0

```
К.
```

• real tptmin = 80.0

```
К.
```

• real tppmax = 1.0e8

```
Pa.
```

real tppmin = 1.0e1

Pa.

- type(apparent_container), pointer apparent => NULL()
- type(gendata_pointer), dimension(:), allocatable comps
- character(len=eosid_len), dimension(:), allocatable complist
- type(eos_param_pointer), dimension(:), allocatable eos
- logical need_alternative_eos
- type(eos_param_pointer), dimension(:), allocatable cubic_eos_alternative

6.134.1 Member Data Documentation

6.134.1.1 model_idx

integer thermopack_var::thermo_model::model_idx
A complete ThermoPack model. Holds information about the EoS, the mixture, and the computational solver options.
Model is active if this equals activated_model_idx
The documentation for this type was generated from the following file:

• thermopack_var.f90

6.135 thermopack_var::thermo_model_pointer Type Reference

Collaboration diagram for thermopack_var::thermo_model_pointer:

Public Attributes

- type(thermo_model), pointer p_model => NULL()
 - A trivial type that only contains a pointer to thermo_model. This type is needed because gfortran does not allow arrays of pointer to base_eos_param, whereas arrays of the thermo_model_pointer type is allowed.

The documentation for this type was generated from the following file:

· thermopack_var.f90

6.136 unifacdata::unifaccomp Type Reference

Public Attributes

- character(len=20) formula
- · character(len=20) uid
- integer, dimension(nsubgroups) v

The documentation for this type was generated from the following file:

• unifacdata.f90

6.137 unifac::unifacdb Type Reference

Structure for active unifac parameters.

Public Member Functions

- procedure **dealloc** (u)
- procedure assign_unifacdb (u1, u2)
- generic, public **assignment** (u1, u2)

Public Attributes

- · logical floryhuggins
- logical stavermanguggenheim
- integer, dimension(:), allocatable maingroupmapping
- integer, dimension(:,:), allocatable vik
 - (nc,ng) [-] Number of groups in one component
- real, dimension(:,:), allocatable ajk (ng,ng) [K] Group interaction energy
- real, dimension(:,:), allocatable bjk
 - (ng,ng) [-] Group interaction energy
- real, dimension(:,:), allocatable **cjk**
 - (ng,ng) [1/K] Group interaction energy
- real, dimension(:), allocatable **qk**
 - (ng) [] Molecyle group surface area
- real, dimension(:), allocatable qi
 - [-] (nc) Combinatorial term param
- real, dimension(:), allocatable ri
 - [-] (nc) Combinatorial term param

6.137.1 Detailed Description

Structure for active unifac parameters.

The documentation for this type was generated from the following file:

• unifac.f90

6.138 unifacdata::unifacprm Type Reference

Public Attributes

- integer subgrp
- integer maingrp
- character(len=uid_len) formula
- real rk
- real qk
- character(len=ref_len) datasource

The documentation for this type was generated from the following file:

• unifacdata.f90

6.139 unifacdata::unifacuij Type Reference

Public Attributes

- integer mgi
- integer mgj
- real aij
 - [K]

```
    real bij
```

- [-]
- real cij
 - [1/K]
- character(len=ref_len) datasource

The documentation for this type was generated from the following file:

• unifacdata.f90

6.140 stringmod::value Interface Reference

Public Member Functions

- subroutine value_dr (str, rnum, ios)
- subroutine value_sr (str, rnum, ios)
- subroutine value_di (str, inum, ios)
- subroutine value_si (str, inum, ios)

The documentation for this interface was generated from the following file:

stringmod.f90

6.141 stringmod::writenum Interface Reference

Public Member Functions

- subroutine write_dr (rnum, str, fmt)
- subroutine write_sr (rnum, str, fmt)
- subroutine **write_di** (inum, str, fmt)
- subroutine write_si (inum, str, fmt)

The documentation for this interface was generated from the following file:

• stringmod.f90

6.142 stringmod::writeq Interface Reference

Public Member Functions

- subroutine writeq_dr (unit, namestr, value, fmt)
- subroutine writeq_sr (unit, namestr, value, fmt)
- subroutine writeq_di (unit, namestr, ivalue, fmt)
- subroutine writeq_si (unit, namestr, ivalue, fmt)

The documentation for this interface was generated from the following file:

• stringmod.f90
Index

a_i

pc_saft_nonassoc, 341 add hyperdual fres multipol multipol, 319 adjust_mass_to_specified_de_boer_parameter saft interface, 364 allocate and init cubic_eos::cb_eos, 465 eos_parameters::single_eos, 575 extcsp::extcsp eos, 476 lj splined::ljs wca eos, 490 pc saft nonassoc::pcsaft eos, 553 pc_saft_nonassoc::spcsaft_eos, 579 pets::pets_eos, 555 saftvrmie containers::saftvrmie eos, 563 thermopack_var::base_eos_param, 462 allocate_and_init_cubic_eos cubic eos, 96 allocate and init intf thermopack_var::allocate_and_init_intf, 452 allocate eos eos container, 106 alpha saft interface, 365 alpha0 hd intf multiparameter base::alpha0 hd intf, 452 alpha0 hd taudelta multiparameter_base::meos, 498 alpha0derivs intf multiparameter base::alpha0derivs intf, 452 alpha0derivs taudelta gerg::meos_gerg, 509 multiparameter base::meos, 499 multiparameter c3::meos c3, 505 multiparameter_lj::meos_lj, 518 multiparameter_normal_h2::meos_normal_h2, 525 multiparameter_ortho_h2::meos_ortho_h2, 528 multiparameter para h2::meos para h2, 531 multiparameter_r134a::meos_r134a, 540 pure_fluid_meos::meos_pure, 537 alpha disp pc saft nonassoc, 341 pets::pets eos, 556 alpha disp pc tvn pc saft nonassoc, 342 alpha disp tvn pets::pets_eos, 556 alpha hs pc tvn pc saft nonassoc, 342

alpha_hs_spc_tvn pc saft nonassoc, 342 alpha hs tvn pets::pets eos, 556 alpha pc pc_saft_nonassoc, 343 alpha pets pets::pets_eos, 557 alpha_pets_hs pets::pets eos, 557 alpha spc saft hc pc saft nonassoc, 343 alpha_spc_saft_hs pc_saft_nonassoc, 344 alphaderivs tv multiparameter_base, 312 multiparameter_base::meos, 499 alphaidderivs_tv multiparameter_base, 312 multiparameter_base::meos, 499 alphares hd intf multiparameter base::alphares hd intf, 455 alphares hd taudelta multiparameter base::meos, 500 alpharesderivs intf multiparameter base::alpharesderivs intf, 456 alpharesderivs taudelta gerg::meos_gerg, 509 multiparameter base::meos, 500 multiparameter c3::meos c3, 505 multiparameter lj::meos lj, 518 multiparameter_normal_h2::meos_normal_h2, 525 multiparameter ortho h2::meos ortho h2, 528 multiparameter para h2::meos para h2, 531 multiparameter r134a::meos r134a, 541 pure_fluid_meos::meos_pure, 538 alpharesderivs tv multiparameter base, 313 multiparameter_base::meos, 500 apparent_compostion, 15 getmodfugacity, 16 tp Infug apparent, 16 apparent compostion::apparent container, 456 getmodfugacity, 457 tp Infug apparent, 457 approximate jacobian nonlinear_solvers, 325 approximate jacobian 2nd nonlinear solvers, 325

approximate_jacobian_4th nonlinear solvers, 325 aricomb assocschemeutils, 20 assemble_m_mich_k saft association, 360 assoc scheme 1 assocschemeutils, 20 association var, 17 association var::association, 459 beta kl, 460 association_var::association_state, 460 assocschemeutils, 17 aricomb, 20 assoc_scheme_1, 20 compidx_to_sites, 18 cross site interaction, 19 site interaction internal, 19 site_to_compidx, 19

b_i

pc_saft_nonassoc, 344 beta_kl association_var::association, 460 binarythirdvirialcoeffmatrix eostv, 118 bracketing_solver nonlinear_solvers, 326 bracketsolveforpropertysingle saturation_point_locators, 385

c_1

pc_saft_nonassoc, 344 c interface module::c strlen, 462 calc d pc_saft_nonassoc, 345 calc_d_hd pc_saft_nonassoc, 345 calc_d_pets pets::pets_eos, 558 calc dhs pc saft nonassoc, 345 calc multiparameter idealmix enthalpy multiparameter_idealmix, 315 calc_multiparameter_idealmix_entropy multiparameter idealmix, 316 calc_multiparameter_idealmix_fugacity multiparameter_idealmix, 316 calc_multiparameter_idealmix_gres multiparameter idealmix, 317 calc_multiparameter_idealmix_zfac multiparameter_idealmix, 317 calc potential pets pets::pets eos, 558 calcbmatrixtv critical, 79 calccritical critical, 80 calccriticalendpoint

critical, 80 calccriticaltv critical, 81 calccriticalz critical, 81 calcInphioffset thermo utils, 422 calcreducedvolume leekesler, 159 calcstabmineig critical, 82 calcstabmineigtv critical, 83 cb_cubic_second_zfac cubic, 86 cb_solve_cubic_zfac cubic, 86 cbalpha, 20 getsinglealphacorr, 21 setsinglealphacorr, 21 tpinitalphacorr, 21 cbbeta, 22 tpinitbetacorr, 22 cbcalcderivatives_svol cubic, 87 cbcalcenthalpy cubic, 88 cbcalcentropy cubic, 88 cbcalcfreeenergy cubic, 89 cbcalcfres cubic, 90 cbcalcfug cubic, 90 cbcalcinnerenergy cubic, 91 cbcalcparameters cbselect, 28 cbcalcpseudo cubic, 91 chf cbhelm, 23 cbfi cbhelm, 23 cbfij cbhelm, 24 cbfit cbhelm, 24 cbfiv cbhelm, 24 cbft cbhelm, 24 cbftt cbhelm, 25 cbfv cbhelm, 25 cbfvt

cbhelm, 25 cbfvv cbhelm, 25 cbfvvv cbhelm, 26 cbgres cubic, 92 cbhelm, 22 cbf, 23 cbfi, 23 cbfij, 24 cbfit, 24 cbfiv, 24 cbft, 24 cbftt, 25 cbfv, 25 cbfvt, 25 cbfvv. 25 cbfvvv, 26 cbpi, 26 cbpress, 26 cbprst, 26 cbpv, 27 cbpvv, 27 cbpi cbhelm, 26 cbpress cbhelm, 26 cbprst cbhelm, 26 cbpv cbhelm, 27 cbpvv cbhelm, 27 cbselect, 27 cbcalcparameters, 28 get_mixing_rule_index, 29 getcompindex, 29 initcubictcpcacf, 29 redefine fallback tcpcacf, 30 redefine tcpcacf comp cubic, 30 selectcubiceos, 31 selectmixingrules, 31 tpselectinteractionparameters, 32 cbsolvecubiczfac cubic, 92 cg linear numerics, 193 check model consitency saftvrmie_options::saftvrmie_opt, 565 checkvlestability stability, 404 chemical_potential_tv eostv, 118 cidatadb_get_vol_trs_c compdata, 40 co2_gibbs, 32 sco2_d2gdp2, 33

sco2_d2gdt2, 33 sco2 d2gdtdp, 34 sco2_dgdp, 34 sco2_dgdt, 35 sco2_energy, 35 sco2 enthalpy, 35 sco2 entropy, 36 sco2 gibbs, 36 sco2 heat capacity, 36 sco2 helmholtz, 37 sco2_specvol, 37 sco2_speed_of_sound, 37 sco2init, 38 compdata, 38 cidatadb_get_vol_trs_c, 40 init_component_data_from_db, 40 compdata::alphadatadb, 454 compdata::cidatadb, 466 get_vol_trs_c, 467 compdata::cpadata, 470 compdata::cpdata, 472 compdata::gendata, 477 compdata::gendata_pointer, 479 compdata::gendatadb, 480 compdatadb, 40 compidx_to_sites assocschemeutils, 18 complexmodelinit, 76 init umr, 77 init vtpr, 77 compmoleweight eos, 98 ср multiparameter_base, 313 multiparameter_base::meos, 501 cpa_get_kij saft_interface, 365 cpa_get_pure_params saft interface, 365 cpa parameters, 78 cpa set cubic params saft interface, 365 cpa_set_kij saft interface, 366 cpa_set_pure_params saft_interface, 366 critical, 78 calcbmatrixtv, 79 calccritical, 80 calccriticalendpoint, 80 calccriticaltv, 81 calccriticalz, 81 calcstabmineig, 82 calcstabmineigtv, 83 critzsensitivity, 83 stabfun, 84 stabfuntv, 84 stabjactv, 84

critzsensitivity critical, 83 cross site interaction assocschemeutils, 19 csp init extcsp, 128 csp refpressure extcsp, 128 csp testpressure extcsp, 128 csp_zfac extcsp, 129 cubic, 85 cb_cubic_second_zfac, 86 cb_solve_cubic_zfac, 86 cbcalcderivatives_svol, 87 cbcalcenthalpy, 88 cbcalcentropy, 88 cbcalcfreeenergy, 89 cbcalcfres, 90 cbcalcfug, 90 cbcalcinnerenergy, 91 cbcalcpseudo, 91 cbgres, 92 cbsolvecubiczfac, 92 cubic::cbbig, 466 cubic_eos, 93 allocate and init cubic eos, 96 get b linear mix, 96 cubic eos::alpha label mapping, 454 cubic_eos::cb_eos, 463 allocate_and_init, 465 cubic eos::cpa eos, 468 cubic_eos::cpakijdata, 471 cubic_eos::fraction, 477 pden, 477 cubic_eos::intergedatadb, 485 cubic_eos::kijdatadb, 486 cubic_eos::lijdatadb, 486 cubic eos::lk eos, 493 cubic eos::mix label mapping, 544 cubic_eos::mixexcessgibbs, 544 cubic eos::mixwongsandler, 544 cubic eos::singledata, 575 cv multiparameter_base, 314 multiparameter_base::meos, 501 de boer parameter saft_interface, 366 de_broglie_wavelength saft interface, 366 densitysolver gergmix::meos_gergmix, 512 multiparameter base, 314 multiparameter base::meos, 501 dhdp twophase state_functions, 407 dhdt_twophase

state_functions, 407 differentials tp solver, 428 disablecustumstabcalc sv_solver, 415 uv solver, 432 dnvdx state functions, 408 dpdt twophase state_functions, 409 dvdp_twophase state_functions, 409 dvdt_twophase state_functions, 410 enablecustumstabcalc sv solver, 415 uv solver, 432 enthalpy eos, <mark>98</mark> enthalpy tv eostv. 119 enthalpy_tvp eostv, 119 entropy eos, 99 entropy_tv eostv, 120 entropy_tvp eostv, 121 eos, 97 compmoleweight, 98 enthalpy, 98 entropy, 99 getcriticalparam, 99 moleweight, 99 pseudo, 100 pseudo safe, 100 residualgibbs, 101 specificvolume, 101 thermo, 102 twophaseenthalpy, 102 twophaseentropy, 103 twophaseinternalenergy, 104 twophasespecificvolume, 104 zfac, 105 eos_container, 105 allocate_eos, 106 eos parameters, 106 single_eos_alloc, 106 single_eos_allocate_and_init, 108 eos parameters::meos idealmix, 513 eos parameters::single eos, 574 allocate and init, 575 eosdata, 108 eosdata::eos label mapping, 472 eoslibinit, 111 init_cpa, 112 init_cubic, 112

init_cubic_pseudo, 112 init extcsp, 113 init_lee_kesler, 113 init_lj, 114 init_ljs, 114 init multiparameter, 114 init pcsaft, 114 init_pets, 115 init quantum cubic, 115 init quantum saftvrmie, 115 init_saftvrmie, 115 init_tcpr, 116 init_thermo, 116 init_volume_translation, 117 redefine_critical_parameters, 117 eostv, 117 binarythirdvirialcoeffmatrix, 118 chemical potential tv, 118 enthalpy_tv, 119 enthalpy_tvp, 119 entropy tv, 120 entropy_tvp, 121 fideal, 121 fideal_ne, 122 free_energy_tv, 122 fres, 123 fres_ne, 123 internal energy tv, 124 pressure, 124 secondvirialcoeffmatrix, 125 thermo_tv, 125 thermo_tvp, 125 virial coefficients, 126 eosvolumefromshiftedvolume volume_shift, 447 epsilon_eff_ij saft_interface, 367 epsilon_ij saft_interface, 367 error function optimizers::error function, 474 eta pc_saft_nonassoc, 346 excess gibbs, 126 getfraction, 127 extcsp, 127 csp_init, 128 csp refpressure, 128 csp testpressure, 128 csp_zfac, 129 extcsp::extcsp_eos, 475 allocate and init, 476 extcsp::shape_diff, 571 shape_diff_alloc, 573 shape_diff_dealloc, 573 f chain pc saft tvn pc_saft_nonassoc, 346 f_disp_pc_tvn

pc_saft_nonassoc, 346 f hc pc saft tvn pc_saft_nonassoc, 347 f_hs_pc_saft_tvn pc_saft_nonassoc, 347 f pc saft tvn pc_saft_nonassoc, 348 f pets tvn pets::pets eos, 558 f spc saft tvn pc_saft_nonassoc, 348 fake_density gergmix::meos_gergmix, 512 meosmix::meos_mix, 521 fdiff2ninj leekesler, 160 fdiff2tni leekesler. 160 fdiff2tr leekesler, 161 fdiff2trn leekesler, 161 fdiff2trvr leekesler, 162 fdiff2vni leekesler, 162 fdiff2vr leekesler, 163 fdiff2vrn leekesler, 163 fdiff3vr leekesler, 163 fdiffn leekesler, 164 fdiffni leekesler, 164 fdifftr leekesler, 165 fdiffvr leekesler, 165 fideal eostv, 121 fideal ne eostv, 122 find extremum mbwr, 195 fixedtrplot leekesler, 166 free energy tv eostv, 122 fres eostv, 123 fres multipol multipol, 319 fres ne eostv, 123 fsolver leekesler, 166

fun saft association, 360 fun_1ph uv_solver, 433 fun 1ph sv sv solver, 415 fv leekesler, 166 fvdiff leekesler, 166 fz leekesler, 167 fzdiff leekesler, 167 fzdiff2 leekesler, 168 fzwithdiff leekesler, 168 g ij spc saft pc saft nonassoc, 349 g pc saft tvn pc_saft_nonassoc, 349 g spc saft tvn pc saft nonassoc, 350 gerg::meos gerg, 506 alpha0derivs_taudelta, 509 alpharesderivs_taudelta, 509 gergdatadb, 129 gergdatadb::gergdata, 482 gergmix::meos_gergmix, 510 densitysolver, 512 fake density, 512 gergmixdb, 134 gergmixdb::gerg_mix_data, 481 gergmixdb::gerg_mix_reducing, 482 get b linear mix cubic_eos, 96 get_mixing_rule_index cbselect, 29 get n solids thermo_utils, 422 get stability tolerance stability, 404 get state vls::state, 580 get_state_no_z vls::state, 580 get vol trs c compdata::cidatadb, 467 getcompindex cbselect, 29 getcriticalparam eos, 99 getfraction excess gibbs, 127 getfulleqsvtolerance sv_solver, 415 getfullequvtolerance

uv_solver, 433 getjoulethompsoncoeff state_functions, 410 getmodfugacity apparent_compostion, 16 apparent_compostion::apparent_container, 457 getnestedsvtolerance sv solver, 416 getnesteduvtolerance uv solver, 433 getphtolerance ph_solver, 355 getpstolerance ps solver, 357 getsinglealphacorr cbalpha, 21 getsinglecompsvtolerance sv solver, 416 getsinglecompuvtolerance uv_solver, 434 getstatefunc state functions, 411 getstatefuncmatrix state_functions, 411 getsvderivativestwophase state_functions, 412 getuvderivativestwophase state functions, 413 quessphase thermo utils, 422 guessphasetv thermo_utils, 423 h2o gibbs, 144 sh2o d2gdp2, 145 sh2o d2gdt2, 145 sh2o d2gdtdp, 146 sh2o dgdp, 146 sh2o_dgdt, 146 sh2o_energy, 146 sh2o enthalpy, 147 sh2o entropy, 147 sh2o gibbs, 147 sh2o heat capacity, 148 sh2o helmholtz, 148 sh2o_specvol, 148 sho2_init, 148 hardsphere_bmcsl::hs_diameter, 483 hardsphere_bmcsl::packing_fraction_hs, 549 hdiffni leekesler, 168 hdiffp leekesler, 169 hdifft leekesler, 169 hyperdual calc d hs pc saft multipol, 320 hyperdual_f_dd multipol, 320

hyperdual_f_dq multipol, 320 hyperdual_f_qq multipol, 320 hyperdual_fres_multipol multipol, 321 hyperdual j2 ij multipol, 321 hyperdual j3 ijk multipol, 321 hyperdual mod, 149 hyperdual_mod::abs, 451 hyperdual_mod::acos, 451 hyperdual mod::asin, 458 hyperdual_mod::assignment(=), 458 hyperdual_mod::atan, 460 hyperdual mod::atan2, 460 hyperdual mod::cos, 467 hyperdual_mod::cosh, 467 hyperdual_mod::exp, 475 hyperdual mod::hyperdual, 484 hyperdual mod::int, 485 hyperdual_mod::log, 495 hyperdual_mod::log10, 496 hyperdual mod::max, 496 hyperdual_mod::min, 543 hyperdual_mod::nint, 546 hyperdual mod::operator(+), 547 hyperdual mod::operator(-), 548 hyperdual mod::operator(.eq.), 548 hyperdual_mod::operator(.ge.), 548 hyperdual_mod::operator(.gt.), 548 hyperdual mod::operator(.le.), 548 hyperdual_mod::operator(.lt.), 548 hyperdual_mod::operator(.ne.), 548 hyperdual_mod::operator(/), 548 hyperdual mod::operator(*), 547 hyperdual_mod::operator(**), 547 hyperdual mod::real, 559 hyperdual mod::sign, 573 hyperdual mod::sin, 573 hyperdual_mod::sinh, 576 hyperdual_mod::sqrt, 579 hyperdual mod::sum, 581 hyperdual mod::tan, 581 hyperdual_mod::tanh, 581 hyperdual_packing_fraction_pc_saft multipol, 321 hyperdual utility::hyperdual fres, 485 i_1 pc saft nonassoc, 350

pc_saft_nonassoc, 350 i_2 pc_saft_nonassoc, 350 idealh2::h2func, 483 init_component_data_from_db compdata, 40 init_cpa eoslibinit, 112

eoslibinit, 112 init extcsp eoslibinit, 113 init lee kesler eoslibinit, 113 init lj eoslibinit, 114 init_ljs eoslibinit, 114 init_multiparameter eoslibinit, 114 init_multipol_param multipol_var::multipol_param, 546 init_pcsaft eoslibinit. 114 init pets eoslibinit, 115 init quantum cubic eoslibinit, 115 init_quantum_saftvrmie eoslibinit, 115 init saftvrmie eoslibinit, 115 init_tcpr eoslibinit, 116 init thermo eoslibinit, 116 init umr complexmodelinit, 77 init volume translation eoslibinit, 117 init_vtpr complexmodelinit, 77 initcubictcpcacf cbselect, 29 initdryice solideos, 392 initial stab limit point spinodal, 400 initializembwrmodel mbwr, 196 initice solideos, 392 initvolumeshift volume shift, 447 internal energy tv eostv, 124 inverse linear numerics, 193 inversephasemappingvlws vls, 439 isenthalp isolines, 152 isentrope isolines, 153

init cubic

eoslibinit, 112

init cubic pseudo

isformingsolid solideos, 392 iso_cross_saturation_line saturation_point_locators, 385 isobar isolines, 153 isolines, 152 isenthalp, 152 isentrope, 153 isobar, 153 isotherm, 154 isotherm isolines, 154 issinglecomp thermo_utils, 423 istwocomp thermo utils, 424 jac saft association, 360 jac_1ph uv_solver, 434 jac_1ph_sv sv solver, 416 k mich saft_association, 361 leekesler, 155 calcreducedvolume, 159 fdiff2ninj, 160 fdiff2tni, 160 fdiff2tr, 161 fdiff2trn, 161

fdiff2trvr, 162

fdiff2vni, 162

fdiff2vr, 163

fdiff3vr, 163

fdiffn, 164

fdiffni, 164

fdifftr, 165

fdiffvr, 165

fsolver, 166

fvdiff, 166

fzdiff, 167

fzdiff2, 168

hdiffni, 168

hdiffp, 169

hdifft, 169

fzwithdiff, 168

Ikcalcenthalpy, 170

Ikcalcentropy, 170

Ikcalcfug, 171

lkcalcgdep, 171

lkcalczfac, 172

fv, 166

fz, 167

fixedtrplot, 166

fdiff2vrn, 163

Inphidiffnj, 172 Inphidiffp, 173 Inphidifft, 174 Inphim, 174 mainleekesler, 175 mixrules, 176 pcmdiff2ninj, 176 pcmdiffni, 177 pdiffni, 177 pdifft, 178 pdiffv, 178 pred, 179 prsolver, 179 sdiffni, 179 sdiffp, 180 sdifft, 180 setmaxminz, 180 tcmdiff2ninj, 181 tcmdiffni, 181 testdiffleekesler, 182 thermprops, 182 trcoeff, 183 trcoeffdiff1, 183 trcoeffdiff2, 184 trdiff2ninj, 184 trdiffni, 185 vcmdiff2ninj, 185 vcmdiffni, 185 vdiffni, 186 vdifft, 186 vrdiff2ninj, 187 vrdiffni, 187 vrinitial, 188 vrnewtraps, 188 wmdiff2ninj, 188 wmdiffni, 189 zcmdiff2ninj, 189 zcmdiffni, 189 zdiffni, 190 zdiffp, 190 zdifft, 191 zinitial, 191 znewtraps, 192 zprtshape, 192 limit dx nonlinear_solvers, 326 linear_numerics, 192 cg, 193 inverse, 193 null_space, 193 outer_product, 194 solve lu hd, 194 lj splined::ljs bh eos, 487 lj_splined::ljs_wca_eos, 489 allocate_and_init, 490 lj_splined::ljx_ux_eos, 491 Ikcalcenthalpy leekesler, 170

lkcalcentropy leekesler, 170 Ikcalcfug leekesler, 171 lkcalcgdep leekesler, 171 lkcalczfac leekesler, 172 Ing ii pc saft tvn pc saft nonassoc, 351 Inphidiffnj leekesler, 172 Inphidiffp leekesler, 173 Inphidifft leekesler, 174 Inphim leekesler, 174 locate_spinodal_prop_min_max_pure_fluid spinodal, 400 locate spinodal prop pure fluid spinodal, 401 m2e1s3 mean pc saft nonassoc, 351 m2e2s3 mean pc_saft_nonassoc, 352 m_bar pc_saft_nonassoc, 352 mainleekesler leekesler, 175 map meta isentrope spinodal, 401 map meta isotherm mut_solver, 322 map stability limit spinodal, 401 master saft rdf saft_rdf, 374 maxcomp thermo utils, 424 mbwr, 194 find extremum, 195 initializembwrmodel, 196 mbwr density, 196 newton density, 196 mbwr::eosmbwr, 473 mbwr::nijlarray, 546 mbwr density mbwr, 196 mbwrdata::mbwr19data, 496 mbwrdata::mbwr32data, 496 meosdatadb. 197 meosdatadb::meosdata, 541 meosmix::meos mix, 518 fake density, 521 meosmixdb, 232 meosmixdb::meos_mix_data, 522 meosmixdb::meos_mix_reducing, 522

mixdatadb, 282 mixrules leekesler, 176 model idx thermopack_var::thermo_model, 583 moleweight eos, 99 mpenthalpy vls, 439 mpentropy vls, 440 mpspecificvolume vls, 440 multiparameter_base, 311 alphaderivs_tv, 312 alphaidderivs_tv, 312 alpharesderivs tv, 313 cp. 313 cv, 314 densitysolver, 314 speed of sound, 314 multiparameter base::alpha0 hd intf, 452 alpha0_hd_intf, 452 multiparameter_base::alpha0derivs_intf, 452 alpha0derivs intf, 452 multiparameter_base::alphares_hd_intf, 454 alphares_hd_intf, 455 multiparameter base::alpharesderivs intf, 456 alpharesderivs intf, 456 multiparameter base::assign meos intf, 458 multiparameter_base::init_intf, 485 multiparameter_base::meos, 497 alpha0 hd taudelta, 498 alpha0derivs_taudelta, 499 alphaderivs_tv, 499 alphaidderivs_tv, 499 alphares hd taudelta, 500 alpharesderivs_taudelta, 500 alpharesderivs tv, 500 cp, 501 cv, 501 densitysolver, 501 satdeltaestimate, 502 speed of sound, 502 multiparameter base::nist meos ptr, 546 multiparameter_base::satdeltaestimate_intf, 570 satdeltaestimate_intf, 570 multiparameter c3::meos c3, 502 alpha0derivs taudelta, 505 alpharesderivs_taudelta, 505 multiparameter idealmix, 315 calc multiparameter idealmix enthalpy, 315 calc multiparameter idealmix entropy, 316 calc_multiparameter_idealmix_fugacity, 316 calc_multiparameter_idealmix_gres, 317 calc_multiparameter_idealmix_zfac, 317 multiparameter_lj::lj_param, 486 multiparameter_lj::meos_lj, 515

alpha0derivs_taudelta, 518 alpharesderivs taudelta, 518 multiparameter normal h2::meos normal h2, 523 alpha0derivs_taudelta, 525 alpharesderivs_taudelta, 525 multiparameter ortho h2::meos ortho h2, 526 alpha0derivs taudelta, 528 alpharesderivs taudelta, 528 multiparameter para h2::meos para h2, 529 alpha0derivs taudelta, 531 alpharesderivs taudelta, 531 multiparameter_r134a::meos_r134a, 538 alpha0derivs_taudelta, 540 alpharesderivs_taudelta, 541 multipol, 318 add_hyperdual_fres_multipol, 319 fres multipol, 319 hyperdual calc d hs pc saft, 320 hyperdual_f_dd, 320 hyperdual_f_dq, 320 hyperdual f gg, 320 hyperdual fres multipol, 321 hyperdual_j2_ij, 321 hyperdual_j3_ijk, 321 hyperdual packing fraction pc saft, 321 multipol model control, 322 multipol_model_control multipol, 322 multipol var::multipol param, 545 init multipol param, 546 mut solver, 322 map_meta_isotherm, 322 solve Inf t, 323 solve_mu_t, 323 nc

thermopack var, 427 nelmin optimizers, 330 newton 1d nonlinear solvers, 326 newton density mbwr, 196 no mod newton optimizers, 332 nonlinear solve nonlinear_solvers, 327 nonlinear_solvers, 324 approximate jacobian, 325 approximate_jacobian_2nd, 325 approximate_jacobian_4th, 325 bracketing solver, 326 limit dx. 326 newton 1d, 326 nonlinear solve, 327 ns newton, 329 pegasus, 327 premreturn, 328 premterm_at_dx_zero, 328

setxv, 329 nonlinear solvers::function template, 477 nonlinear solvers::jacobian template, 485 nonlinear_solvers::nonlinear_solver, 546 ns newton nonlinear solvers, 329 null space linear numerics, 193 objective tp solver, 429 optimize optimizers, 330 optimizers, 329 nelmin, 330 no mod newton, 332 optimize, 330 prematurereturn, 331 setx, 331 optimizers::error function, 474 error function, 474 optimizers::optim_param, 548 outer product linear numerics, 194 pc_saft_datadb, 332 pc saft datadb::pc saft data, 551 pc_saft_datadb::pckijdata, 551 pc_saft_get_kij saft_interface, 368 pc_saft_nonassoc, 339 a i, 341 alpha_disp, 341 alpha disp pc tvn, 342 alpha hs pc tvn, 342 alpha_hs_spc_tvn, 342 alpha_pc, 343 alpha spc saft hc, 343 alpha_spc_saft_hs, 344 b_i, 344 c_1, 344 calc d, 345 calc d hd, 345 calc_dhs, 345 eta, 346 f chain pc saft tvn, 346 f_disp_pc_tvn, 346 f_hc_pc_saft_tvn, 347 f_hs_pc_saft_tvn, 347 f pc saft tvn, 348 f_spc_saft_tvn, 348 g_ij_spc_saft, 349 g pc saft tvn, 349 g spc saft tvn, 350 i 1,350 i 2, 350 Ing ii pc saft tvn, 351 m2e1s3 mean, 351 m2e2s3_mean, 352

m bar, 352 pcsaft allocate and init, 352 spcsaft allocate and init, 353 zeta, 353 pc_saft_nonassoc::pcsaft_eos, 552 allocate and init, 553 pc_saft_nonassoc::spcsaft_eos, 577 allocate and init, 579 pc saft parameters, 353 pc saft set kij saft_interface, 368 pc_saft_set_kij_asym saft_interface, 368 pcmdiff2ninj leekesler, 176 pcmdiffni leekesler, 177 pcsaft allocate and init pc_saft_nonassoc, 352 pcsaft_set_nonassoc_params saft interface, 368 pden cubic_eos::fraction, 477 pdiffni leekesler, 177 pdifft leekesler, 178 pdiffv leekesler, 178 pegasus nonlinear_solvers, 327 pets::pets_eos, 554 allocate and init, 555 alpha_disp, 556 alpha_disp_tvn, 556 alpha_hs_tvn, 556 alpha_pets, 557 alpha_pets_hs, 557 calc_d_pets, 558 calc potential pets, 558 f pets tvn, 558 ph solver, 354 getphtolerance, 355 setphtolerance, 355 singlecomponenttwophasephflash, 355 singlephasepxflash, 356 twophasephflash, 356 phase is fake thermo utils, 424 potential saft_interface, 368 pred leekesler, 179 prematurereturn optimizers, 331 premreturn nonlinear_solvers, 328 premterm_at_dx_zero

nonlinear_solvers, 328 pressure eostv, 124 printcurrentphases vls, 441 prsolver leekesler, 179 ps solver, 357 getpstolerance, 357 setpstolerance, 357 singlecomponenttwophasepsflash, 358 twophasepsflash, 358 pseudo eos, 100 pseudo_safe eos, 100 pure fluid meos::meos pure, 531 alpha0derivs taudelta, 537 alpharesderivs_taudelta, 538 g derivatives knowing x saft_association, 361 redefine_critical_parameters eoslibinit, 117 redefine_fallback_tcpcacf cbselect, 30 redefine_tcpcacf_comp_cubic cbselect, 30 redefine_volume_shift volume_shift, 448 residualgibbs eos, 101 rho of meta extremum spinodal, 402 rhomax pr spinodal, 403 rr solve tp_solver, 429 safe exp array utilities::safe_exp, 559 safe_exp_real utilities::safe exp, 559 saft association, 359 assemble_m_mich_k, 360 fun, 360 jac, 360 k mich, 361 q_derivatives_knowing_x, 361 solve_for_x_k, 362 saft_interface, 362 adjust_mass_to_specified_de_boer_parameter, 364 alpha, 365 cpa get kij, 365 cpa_get_pure_params, 365 cpa_set_cubic_params, 365 cpa_set_kij, 366

cpa_set_pure_params, 366 de boer parameter, 366 de_broglie_wavelength, 366 epsilon_eff_ij, 367 epsilon_ij, 367 pc saft get kij, 368 pc saft set kij, 368 pc saft set kij asym, 368 pcsaft set nonassoc params, 368 potential, 368 saft Inphi, 369 saft_residenthalpy, 369 saft_residentropy, 370 saft residgibbs, 370 saft_total_pressure, 371 saft_total_pressure_assoc_mix, 371 saft total pressure knowing x k, 371 saft type eos init, 372 saft_zfac, 372 sigma_eff_ij, 372 sigma ij, 373 test fmt compatibility, 373 saft Inphi saft interface, 369 saft rdf, 373 master_saft_rdf, 374 saft_residenthalpy saft interface, 369 saft residentropy saft interface, 370 saft_residgibbs saft_interface, 370 saft total pressure saft interface, 371 saft_total_pressure_assoc_mix saft_interface, 371 saft_total_pressure_knowing_x_k saft_interface, 371 saft type eos init saft interface, 372 saft zfac saft interface, 372 saftvrmie containers::saftvrmie aij, 560 saftvrmie containers::saftvrmie dhs, 561 saftvrmie containers::saftvrmie eos, 562 allocate_and_init, 563 saftvrmie_containers::saftvrmie_param_container, 565 saftvrmie containers::saftvrmie var container, 567 saftvrmie containers::saftvrmie zeta, 568 saftvrmie_containers::saftvrmie_zeta_hs, 569 saftvrmie_datadb, 374 saftvrmie datadb::miekijdata, 543 saftvrmie datadb::saftvrmie data, 560 saftvrmie_options::saftvrmie_opt, 563 check_model_consitency, 565 saftvrmieaij_model_options, 565 set_r_cut, 565 truncation_correction_model_control, 565

saftvrmieaij_model_options saftvrmie options::saftvrmie opt, 565 sat points based on prop saturation_point_locators, 386 satdeltaestimate multiparameter base::meos, 502 satdeltaestimate intf multiparameter base::satdeltaestimate intf, 570 satdensdatadb, 381 satdensdatadb::satdensdata, 571 saturated densities::sat densities, 570 saturation_curve::aep, 451 saturation_point_locators, 384 bracketsolveforpropertysingle, 385 iso_cross_saturation_line, 385 sat_points_based_on_prop, 386 sco2 d2gdp2 co2 gibbs, 33 sco2_d2gdt2 co2_gibbs, 33 sco2 d2gdtdp co2 gibbs, 34 sco2_dgdp co2_gibbs, 34 sco2 dgdt co2_gibbs, 35 sco2_energy co2 gibbs, 35 sco2 enthalpy co2 gibbs, 35 sco2_entropy co2 gibbs, 36 sco2 gibbs co2_gibbs, 36 sco2_heat_capacity co2_gibbs, 36 sco2 helmholtz co2_gibbs, 37 sco2 specvol co2 gibbs, 37 sco2 speed of sound co2_gibbs, 37 sco2init co2 gibbs, 38 sdiffni leekesler, 179 sdiffp leekesler, 180 sdifft leekesler, 180 secondvirialcoeffmatrix eostv, 125 selectcubiceos cbselect, 31 selectmixingrules cbselect, 31 set_r_cut saftvrmie_options::saftvrmie_opt, 565

set_stability_tolerance stability, 404 set_state vls::state, 581 setfulleqsvtolerance sv solver, 417 setfullequvtolerance uv solver, 434 setmaxminz leekesler, 180 setnestedsvtolerance sv_solver, 417 setnesteduvtolerance uv solver, 435 setphtolerance ph_solver, 355 setpstolerance ps solver, 357 setsinglealphacorr cbalpha, 21 setsinglecompsvtolerance sv solver, 417 setsinglecompuvtolerance uv_solver, 435 setx optimizers, 331 setxv nonlinear solvers, 329 sh2o d2qdp2 h2o gibbs, 145 sh2o_d2gdt2 h2o_gibbs, 145 sh2o d2gdtdp h2o_gibbs, 146 sh2o_dgdp h2o_gibbs, 146 sh2o dgdt h2o_gibbs, 146 sh2o energy h2o gibbs, 146 sh2o enthalpy h2o_gibbs, 147 sh2o_entropy h2o gibbs, 147 sh2o gibbs h2o_gibbs, 147 sh2o_heat_capacity h2o gibbs, 148 sh2o helmholtz h2o_gibbs, 148 sh2o_specvol h2o gibbs, 148 shape_diff_alloc extcsp::shape_diff, 573 shape_diff_dealloc extcsp::shape_diff, 573 sho2_init h2o_gibbs, 148

sigma_eff_ij saft interface, 372 sigma_ij saft_interface, 373 single_eos_alloc eos parameters, 106 single_eos_allocate_and_init eos parameters, 108 singlecomponenttwophasephflash ph solver, 355 singlecomponenttwophasepsflash ps_solver, 358 singlecompsv_tv sv solver, 418 singlephasepxflash ph_solver, 356 singlephasespeedofsound speed of sound, 397 site_interaction_internal assocschemeutils, 19 site to compidx assocschemeutils, 19 solid_correlation_datadb, 387 solid_correlation_datadb::solid_correlation_data, 576 solid enthalpy solideos, 393 solid_entropy solideos, 393 solid init solideos, 394 solid_specificvolume solideos, 394 solid thermo solideos, 395 solideos, 391 initdryice, 392 initice, 392 isformingsolid, 392 solid enthalpy, 393 solid entropy, 393 solid init, 394 solid specificvolume, 394 solid thermo, 395 solidforming, 395 solidfraction, 396 solidforming solideos, 395 solidfraction solideos, 396 solidspeedofsound speed_of_sound, 397 solve for x k saft_association, 362 solve_Inf_t mut_solver, 323 solve lu hd linear_numerics, 194 solve_mu_t

mut solver, 323 sound velocity 2ph speed of sound, 398 spcsaft_allocate_and_init pc_saft_nonassoc, 353 specificenthalpyvlws vls, 441 specificentropyvlws vls, 442 specificvolume eos, 101 specificvolumevlws vls, 443 speed of sound, 396 multiparameter_base, 314 multiparameter_base::meos, 502 singlephasespeedofsound, 397 solidspeedofsound, 397 sound_velocity_2ph, 398 speed of sound tv, 398 twophasespeedofsound, 399 speed of sound tv speed_of_sound, 398 spinodal, 399 initial stab limit point, 400 locate_spinodal_prop_min_max_pure_fluid, 400 locate_spinodal_prop_pure_fluid, 401 map meta isentrope, 401 map stability limit, 401 rho of meta extremum, 402 rhomax_pr, 403 tv_meta_ps, 403 stabcalc stability, 405 stabcalcw stability, 405 stabfun critical, 84 stabfuntv critical. 84 stability, 403 checkvlestability, 404 get_stability_tolerance, 404 set stability tolerance, 404 stabcalc, 405 stabcalcw, 405 tpd fun, 406 stabjactv critical, 84 state functions, 406 dhdp twophase, 407 dhdt twophase, 407 dnvdx, 408 dpdt_twophase, 409 dvdp_twophase, 409 dvdt twophase, 410 getjoulethompsoncoeff, 410 getstatefunc, 411

getstatefuncmatrix, 411 getsvderivativestwophase, 412 getuvderivativestwophase, 413 stringmod::value, 585 stringmod::writenum, 585 stringmod::writeq, 585 sv solver, 414 disablecustumstabcalc, 415 enablecustumstabcalc, 415 fun 1ph sv, 415 getfulleqsvtolerance, 415 getnestedsvtolerance, 416 getsinglecompsvtolerance, 416 jac 1ph sv, 416 setfulleqsvtolerance, 417 setnestedsvtolerance, 417 setsinglecompsvtolerance, 417 singlecompsv tv. 418 twophasesvflash, 418 twophasesvflashfull, 419 twophasesvflashnested, 420 twophasesvsinglecomp, 420 tcmdiff2ninj leekesler, 181 tcmdiffni leekesler, 181 test_fmt_compatibility saft_interface, 373 testdiffleekesler leekesler, 182 thermo eos, 102 thermo tv eostv, 125 thermo tvp eostv, 125 thermo utils, 421 calcInphioffset, 422 get_n_solids, 422 guessphase, 422 quessphasetv, 423 issinglecomp, 423 istwocomp, 424 maxcomp, 424 phase is fake, 424 wilsonk, 424 wilsonkdiff, 425 wilsonki, 425 thermopack_var, 426 nc, 427 tp Infug apparent, 427 thermopack var::allocate and init intf, 451 allocate and init intf, 452 thermopack var::assign intf, 458 thermopack var::base eos param, 461 allocate and init, 462 thermopack_var::eos_param_pointer, 472 thermopack_var::thermo_model, 582

model idx, 583 thermopack var::thermo model pointer, 583 thermprops leekesler, 182 Todo List, 1 tp Infug apparent apparent_compostion, 16 apparent compostion::apparent container, 457 thermopack var, 427 tp_solver, 428 differentials, 428 objective, 429 rr_solve, 429 twophasetpflash, 430 tpd_fun stability, 406 tpinitalphacorr cbalpha, 21 tpinitbetacorr cbbeta, 22 tpselectinteractionparameters cbselect. 32 trcoeff leekesler, 183 trcoeffdiff1 leekesler, 183 trcoeffdiff2 leekesler, 184 trdiff2ninj leekesler, 184 trdiffni leekesler, 185 trend density trend solver, 431 trend_phase_is_fake trend_solver, 431 trend solver, 430 trend_density, 431 trend phase is fake, 431 truncation correction model control saftvrmie options::saftvrmie opt, 565 tv_meta_ps spinodal, 403 twophaseenthalpy eos, 102 twophaseentropy eos, 103 twophaseinternalenergy eos, 104 twophasephflash ph solver, 356 twophasepsflash ps solver, 358 twophasespecificvolume eos, 104 twophasespeedofsound speed_of_sound, 399 twophasesvflash

twophasesvflashfull sv solver, 419 twophasesvflashnested sv solver, 420 twophasesvsinglecomp sv solver, 420 twophasetpflash tp solver, 430 twophaseuvflash uv solver, 435 twophaseuvflashfull uv_solver, 436 twophaseuvflashnested uv_solver, 437 twophaseuvsinglecomp uv solver, 437 unifac::unifacdb, 583 unifacdata::unifaccomp, 583 unifacdata::unifacprm, 584 unifacdata::unifacuij, 584 utilities::safe_exp, 559 safe exp array, 559 safe_exp_real, 559 uv solver, 432 disablecustumstabcalc, 432 enablecustumstabcalc, 432 fun 1ph, 433 getfullequvtolerance, 433 getnesteduvtolerance, 433 getsinglecompuvtolerance, 434 jac 1ph, 434 setfullequvtolerance, 434 setnesteduvtolerance, 435 setsinglecompuvtolerance, 435 twophaseuvflash, 435 twophaseuvflashfull, 436 twophaseuvflashnested, 437 twophaseuvsinglecomp, 437 vcmdiff2ninj leekesler, 185 vcmdiffni leekesler, 185 vdiffni leekesler, 186 vdifft leekesler, 186 virial coefficients eostv, 126 vls, <mark>438</mark> inversephasemappingvlws, 439 mpenthalpy, 439 mpentropy, 440 mpspecificvolume, 440 printcurrentphases, 441 specificenthalpyvlws, 441 specificentropyvlws, 442

sv_solver, 418

specificvolumevlws, 443 vlsenthalpy, 444 vlsentropy, 445 vlsspecificvolume, 445 vlsthermo, 446 vls::state, 579 get_state, 580 get_state_no_z, 580 set state, 581 vlsenthalpy vls, **444** vlsentropy vls, 445 vlsspecificvolume vls, 445 vlsthermo vls, 446 volume shift, 446 eosvolumefromshiftedvolume, 447 initvolumeshift, 447 redefine volume shift, 448 volumeshiftzfac, 448 vshift_f_differential_dependencies, 449 vshift_f_terms, 449 volumeshiftzfac volume_shift, 448 vrdiff2ninj leekesler, 187 vrdiffni leekesler, 187 vrinitial leekesler, 188 vrnewtraps leekesler, 188 vshift_f_differential_dependencies volume_shift, 449 vshift_f_terms volume_shift, 449 wilsonk thermo_utils, 424 wilsonkdiff thermo_utils, 425 wilsonki thermo_utils, 425 wmdiff2ninj leekesler, 188 wmdiffni leekesler, 189 wong_sandler, 450 zcmdiff2ninj leekesler, 189 zcmdiffni leekesler, 189 zdiffni leekesler, 190 zdiffp

leekesler, 190

```
zdifft
leekesler, 191
zeta
pc_saft_nonassoc, 353
zfac
eos, 105
zinitial
leekesler, 191
znewtraps
leekesler, 192
zprtshape
leekesler, 192
```