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1 Introduction

The volume shift was introduced by Péneloux et al. [8],

1
c= EZCM, (1)
(]

where ¢; is a component constant representing the component volume shift.

Different properties change when working with volume translations, see Jaubert et al. [3] for
details.

The volume-shift have found application in many cubic based equations of state (t-mPRI[6],
PSRK|[2], VTPR][1], tc-PR/tc-RK]7], ...), and the component volume translations ¢;, are often
fixated to match the liquid density at T = 0.7Tcyit,

2 Volume shifts for generic EOS

The residual reduced Helmholtz function of a generic EOS is found as follows,
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Introducing the volume shift,
V = Veos — Znici = Veos — C, (3)

The residual reduced helmholtz of the volume-shifted (vs) EOS can be found, using dV = dV,.s at
constant n and T,
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Here we need to treat Veos = Veos(V, ) with the chain rule when differentiating F'.

If we introduce F as the corrected residual reduced Helmholtz energy, due to the difference

in ideal volume,

FC(V,n) =nln <V+C>’

the differentials can be derived in a organized manner.
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In addition the compositional differentials change since Voo =V + C,

eos __ €08 €0S .
FEo = FP + F ¢,

Fi® = Fp + Fpy)__ci,
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2.1 Test of the fugacity coefficient
Let us test this for the fugacity coefficient. It is defined as

FVS
Ingy® = 0 —In(Z)=F,"—-In(2)
87% T.Vn; v

\% ne; ( 1% )
——=F, +In
‘/eos) ‘/eos e V;:os
Combining Equation 17 and 18, we get
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Differentiating F'V®,

F’r\L/zS = Fnz + F‘/cos Ci + ]'n <

=lng;, —

which is the same result as reported by Péneloux et al.

(8)

(18)
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3 Correlations used for ¢;

The ¢; for the SRK EOS is calculated from the following equation:

RT,,
¢; = 040768~ (0.29441 — Z.) (22)

Zra are tabulated in TPlib. Reid et al. [10] also correlate Zra as follows:

Zra = 0.29056 — 0.08775w (23)

Jhaveri and Youngren [4] have developed different paramaters for the PR EOS:

RT,,
= 0.50033—— D * (0.25969 — Zga) (24)
Cq

4 Temperature dependent volume shift

Temperature dependent volume translation are known to give supercritical iso-therm crossings [9]
and possibly un-physical behaviour [5] and must be executed with care. In some cases it can be
used as a simple remedy to improve liquid density predictions.

In this case the F¢ function becomes,

-
FC(V,n,T) =nln <V+C(nT)> , (25)

and the temperature differentials become,

2 2
Firr = _Siﬂg (an oF ~ _HXZOTST VCQT 27)
Fir = (vnf 2) ?f? (28)
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In addition the compositional and temperature differentials change since Veos =V + C (0, T),
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While F;°® and F*® are unchanged from (14) and (16) respectively.



SINTEF

References

1]

[10]

Eileen Collinet and Jiirgen Gmehling. Prediction of phase equilibria with strong electrolytes
with the help of the volume translated Peng-Robinson group contribution equation of state
(VTPR). Fluid Phase Equilibria, 246(1-2):111 — 118, 2006.

K. Fischer and J. Gmehling. Further development, status and results of the PSRK method
for the prediction of vapor-liquid equilibria and gas solubilities.  Fluid Phase FEquilibria,
121(1-2):185 — 206, 1996.

Jean-Noél Jaubert, Romain Privat, Yohann [Le Guennec]|, and Lucie Coniglio. Note on the
properties altered by application of a péneloux—type volume translation to an equation of state.
Fluid Phase Equilibria, 419:88 — 95, 2016.

B. S. Jhaveri and G. K. Youngren. Three-parameter modification of the peng-robinson
equation of state to improve volumetric predictions. SPFE Reservoir Engineering, 8:1033 —
1040, 1988.

Vladimir Kalikhman, Daniel Kost, and Ilya Polishuk. About the physical validity of attaching
the repulsive terms of analytical EOS models by temperature dependencies. Fluid Phase
Equilibria, 293(2):164 — 167, 2010.

Aris Kordas, Kostis Magoulas, Sofia Stamataki, and Dimitrios Tassios. Methane-hydrocarbon
interaction parameters correlation for the Peng-Robinson and the t-mPR equation of state.
Fluid Phase Equilibria, 112(1):33 — 44, 1995.

Yohann Le Guennec, Romain Privat, and Jean-Noél Jaubert. Development of the translated-
consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of
volumetric, energetic and saturation properties of pure compounds in the sub-and super-
critical domains. Fluid Phase Equilibria, 429:301-312, 2016.

André Péneloux, Evelyne Rauzy, and Richard Fréze. A consistent correction for Redlich-
Kwong-Soave volumes. Fluid Phase Equilibria, 8(1):7 — 23, 1982.

Oliver Pfohl. Evaluation of an improved volume translation for the prediction of hydrocarbon
volumetric properties. Fluid Phase Equilibria, 163(1):157 — 159, 1999.

R. C. Reid, J. M. Prausnitz, and B. E. Poling. The properties of gases & liquids. McGraw-Hill,
Inc., USA, 4 edition, 1987.



	Introduction
	Volume shifts for generic EOS
	Test of the fugacity coefficient

	Correlations used for ci
	Temperature dependent volume shift

