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1 Introduction

Johnson et al. [1, Eq. 17] derive an equation describing the approximate contribution form
the truncated part of the interaction potential, in their case the Lennard-Jones fluid was
considered. The derivation express the change in the Helmholtz free energy due to a change
in potential as a functional differential,

δA

δϕ
= ρ2g (r1, r2) , (1)

where A is the Helmholtz free energy, ϕ is the potential acting between particles, g (r1, r2) is
the pair correlation function, and ri is the position vector of a molecule.

Johnson et al. [1, Eq. 17] defines the following reduced properties,

T ∗ =
kBT

ϵ
, (2)

ρ∗ =
Nσ3

V
, (3)

A∗ =
A

Nϵ
, (4)
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and they will also be used in this memo.
In the following we will derive the same properties for the quantum corrected Mie potential.

2 The potential

The Mie potential is expressed as follows,

ϕMie (r) = Cϵ
((σ

r

)λr

−
(σ
r

)λa
)
, (5)

where,

C =
λr

λr − λa

(
λr

λa

) λa
λr−λa

, (6)

The quantum correction of the Mie potential to first order, using the Feynman Hibbs
approach, take the following form,

ϕQ1,Mie (r, T ) =CϵD 1

r2

(
Q1 (λr)

(σ
r

)λr

−Q1 (λa)
(σ
r

)λa
)
. (7)

The second order correction becomes,

ϕQ2,Mie (r, T ) =CϵD
2

2

1

r4

(
Q2 (λr)

(σ
r

)λr

−Q2 (λa)
(σ
r

)λa
)
. (8)

Here we have used the following definitions,

D =
βℏ2

24µ
, (9)

β =
1

kBT
, (10)

h = 2πℏ, (11)

Q1 (λ) =λ (λ− 1) , (12)

Q2 (λ) = (λ+ 2) (λ+ 1)λ (λ− 1) . (13)

µ is molecular mass.
The overall quantum corrected Mie potential then take the following form,

ϕ (r, T ) =ϕMie (r) + ϕQ1,Mie (r, T ) + ϕQ2,Mie (r, T ) . (14)

In the following, for simplicity, we drop writing out the temperature dependence of the
potential explicitly.

For the change in going from a cut potential, truncated at rc, to a full quantum corrected
potential, we get,

δϕc (r) =ϕ (r)− ϕc (r) =

{
0 if r ≤ rc

ϕ (r) if r > rc
. (15)

Here ϕc is the potential cut at rc.



For the change in going from a cut and shifted potential, truncated at rc, to a full quantum
corrected potential, we get,

δϕcs (r) =ϕ (r)− ϕcs (r) =

{
ϕ (rc) if r ≤ rc

ϕ (r) if r > rc
. (16)

For the change in going from a cut to a cut and shifted potential, we get by combining
equations 15 and 16,

δϕc−cs (r) =ϕc (r)− ϕcs (r) =

{
ϕ (rc) if r ≤ rc

0 if r > rc
. (17)

3 The Helmholtz free energy truncation correction

Using equations 1 and 15, the change in Helmholtz free energy due to truncation is,

∆Ac = A−Ac = 2πNρ

∫ ∞

0
g (r) δϕc (r) r

2dr (18)

= 2πNρ

∫ ∞

rc

g (r)ϕ (r) r2dr (19)

Assuming, as Johnson et al., that g (r) = 1 for r > rc, the integration becomes simple. The
Mie integral becomes,∫ ∞

rc

ϕMie (r) r2dr = Cϵσ3

(
1

λr − 3

(
σ

rc

)(λr−3)

− 1

λa − 3

(
σ

rc

)(λa−3)
)

(20)

= Cϵσ3Λ (21)

The integral for the first order quantum correction to the Mie potential becomes,∫ ∞

rc

ϕQ1,Mie (r) r2dr = CϵσD

(
Q1 (λr)

λr − 1

(
σ

rc

)(λr−1)

− Q1 (λa)

λa − 1

(
σ

rc

)(λa−1)
)

(22)

= CϵσD

(
λr

(
σ

rc

)(λr−1)

− λa

(
σ

rc

)(λa−1)
)

(23)

= CϵσDΛQ1 (24)

The integral for the second order quantum correction to the Mie potential becomes,∫ ∞

rc

ϕQ2,Mie (r) r2dr = Cϵ 1
σ

D2

2

(
Q2 (λr)

λr + 1

(
σ

rc

)(λr+1)

− Q2 (λa)

λa + 1

(
σ

rc

)(λa+1)
)

(25)

= Cϵ 1
σ

D2

2
ΛQ2 (26)

The reduced Helmholtz free energy change then becomes,

A∗ −A∗
c = 2πρ∗C

[
Λ +D

ΛQ1

σ2
+

D2

2

ΛQ2

σ4

]
(27)



3.1 The Helmholtz free energy truncation correction for Thermopack

F c =
∆Ac

RT
=

A−Ac

RT
= 2πNAσ

3C
[
ϵ

kB

]
n2

V

1

T

[
Λ +D

ΛQ1

σ2
+

D2

2

ΛQ2

σ4

]
(28)

Introducing kc = 2πNAσ
3C
[

ϵ
kB

]
, the differentials of F c becomes,

F c
n =2

F c

n
, (29)

F c
nn =2

F c

n2
, (30)

F c
V =− F c

V
, (31)

F c
V V =2

F c

V 2
, (32)

F c
V n =− 2

F c

V n
, (33)

F c
T =− F c

T
+ kc

n2

V

1

T

[
DT

ΛQ1

σ2
+DDT

ΛQ2

σ4

]
, (34)

F c
Tn =2

F c
T

n
, (35)

F c
TV =−

F c
T

V
, (36)

F c
TT =− 2

F c

T 2
− 2kc

n2

V

1

T 2

[
DT

ΛQ1

σ2
+DDT

ΛQ2

σ4

]
+ kc

n2

V

1

T

[
DTT

ΛQ1

σ2
+
(
D2

T +DDTT

) ΛQ2

σ4

]
. (37)

4 The Helmholtz free energy shift correction

Using equations 1, 15 16, the change in Helmholtz free energy due to truncation is,

∆Acs = A−Ac −As = ∆Ac +∆Ac−cs (38)

∆Ac−cs = 2πNρ

∫ rc

0
g (r) δϕcs (r) r

2dr (39)

= 2πNρϕ (rc)

∫ rc

0
g (r) r2dr (40)

Johnson et al. noticed that 2πρ
∫ rc
0 g (r) r2dr is just the number of pairs of atoms within the

cutoff of a central atom. This can be approximate by the average number of pairs of atoms
in the volume of a sphere of radius rc.



The integration then becomes simple. And the quantum corrected Mie integral becomes,

∆Ac−cs =
2

3
πNρϕ (rc) r

3
c (41)

=
2

3
πNρCϵσ3

[
Λs +D

Λ
Q1
s

σ2
+

D2

2

Λ
Q2
s

σ4

]
(42)

Λs =

(
σ

rc

)(λr−3)

−
(
σ

rc

)(λa−3)

(43)

Λ
Q1
s = Q1 (λr)

(
σ

rc

)(λr−1)

−Q1 (λa)

(
σ

rc

)(λa−1)

(44)

Λ
Q2
s = Q2 (λr)

(
σ

rc

)(λr+1)

−Q2 (λa)

(
σ

rc

)(λa+1)

(45)

In reduced variables this becomes,

∆A∗
c−cs =

2

3
πρ∗C

[
Λs +D

Λ
Q1
s

σ2
+

D2

2

Λ
Q2
s

σ4

]
. (46)

4.1 The Helmholtz free energy potentiala shift correction for Thermopack

F cs =
∆Ac−cs

RT
=

Ac −Acs

RT
=

2

3
πNAσ

3C
[
ϵ

kB

]
n2

V

1

T

[
Λs +D

Λ
Q1
s

σ2
+

D2

2

Λ
Q2
s

σ4

]
(47)

Introducing kcs = 2πNAσ
3C/3 = kc/3

[
ϵ
kB

]
, the differentials of F cs becomes,

F cs
n =2

F cs

n
, (48)

F cs
nn =2

F cs

n2
, (49)

F cs
V =− F cs

V
, (50)

F cs
V V =2

F cs

V 2
, (51)

F cs
V n =− 2

F cs

V n
, (52)

F cs
T =− F cs

T
+ kcs

n2

V

1

T

[
DT

Λ
Q1
s

σ2
+DDT

Λ
Q2
s

σ4

]
, (53)

F cs
Tn =2

F cs
T

n
, (54)

F cs
TV =−

F cs
T

V
, (55)

F cs
TT =− 2

F cs

T 2
− 2kcs

n2

V

1

T 2

[
DT

Λ
Q1
s

σ2
+DDT

Λ
Q2
s

σ4

]

+ kcs
n2

V

1

T

[
DTT

Λ
Q1
s

σ2
+
(
D2

T +DDTT

) ΛQ2
s

σ4

]
. (56)
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