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1 Introduction

This document is meant to provide complete documentation for the Lee-Kesler package for Ther-
moPack, developed by the author during his stay as a summer intern during June and July 2013
at SINTEF Energy Research. To this end, the complete theoretical framework, derived from the
equations and relations presented in the original articles [1] and [2], is included in this text.

The main difference between the original article and this implementation, is the following:
The original approach is rather straightforward: All thermodynamic properties are calculated
by some relation with the compressibility factor. This yields rather complicated expressions for
the thermodynamic properties, but since these are derived in [1], their implementation is trivial.
However, consistency checks and calculations not presented in this article require a lot of work
to derive, since the expressions get really messy when differentiated further. The implementation
presented here is based on a powerful, modern method, deriving all thermodynamic properties of
interest from the reduced residual Helmholtz free energy function, F . This method is thoroughly
discussed in [3].

All implementation is done using FORTRAN 90, and compiled with GFortran. Plots have been
made in GNU Plot. No code is presented in this document.

2 General theory

This section is an introductory section to establish the general theory used to derive the theoretical
framework for the implementation of the Lee-Kesler method. This theory can be found in much
more detail in [3].

2.1 Thermodynamic properties of interest

The thermodynamic properties of interest are the compressibility factor, the entropy, the enthalpy
and the fugacity coefficients in the mixture. To express these, the internal energy, the Helmholtz
free energy and the fugacity is also introduced in this subsection.

Compressibility factor

The compressibility factor is a measure of how much the thermodynamic properties of a real fluid
deviates from those expected of an ideal fluid. Mathematically it is the ratio of the molar volume
of a real gas to the molar volume predicted by the ideal gas law at the same temperature and
pressure.

z =
v

vig
=
Pv

RT
=

PV

nRT
(2.1)

In the equation above, z is the compressibility factor, v = V/n is the specific volume (molar
volume), vig is the specific volume of an ideal gas, R is the gas constant, and P, V, T and n are
pressure, volume, temperature and number of moles of the fluid, respectively. Hence, if z = 1, the
fluid has ideal gas behaviour.



Internal energy

The internal energy is defined as:

U(S, V,n) = ST − PV +
∑
i

niµi (2.2)

where S is the entropy, n is the composition vector, and ni and µi are the the number of moles
and chemical potential of component i in a mixture, respectively. The exact differential form of
Equation (2.2), given its independent variables, is

dU = TdS − PdV −
∑
i

µidni (2.3)

Helmholtz free energy

The Helmholtz free energy is defined as:

A(T, V,n) = U − TS (2.4)

By using equation (2.3), the differential form of the Helmholtz free energy is given by:

dA = −SdT − PdV −
∑
i

µidni (2.5)

Taking the partial derivative of the Hemlholtz free energy, with respect to volume, Equation
(2.5) yields: (

∂A

∂V

)
T,n

= −P (2.6)

Hence, if an equation of state is given as an explicit pressure equation, such that P = P (T, V,n),
Helmholtz free energy might be found by integration. How this is done will be discussed later in
this section.

Entropy

By using Equation (2.4), the entropy may be defined in terms of the Helmholtz free energy, by
taking its the partial derivative with respect to temperature:

S = −
(
∂A

∂T

)
V,n

(2.7)

Enthalpy

The enthalpy is defined as:
H(S, P,n) = U + PV (2.8)

By inserting Equation (2.4) into (2.8) the enthalpy can be expressed in a more convenient form:

H = A+ TS + PV (2.9)



Fugacity and fugacity coefficients

For a pure ideal gas, the change in chemical potential corresponding to a change in pressure, at a
constant temperature, is given by:

RT ln
P

P0
= µig(T, P )− µig(T, P0) (2.10)

where µig(T, P ) is the ideal gas chemical potential, at temperature T and pressure P . As real flu-
ids do not behave like perfect gasses, Equation (2.10) is generalized by defining the thermodynamic
property known as the fugacity. The defining equation is:

RT ln
f(T, P )

P0
= µ(T, P )− µig(T, P0) (2.11)

where f = f(T, P ) is the fugacity. It is more convenient to work with the fugacity coefficient,
rather than the fugacity, which for a pure component is defined as φ = f/P . For a mixture, the
fugacity component, as well as the fugacity, is dependent on the composition of the fluid. The
fugacity coefficient for component i is related to the fugacity of the same component by φ = fi/Pxi,
where xi is the mole fraction of component i. Without further derivation (for detail, see [3]), the
fugacity coefficients in a mixture are given by:

lnφi(T, P,n) =
1

RT

(
∂AR

∂ni

)
T,V

− ln z (2.12)

2.2 Residual properties

An arbitrary thermodynamic property M , may be represented as a sum of an ideal contribution,
and a so called residual contribution:

M = M ig(T, V,n) +MR(T, V,n) (2.13)

M = M ig(T, P,n) +MR(T, P,n) (2.14)

where the superscript large R denotes the residual quantity (the choice of notation upper case
R, instead of the commonly used lower case r, is to avoid confusion between residual values and
reduced values, with subscript lower case r). Hence, a residual property is the difference between
the a real gas property and an ideal gas property.

Equations (2.13) and (2.14) are basically the same equation, differing only in dependence on
volume or pressure. It may seem unnecessary to separate the two, since volume and pressure are not
independent variables, but unlike the thermodynamic property at hand, the value of the residual
property changes with a variable change. The difference in the two sets of residual properties is due
to the difference in the hypothetical ideal gas properties at the two states (T, V,n) and (T, P,n),
respectively. An example of this is the residual Helmholtz energy, where:

AR(T, V,n)−AR(T, P,n) = nRT ln z (2.15)

If the partial derivatives of the real and ideal thermodynamic property, with respect to volume
or pressure is known, the residual property can be calculated by:

MR(T, V,n) =

∫ V

∞

((
∂M(T, V ′,n)

∂V ′

)
T,n

−
(
∂M ig(T, V ′,n)

∂V ′

)
T,n

)
dV ′ (2.16)

MR(T, P,n) =

∫ P

0

((
∂M(T, P ′,n)

∂P ′

)
T,n

−
(
∂M ig(T, P ′,n)

∂P ′

)
T,n

)
dP ′ (2.17)



Departure functions

The residual value of a thermodynamic property is often of as great, if not greater interest than the
real value. This is due to the fact that experimentally, measuring changes in an extensive property
is much more convenient, than measuring absolute values with an arbitrary mean. Thermodynamic
properties like entropy and enthalpy are often represented as so called departure functions, that
basically are scaled versions of the residual values.

2.3 The reduced residual Helmholtz function

One such thermodynamic property, for which the partial derivative with respect to volume is often
known, is the Helmholtz free energy. If an equation of state can be formulated as an explicit
pressure equation, the residual Helmholtz free energy can be derived analytically by:

AR(T, V,n) =

∫ V

∞

((
∂A

∂V ′

)
T,n

−
(
∂Aig

∂V ′

)
T,n

)
dV ′ (2.18)

By inserting Equation (2.6) into (2.18), and further by using Equation (2.1) to express the real
fluid pressure, Equation (2.18) can be rewritten to:

AR(T, V,n) = −
∫ V

∞

(
P − P ig

)
dV ′ = −nRT

∫ V

∞

1

V ′
(z − 1)dV ′ (2.19)

A more convenient function to work with, rather than the residual Helmholtz free energy, is
the reduced residual Helmholtz function F , defined as:

F (T, V,n) =
AR(T, V,n)

RT
= −n

∫ V

∞

1

V ′
(z − 1)dV ′ (2.20)

Now that the reduced residual Helmholtz function is defined, it is of great benefit to express all
the thermodynamic properties of interest, and their derivatives in, terms of F , and its derivatives.
This is a very powerful approach, since it relates a lot of expressions to a single function. Rather
than calculating many different properties (entropy, enthalpy, etc.) from the equation of state, only
the function F and its derivatives are calculated, and the rest follows almost without any cost.
By combining Equation (2.20) with Equations (2.7), (2.9) and (2.12), respectively, the following
equations are found:

SR(T, V,n) = −R

[
F + T

(
∂F

∂T

)
V,n

]
(2.21)

HR(T, P,n) = −RT
(
∂F

∂T

)
V,n

+ PV − nRT (2.22)

lnφi(T, P,n) =

(
∂F

∂ni

)
T,V

− ln z (2.23)

The compressibility factor may also be expressed in terms of F , by differentiating and rear-
ranging Equation (2.20). However, the initial expression for z, given by Equation (2.1) is simple
enough as it is, being only dependent on temperature, pressure, volume and compositions.

In most thermodynamic experiments, it is easier to both vary and measure temperature and
pressure, than volume. Therefore, all thermodynamic properties should be calculated for (T, P,n)-
states. The residual entropy may be found for the (T, P,n)-state, by combining Equations (2.21)
and (2.15):

SR(T, P,n) = SR(T, V,n) + nR ln z (2.24)



Departure functions of entropy and enthalpy

Now that the residual values of the entropy and the enthalpy are defined, their departure functions
can be expressed by:

Sdep =
SR(T, P,n)

R
(2.25)

Hdep =
HR(T, P,n)

RTc
(2.26)

where Tc is the critical temperature of the fluid at hand. If the fluid is a mixture, this should be
represented by the critical mixing temperature, TcM , defined by some mixing rules.

2.4 Partial derivatives of the thermodynamic properties

Pressure

To simplify the notation in the following derivatives, a relation between the pressure and its
derivatives, and the reduced residual Helmholtz function is introduced. By inserting Equation
(2.20) into Equation (2.6), the pressure can be related to the reduced residual Helmholtz function
by:

P (T, V,n) = −RT
(
∂F

∂V

)
T,n

+
nRT

V
(2.27)

The partial derivatives of the pressure, with respect to temperature, volume and composition,
respectively, are given by: (

∂P

∂T

)
V,n

=
P

T
−RT

(
∂2F

∂T∂V

)
ni

(2.28)(
∂P

∂V

)
T,n

= −RT
(
∂2F

∂V 2

)
T,n

− nRT

V 2
(2.29)(

∂P

∂ni

)
T,V

= −RT
(

∂2F

∂ni∂V

)
T

+
RT

V
(2.30)

Further, the partial derivatives of the volume with respect to composition and temperature are
defined, by the use of the triple product rule and the derivatives of the pressure (see Appendix A
for details):

V̄i ≡
(
∂V

∂ni

)
T,P

= −

(
∂P
∂ni

)
T,V(

∂P
∂V

)
T,n

(2.31)

V̄T ≡
(
∂V

∂T

)
P,n

= −

(
∂P
∂T

)
V,n(

∂P
∂V

)
T,n

(2.32)

The following derivatives are all done for functions that are (T, P,n)-states, that is z = z(T, P,n),
SR = SR(T, P,n), HR = HR(T, P,n) and lnφi = lnφi(T, P,n). Several of these calculations get
rather technical, and only the resulting expressions are presented here. For the complete derivation,
see Appendix B.



Compressibility

(
∂z

∂T

)
P,n

= −z
[

1

T
− V̄T
V

]
(2.33)(

∂z

∂P

)
T,n

= z

[
1

P
+

1

V
(
∂P
∂V

)
T,n

]
(2.34)(

∂z

∂ni

)
T,P

= −z
[

1

n
− V̄i
V

]
(2.35)

Entropy

(
∂SR(T, P,n)

∂T

)
P,n

= V̄T

(
∂P

∂T

)
V,n

−R

[
2

(
∂F

∂T

)
V,n

+ T

(
∂2F

∂T 2

)
V,n

+
n

T

]
(2.36)(

∂SR(T, P,n)

∂P

)
T,n

=
nR

P
− V̄T (2.37)(

∂SR(T, P,n)

∂ni

)
T,P

= V̄i

(
∂P

∂T

)
V,n

−R

[(
∂F

∂ni

)
T,V

+ T

(
∂2F

∂T∂ni

)
V

+ 1− ln z

]
(2.38)

Enthalpy

(
∂HR

∂T

)
P,n

= V̄TT

(
∂P

∂T

)
V,n

−RT

[
2

(
∂F

∂T

)
V,n

+ T

(
∂2F

∂T 2

)
V,n

+
n

T

]
(2.39)(

∂HR

∂P

)
T,n

= V − T V̄T (2.40)(
∂HR

∂ni

)
T,P

= V̄iT

(
∂P

∂T

)
V,n

−RT 2

(
∂2F

∂T∂ni

)
V

−RT (2.41)

Fugacity coefficients

(
∂ lnφi
∂T

)
P,n

=

(
∂2F

∂T∂ni

)
V

+
1

T
− V̄i
RT

(
∂P

∂T

)
V,n

(2.42)(
∂ lnφi
∂P

)
T,n

=
V̄i
RT
− 1

P
(2.43)

(
∂ lnφi
∂nj

)
T,P

=

(
∂2F

∂nj∂ni

)
T,P

+
1

n
+

(
∂P
∂V

)
T,n

RT
V̄j V̄i (2.44)

2.5 Consistency tests

As the previous subsection demonstrates, the partial derivatives of the thermodynamic properties
of interest get quite messy. Therefore, it is essential to be able to test if these calculations are
correct, when implementing them on a computer. Two ways to test these derivatives are presented
here.



Numerical evaluation of derivatives

All analytical derivatives should be tested with comparison to their numerical counterparts. This
may seem straightforward, and for the most part it is, but one may run into problems when testing
the partial derivatives without taking care to ensure that the correct variables are held constant at
the correct time.

As an example of this, consider the partial derivatives of residual entropy, Equations (2.36)
- (2.38). By writing a routine that takes temperature, pressure and composition as input, and
calculates the residual entropy, and its derivatives, the correct comparison can be made. The
volume is not held constant in any of the derivatives, and must be calculated from an equation of
state in the routine.

By contrast, if the partial derivatives of the pressure are to be tested, the routine written for
the residual entropy, extended to include the pressure derivatives, will not yield the correct result.
This is because the pressure is a function of temperature, volume and composition, hence these
variables must be inputs to the routine, while the pressure must be calculated from the equation
of state.

A recommended way to compare the numerical derivatives to the analytical ones is to first
write a routine that takes temperature volume and composition as inputs, and test the partial
derivatives of the pressure and the reduced residual Helmholtz function (both of these are given
for the (T, V,n)-state). When the correctness of these are ensured, a new routine may be written,
that test the partial derivatives thermodynamic properties given by Equations (2.33) - (2.44).

Numerical partial derivatives for a function M = M(x, y) of first and second order are given
by:

∂M

∂x
=
M(x+ δx, y)−M(x, y)

δx
(2.45)

∂M

∂y
=
M(x, y + δy)−M(x, y)

δy
(2.46)

∂2M

∂x2
=
M(x+ δx, y)− 2M(x, y) +M(x− δx, y)

2δx
(2.47)

∂2M

∂y2
=
M(x, y + δy)− 2M(x, y) +M(x, y − δy)

2δy
(2.48)

∂2M

∂x∂y
=

1

4δxδy
[M(x+ δx, y + δy)−M(x+ δx, y − δy)

−M(x− δx, y + δy) +M(x− δx, y − δy)]

(2.49)

where

∣∣∣∣∂xx
∣∣∣∣� 1,

∣∣∣∣∂yy
∣∣∣∣� 1.

Identities

In addition to the numerical test of the derivatives, thermodynamic identities and identities found
from Euler’s theorem, serve as decent consistency tests for the analytical derivatives. The test
supplied here are all found in [3]. To test the derivatives of the reduced residual Helmholtz function,



the following identities may be applied:

F = V

(
∂F

∂V

)
T,n

+
∑
i

ni

(
∂F

∂ni

)
T,V

(2.50)

V

(
∂2F

∂V ∂ni

)
T

+
∑
j

nj

(
∂2F

∂nj∂ni

)
T,V

= 0 (2.51)

V

(
∂2F

∂V 2

)
T,n

+
∑
j

nj

(
∂2F

∂nj∂V

)
T

= 0 (2.52)

When these are all satisfied, the fugacity coefficients and their derivatives may be tested by the
identities: (

∂

∂nj

∑
i

ni lnφi

)
T,P

= lnφj (2.53)

(
∂ lnφi
∂nj

)
T,P

=

(
∂ lnφj
∂ni

)
T,P

(2.54)

∑
i

ni

(
∂ lnφi
∂nj

)
T,P

= 0 (2.55)(
∂

∂P

∑
i

ni lnφi

)
T,n

=
(z − 1)n

P
(2.56)

∑
i

ni

(
∂ lnφi
∂T

)
P,n

= −H
R(T, P,n)

RT 2
(2.57)

3 The Lee-Kesler model

3.1 Simple fluid, reference fluid

The Lee-Kesler equation of state is a two fluid corresponding state method. This means that all
thermodynamic properties are calculated twice, once for a simple fluid, and once for a reference
fluid. These two solutions are then combined, to give the result for the fluid at hand, by the
following equation:

M = M (0) +
ωM
ω(r)

(M (r) −M (0)) (3.1)

where M is the thermodynamic property to be found, M (0) and M (r) is this property for the simple
fluid and reference fluid, respectively, ωM is the acentric factor for the mixture (if the fluid is a
pure fluid this is equal to the acentric factor of the pure fluid) and ω(r) = 0.3978 is the acentric
factor of the reference fluid. Equation (3.1) is valid for M = z, SR, HR, GR, etc. The solution for
M may be viewed as an average between the simple and the reference fluid, weighted regarding to
how similar the fluid is to each of them.

The parameters that dictate whether the calculations are done for the simple fluid or the
reference fluid are a two sets of constants in the equation of state. One set for the simple fluid
and one set for the reference fluid. These have been found by calculations on methane as simple
fluid, and n-Octane as reference fluid [1], and are used in all calculations, regardless of the fluid
mixture studied. The constants are b1, b2, b3, b4, c1, b2, c3, c4, d1, d2, β and γ, and they are given
in Appendix C.



3.2 Equation of state

The equation of state used in the Lee-Kesler method is a modified Benedict-Webb-Rubin equation:

z =
Prvr
Tr

= 1 +
B

vr
+
C

v2
r

+
D

v5
r

+
E

v2
r

(
β +

γ

v2
r

)
exp

(
− γ

v2
r

)
(3.2)

where, vr is the reduced specific volume and Tr is the reduced temperature. The coefficients B, C,
D and E are all dependent on the reduced temperature and the constants in Appendix C. The
reduced quantities are defined by (if the fluid of interest is a pure fluid, these simplify to being
dependant on critical properties, in stead of critical mixing properties):

Tr =
T

TcM
(3.3)

vr =
PcMv

RTcM
=

PcMV

nRTcM
(3.4)

Pr =
P

PcM
(3.5)

where TcM and PcM are pseudo critical mixing temperature and pressure, respectively. Take
note of the fact that the reduced specific volume, is not the correct reduced specific volume, since
this would be defined as vr = v/vcM , but it will serve for our purposes, as this is how it is
defined in [1]. Pseudo critical mixing properties are properties that define the critical point for the
mixture. Hence, a mixtures with Tr and Pr > 1 is a supercritical fluid. The pseudo critical mixing
temperature, volume, acentric factor, compressibility and pressure are given by:

TcM =
1

vηcMn
2

∑
j

∑
k

njnk · vηc,jk · Tc,jk (3.6)

vcM =
1

n2

∑
j

∑
k

njnk · vc,jk (3.7)

ωM =
1

n

∑
j

njωj (3.8)

zcM = (0.2905− 0.085ωM ) (3.9)

PcM = R
zcMTcM
vcM

(3.10)

with cross coefficients:

Tc,jk = (Tc,j · Tc,k)1/2 · κjk (3.11)

vc,jk =
1

8
(v

1/3
c,j + v

1/3
c,k )3 (3.12)

where vc,i, Tc,i, ωi and ni are the critical volume, critical temperature, acentric factor, and mole
quantity of component i, respectively, and n is the total number of moles in the mixture. η is a
constant, which in our calculations is set to 0.25, as recommended in [2], where these mixing rules
are defined. κjk is an adjustable binary parameter, characterising the j − k binary. The mixing
rules given here differ from the ones in [2] in being expressed in terms of mole quantities, instead
of mole fractions. This is preferable due to the fact that all composition derivatives are done with
respect to mole quantities. The reduced temperature dependent coefficients in Equation (3.2) are



given by:

B(Tr) = b1 −
b2
Tr
− b3
T 2
r

− b4
T 3
r

(3.13)

C(Tr) = c1 −
c2

Tr
+
c3

T 3
r

(3.14)

D(Tr) = d1 +
d2

Tr
(3.15)

E(Tr) =
c4

T 3
r

(3.16)

3.3 The reduced residual Helmholtz function

By inserting Equation (3.2) into (2.20) we get:

F (T, V,n) = −n
∫ V

∞

1

V ′

[
B

v′r
+

C

(v′r)
2

+
D

(v′r)
5

+
E

(v′r)
2

(
β +

γ

(v′r)
2

)
exp

(
− γ

(v′r)
2

)]
dV ′ (3.17)

solving this integral requires a variable change, and a few tricks. Only the results are presented
here. For the step by step evaluation of the integral, see Appendix D.

F (T, V,n) = n

[
B

vr
+

C

2v2
r

+
D

5v5
r

+
E

2γ
(β + 1)− E exp

(
− γ

v2
r

)(
1

2γ
(β + 1) +

1

2v2
r

)]
(3.18)

The solution is explicitly dependent on reduced temperature Tr = Tr(T,n), reduced specific
volume vr = vr(V,n), and the number of moles in the mixture n = n(n) = n(V, vr). Unlike
the reduced specific volume, the reduced temperature is only dependent on mole fractions in the
composition, not the total number of moles.

3.4 Partial derivatives of the reduced residual Helmholtz function

With an analytical expression for the reduced residual Helmholtz function F , all the thermodynamic
properties of interest, and their partial derivatives, can be found. For the highest possible precision
in the calculation of these, the analytical partial derivatives of first and second order, with respect
to temperature, volume and composition are needed. These are presented in this subsection. The
reader is advised to take extra care in reading the subscripts to each derivative, as these are the
variables held constant in the calculations, and play a major role when doing consistency tests, as
mentioned in Subsection 2.5.

Partial derivatives with respect to temperature

Since there is no explicit temperature dependence in F , it is of convenience to express the partial
derivatives with respect to temperature in terms of the partial derivatives with respect to reduced
temperature, by the following relations:(

∂F

∂T

)
V,n

=
1

TcM

(
∂F

∂Tr

)
vr,n

(3.19)(
∂2F

∂T 2

)
T,n

=
1

T 2
cM

(
∂2F

∂T 2
r

)
vr,n

(3.20)



The partial derivatives with respect to reduced temperature are:(
∂F

∂Tr

)
vr,n

= n

[
BTr
vr

+
CTr
2v2
r

+
DTr

5v5
r

+
ETr
2γ

(β + 1)

− ETr exp

(
− γ

v2
r

)(
1

2γ
(β + 1) +

1

2v2
r

)] (3.21)

(
∂2F

∂T 2
r

)
vr,n

= n

[
BTTr
vr

+
CTTr
2v2
r

+
DTTr

5v5
r

+
ETTr
2γ

(β + 1)

− ETTr exp

(
− γ

v2
r

)(
1

2γ
(β + 1) +

1

2v2
r

)] (3.22)

where the subscripts Tr and TTr denote differentiation with respect to the reduced temperature
of first and second order, respectfully. Hence, we need to find the first and second order derivatives
of the coefficients B - E, with respect to Tr. These are listed below.

BTr =
∂B

∂Tr
=

b2
T 2
r

+
2b3
T 3
r

+
3b4
T 4
r

BTTr =
∂2B

∂2Tr
= −2b2

T 3
r

− 6b3
T 4
r

− 12b4
T 5
r

(3.23)

CTr =
∂C

∂Tr
=

c2

T 2
r

− 3c3

T 4
r

CTTr =
∂2C

∂2Tr
= −2c2

T 3
r

+
12c3

T 5
r

(3.24)

DTr =
∂D

∂Tr
= − d2

T 2
r

DTTr =
∂2D

∂2Tr
=

2d2

T 3
r

(3.25)

ETr =
∂E

∂Tr
= −3c4

T 4
r

ETTr =
∂2E

∂2Tr
=

12c4

T 5
r

(3.26)

Partial derivatives with respect to volume

Similarly to the partial derivatives of F with respect to temperature, the partial derivatives with
respect to volume can be expressed in terms of the reduced specific volume, by the following
relations:

(
∂F

∂V

)
T,n

=
PcM

nRTcM

(
∂F

∂vr

)
Tr,n

(3.27)(
∂2F

∂V 2

)
T,n

=

(
PcM

nRTcM

)2(∂2F

∂v2
r

)
Tr,n

(3.28)

The partial derivatives with respect to reduced specific volume are:(
∂F

∂vr

)
Tr,n

= n

[
−B
v2
r

− C

v3
r

− D

v6
r

− E

v3
r

(
β +

γ

v2
r

)
exp

(
− γ

v2
r

)]
(3.29)(

∂2F

∂v2
r

)
Tr,n

= n

[
2B

v3
r

+
3C

v4
r

+
6D

v7
r

+
E

v4
r

(
3β +

γ(5− 2β)

v2
r

− 2γ2

v4
r

)
exp

(
− γ

v2
r

)]
(3.30)

Partial derivatives with respect to mole numbers

The partial derivatives of F with respect to composition is more intricate than the ones with
respect to temperature and volume. This is due to the fact that all three variables F is explicitly
dependent upon, Tr, vr and n, are dependent upon n. To increase readability, we introduce the
following notation: Tr = X, vr = Y and n = N . We denote the partial derivative of a function or
variable with a subscript that indicates what variable it is differentiated with respect to. Subscript



i and ij denotes partial partial derivative with respect to mole numbers of first and second order,
respectively. The first and second order partial derivatives of F with respect to mole numbers are
then:

Fi =

(
∂F

∂ni

)
T,V

= FNNi + FXXi + FY Yi (3.31)

Fij =

(
∂2F

∂ni∂nj

)
T,V

= (FNN + FNXXj + FNY Yj)Ni + FNNij

+ (FNX + FXY Yj + FXXXj)Xi + FXXij

+ (FNY + FY Y Yj + FXYXj)Yi + FY Yij

(3.32)

Hence, to find an analytic expression for these partial derivatives, the partial derivative of F
with respect all explicit variables of first and second order, as well as cross derivatives of these, are
needed. In addition the derivatives of total amount of moles, reduced temperature and reduced
specific volume, with respect to mole numbers ni must be evaluated, of first and second order.
FX , FXX , FY and FY Y are given by Equations (3.21), (3.22), (3.29) and (3.30), respectively. The
remaining partial derivatives of F in (3.31) and (3.32) are:

FN =

(
∂F

∂n

)
Tr,vr

=
F

n
(3.33)

FNN =

(
∂2F

∂n2

)
Tr,vr

= 0 (3.34)

FNX =

(
∂2F

∂n∂Tr

)
vr

=
1

n

(
∂F

∂Tr

)
vr,n

(3.35)

FNY =

(
∂2F

∂n∂vr

)
Tr

=

(
∂

∂n

(
∂F

∂vr

)
Tr,n

)
Tr,vr

=
1

n

(
∂F

∂vr

)
Tr,n

(3.36)

FXY =

(
∂2F

∂Tr∂vr

)
n

= −n
[
BTr
v2
r

+
CTr
v3
r

+
DTr

v6
r

+
ETr
v3
r

(
β +

γ

v2
r

)
exp

(
− γ

v2
r

)]
(3.37)

By using Equations (3.4) and (3.3), and the fact that n ≡
∑

j nj , the first and second order
derivatives of Tr, vr and n, with respect to mole numbers, can be expressed by:

Ni =

(
∂n

∂ni

)
T,V

= 1 (3.38)

Xi =

(
∂Tr
∂ni

)
T,V

= − Tr
TcM

(
∂TcM
∂ni

)
T,V

(3.39)

Yi =

(
∂vr
∂ni

)
T,V

=
vr
PcM

(
∂PcM
∂ni

)
T,V

− vr
TcM

(
∂TcM
∂ni

)
T,V

− vr
n

(3.40)



Nij =

(
∂2N

∂ni∂nj

)
T,V

= 0 (3.41)

Xij =

(
∂2Tr
∂ni∂nj

)
T,V

=
2Tr
T 2
cM

(
∂TcM
∂ni

)(
∂TcM
∂nj

)
− Tr
TcM

(
∂2TcM
∂nj∂ni

)
(3.42)

Yij =

(
∂2vr
∂ni∂nj

)
T,V

=
1

vr

(
∂vr
∂ni

)
T,V

(
∂vr
∂nj

)
T,V

− vr
P 2
cM

(
∂PcM
∂ni

)(
∂PcM
∂nj

)
+

vr
PcM

(
∂2PcM
∂ni∂nj

)
+

vr
T 2
cM

(
∂TcM
∂ni

)(
∂TcM
∂nj

)
− vr
TcM

(
∂2TcM
∂ni∂nj

)
+
vr
n2

(3.43)

To derive expressions for the partial derivatives of TcM and PcM with respect to composition,
of first and second order, derivatives for all the mixing rules given by Equation (3.6) - (3.10) are
needed. In finding the following expressions, the symmetry in indexes for the cross coefficients vηc,il
and Tc,il is used to get the results in a compact form.

(
∂TcM
∂ni

)
T,V

= − 2

n
TcM −

ηTcM
vcM

(
∂vcM
∂ni

)
T,V

+
2

vηcMn
2

∑
l

nlv
η
c,ilTc,il (3.44)

(
∂PcM
∂ni

)
T,V

= PcM

(
1

zcM

(
∂zcM
∂ni

)
T,V

+
1

TcM

(
∂TcM
∂ni

)
T,V

− 1

vcM

(
∂vcM
∂ni

)
T,V

)
(3.45)(

∂vcM
∂ni

)
T,V

= − 2

n
vcM +

2

n2

∑
l

nlvc,il (3.46)(
∂zcM
∂ni

)
T,V

= −0.085

(
∂ωM
∂ni

)
T,V

(3.47)(
∂wM
∂ni

)
T,V

=
1

n
(ωi − ωM ) (3.48)



(
∂2TcM
∂ni∂nj

)
=

2

n2
TcM −

2

n

(
∂TcM
∂nj

)
− η

vcM

(
∂vcM
∂ni

)(
∂TcM
∂nj

)
+
ηTcM
v2
cM

(
∂vcM
∂ni

)(
∂vcM
∂nj

)
− ηTcM

vcM

(
∂2vcM
∂ni∂nj

)
− 4

n3vηcM

∑
l

nlv
η
c,ilTc,il −

2η

vη+1
cM n2

(
∂vcM
∂nj

)∑
l

nlv
η
c,ilTc,il

+
2

vηcMn
2
vηc,ijTc,ij

(3.49)

(
∂2PcM
∂ni∂nj

)
=

1

PcM

(
∂PcM
∂ni

)(
∂PcM
∂nj

)
+ PcM

[
− 1

z2
cM

(
∂zcM
∂ni

)(
∂zcM
∂nj

)
+

1

zcM

(
∂2zcM
∂ni∂nj

)
− 1

T 2
cM

(
∂TcM
∂ni

)(
∂TcM
∂nj

)
+

1

TcM

(
∂2TcM
∂ni∂nj

)
+

1

v2
cM

(
∂vcM
∂ni

)(
∂vcM
∂nj

)
− 1

vcM

(
∂2vcM
∂ni∂nj

)] (3.50)

(
∂2vcM
∂ni∂nj

)
=

2

n2
vcM −

2

n

(
∂vcM
∂nj

)
− 4

n3

∑
l

nlvc,il +
2

n2
vc,ij

=
2

n2
(vc,ij − vcM )− 2

n

[(
∂vcM
∂ni

)
+

(
∂vcM
∂nj

)] (3.51)

(
∂2zcM
∂ni∂nj

)
= −0.085

(
∂2ωM
∂ni∂nj

)
(3.52)(

∂2ωM
∂ni∂nj

)
= − 1

n

[(
∂ωM
∂ni

)
+

(
∂ωM
∂nj

)]
(3.53)

Cross derivatives

Using the same notation as in the previous section:

FiV =

(
∂2F

∂V ∂ni

)
T

= FNV + FNXXV + FNY YV

+ (FXV + FXXXV + FXY YV )Xi + FXXiV

+ (FY V + FY XXV + FY Y YV )Yi + FY YiV

(3.54)

FiT =

(
∂2F

∂T∂ni

)
V

= FNT + FNXXT + FNY YT

+ (FXT + FXXXT + FXY YT )Xi + FXXiT

+ (FY T + FY XXT + FY Y YT )Yi + FY YiT

(3.55)

FTV =

(
∂2F

∂T∂V

)
n

=
PcM

nRT 2
cM

(
∂2F

∂Tr∂vr

)
n

(3.56)

Since there is no explicit dependence on V or T in F , the following derivatives are zero: FNV ,
FXV , FY V , FNT , FXT and FY T . Furthermore, there is no volume dependence in Tr, so XV , XiV = 0,
and no temperature dependence in vr, so YT , YiT = 0. The remaining, unknown derivatives are
given:



XT =

(
∂Tr
∂T

)
V,n

=
Tr
T

=
1

TcM
(3.57)

XiT =

(
∂2Tr
∂T∂ni

)
V

=
1

T

(
∂Tr
∂ni

)
T,V

(3.58)

YV =

(
∂vr
∂V

)
T,n

=
vr
V

=
PcM

nRTcM
(3.59)

YiV =

(
∂2vr
∂V ∂ni

)
T

=
1

V

(
∂vr
∂ni

)
T,V

(3.60)

4 Implementation

The documentation provided so far gives a strong theoretical foundation for the implementation of
the Lee-Kesler method on a computer, by the modern Helmholtz function approach. This section
covers this implementations, with added focus on some of the challenges met in the process.

4.1 General approach

The user input to the program is the pressure, temperature, composition and phase of the pure
fluid or mixture. A vector containing the critical temperatures, pressure and acentric factors of
each component must be initialized outside the program, so that the critical mixing properties of
the fluid may be calculated according to Equations (3.6) - (3.10). From this the compressibility
factor, departure entropy, departure enthalpy and fugacity coefficients are calculated and returned.
As described in Section 3.1, the various thermodynamic properties must be calculated twice, and
combined to an aggregated solution. Hence, the main routine calls upon the same subroutine twice,
the calls differing only in an input parameter which decides if the calculations are to be made for
a simple fluid or a reference fluid. This is done by an integer as a parameter in the subroutine call,
where 1 denotes a simple fluid, and 2 denotes a reference fluid.

Take special note of the following: The reduced pressure and reduced temperature, along
with all critical mixture values, are calculated in the main routine. The subroutine separating
calculations for the simple and the reference fluid takes the same input for reduced temperature,
reduced pressure, composition and phase. However, the reduced specific volume is not the same for
the two fluids. This is of great importance to fully understand, since this is basically what gives
different numerical results for the Helmholtz function F , for the two fluids, and therefore, different
compressibility factors, entropy, enthalpy and fugacity coefficients. Details for the calculation of
the reduced specific volume are presented in Subsection 4.2.

In the theoretical sections of this report, there is a lot of partial derivatives. All the partial
derivatives needed to calculate the thermodynamic properties, and their derivatives, are imple-
mented as standalone functions, to simplify readability, and avoid writing a lot of code multiple
times. Despite the intent, having as much as 45 partial derivative functions, in addition to func-
tions and subroutines for the mixing rules, calculating the reduced specific volume, calculating the
reduced temperature dependent coefficients, etc. makes the program quite messy. Therefore, a full
overview of the subroutines and functions can be found in Appendix E.

4.2 Calculating the reduced specific volume

Calculating the reduced specific volume is not a trivial task, since the relation between reduced
pressure, reduced temperature and reduced specific volume in Equation (3.2), is a non-linear,



exponentially damped equation of sixth order in vr. The calculation is done by the Newton-
Raphson method, which is a numerical method for finding the roots of non-linear equations. A
short description of this method can be found in Appendix F. By rewriting Equation (3.2), the
equation to be solved numerically is found:

f = vr −
Tr
Pr

[
1 +

B

vr
+
C

v2
r

+
D

v5
r

+
E

v2
r

(
β +

γ

v2
r

)
exp

(
− γ

v2
r

)]
= 0 (4.1)

The derivative of this function, with respect to vr is needed for the numerical procedure, and
is given by:(

∂f

∂vr

)
Tr,Pr,n

= 1 +
Pr

Tr

[
B

vr
+

2C

v3
r

+
5D

v6
r

− E

v3
r

(
−2β +

γ(β − 4)

v2
r

+
2γ2

v4
r

)
exp

(
− γ

v2
r

)]
(4.2)

Figures 1, 2 and 3 show function f from Equation (4.1) plotted against reduced specific volume,
for reduced temperature Tr = 0.500, Tr = 0.900 and Tr = 1.200, respectively. The different curves
in each figure show function values for pressures ranging from Pr = 0.025 to Pr = 1.200. The
mixture is an equal mix of CO2 and methane, with 0.5 moles of each. All curves are for simple
fluid calculations, which are qualitatively equal to those for a reference fluid. These curves give
a better understanding of how the function behaves. Take special note of the way the number of
roots for the function is affected by the reduced temperature and reduced pressure.
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Figure 1: f as a function of reduced specific volume, for Tr = 0.500. Reduced pressure is varied
from 0.025 to 1.200. Fluid is a simple fluid mixture with 0.5 moles of CO2 and 0.5 moles of methane.

The main problem in solving the equation for f(vr) = 0 is finding a good initial value for the
reduced specific volume. Since Equation (4.1) is identical whether it is solved for a fluid in liquid
or gas phase, but the real value for the volume obviously is not the same, a good initial guess must
take into account what phase the solution is intended for. In addition to this, constrains must
be found, that ensures that the numerical solution is not wander off into another phase than that
intended.
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Figure 2: f as a function of reduced specific volume, for Tr = 0.900. Reduced pressure is varied
from 0.025 to 1.200. Fluid is a simple fluid mixture with 0.5 moles of CO2 and 0.5 moles of methane.

In calculating this initial value, an initial value finder made by Anders Austegard, in the
previous implementation of the Lee-Kesler method, is used. This routine takes reduced temperature,
reduced pressure, phase and an integer that separates simple fluid calculations from reference fluid
calculations, as input. It returns an initial value for the reduced specific volume, and minimal and
maximal bound for it. This routine does however not take into account whether the fluid physically
may exists in both liquid and gas phase at the given reduced temperature and pressure.

By studying once more Figures 1 and 2 it is clear that, for each of the reduced temperatures,
several roots exist for a reduced pressure below a certain threshold pressure. Physically, what
happens at when increasing the pressure past this threshold, is that the the fluid goes from a state
where both liquid and gas phases are allowed, to a state where only liquid phase is allowed.

Consider Figure 4. This is a zoomed view of the calculations plotted in Figure 2. Studying this
figure brings attention to a major challenge in calculation the reduced specific volume. The lower
root for the pressure curves in Figure 4 is the physical solution of the reduced volume in liquid
phase, while the highest valued root is the physical solution of the reduced volume in gas phase
(for the reduced pressure values that yield more than one root). In between these there is a third
root. This is not a physical state for the fluid, and must not be interpreted as one. The initial
value solver takes this into account when setting up the allowed interval for vr, and the half step
method is used to ensure that vr is within its limits during the iterations in the Newton-Raphson
method.

There of course also exists states for the fluid where the only valid phase is either the liquid
phase or the gas phase. The curves with reduced pressure Pr ≥ 0.200 in Figure 1 are example of
states where the mixture only exists in liquid phase. In contrast, the curves with Pr ≤ 0.500 in
Figure 3 represent states where only the gas phase is the correct physical solutions. The two curves
where Pr ≥ 1.000 in the same figure represent supercritical states, where no distinct liquid or gas
phase exist.
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Figure 3: f as a function of reduced specific volume, for Tr = 1.200. Reduced pressure is varied
from 0.025 to 1.200. Fluid is a simple fluid mixture with 0.5 moles of CO2 and 0.5 moles of methane.

One of the input parameters to the Lee-Kesler module is the phase of the fluid mixture. Problems
will arise for states where this user defined phase does not exist. And even if it exists, it is not
certain that the phase is the equilibrium solution for the system. To cope with the first of these
problems, the numerical calculation subroutine returns a boolean variable correctPhase, that is
true if there exists a solution for the the phase chosen by the user, and false if not. The main
subroutine in the module checks this variable, and if it is false, changes phase (with a prompt to
the user) before calculating the reduced specific volume once more.

At this time there is not implemented any equilibrium solution checker in the module, that can
return the equilibrium properties, for states where several phases exists, if specified by the user.
This can however be done quite straightforwardly: By using the fact that the Gibbs free energy has
a minima at an equilibrium point, the equilibrium can be found by calculating this thermodynamic
property for both available solutions for vr, and choosing the smallest one. Calculation of Gibbs
free energy can be done from the Helmholtz function F , and therefore does not require any major
modifications in the program.

Consider Figure 5. This is a plot of Equation (4.1) for a simple fluid and a reference fluid, with
Tr = 0.750 and Pr = 0.300, for the same fluid mixture as before. The figure illustrates another
pitfall, when calculation the reduced specific volume of the mixture: for some relations between
reduced temperature and pressure, a only single phase solution exists for the reference fluid, but
two solutions exist for the simple fluid, or vice versa. If vr is calculated for gas for the simple fluid,
but switched to liquid for the reference fluid, the aggregated results for departure entropy, enthalpy
etc. will be dead wrong. To avoid this, when performing the check of the variable correctPhase, if
it is false for either the simple or reference fluid (or both), the phase is changed, and both simple
volume calculations are done over, with the new phase defined.
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Figure 4: f as a function of reduced specific volume, for Tr = 0.900. Reduced pressure is varied
from 0.025 to 1.200. Fluid is a simple fluid mixture with 0.5 moles of CO2 and 0.5 moles of methane.
View is zoomed compared to Figure 2.
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Figure 5: f as a function of reduced specific volume, for Tr = 0.750 and Pr = 0.300. The fluid is
a mixture with 0.5 moles of CO2 and 0.5 moles of methane. Calculations for a simple fluid and a
reference fluid are plotted.



4.3 Compiling and executing the code

During the implementation, compilation of the code has been done by a make run command in
the command prompt on a Windows 7 machine. The makefile called upon is found in the mingw32
folder in ThermoPack, and has been modified to fit the needs of the Lee-Kesler module, by Morten
Hammer. A main file initializes ThermoPack, and build a vector with the critical properties of
the components specified in the same file. Temperature and pressure, as well as phase, are also
specified here, and a call is made upon the mainLeeKesler -subroutine. The approach is rather
primitive, but is intended to make it easy to fit the module into ThermoPack, so that it can be
called upon there, as any other equation of state.

5 Results and discussion

In this section, the results presented are consistency tests according to the identities in Subsection
2.5, and the calculated values for the thermodynamic properties of interest. These properties are
compressibility factor, departure entropy, departure enthalpy and component fugacity coefficients,
given by equations (2.1), (2.21) and (2.21), (2.22), and (2.23). The first three of these are compared
to the tabulated values in [1], but since the component fugacity coefficients are not presented here,
they are compared with values calculated by a cubic equations of state.

5.1 Consistency tests

Two results are presented for the consistency test identities. One is magnitude of the deviation,
where the identities given by Equations (2.50) - (2.57) are all rewritten to be zero, hence the
deviation is the deviation from the zero value. The smaller deviation the better. The second result
is the relative deviation. This is given for all tests except Equation (2.55), that is, all test that can
written in the form, I1 = I2, where I1 and I2 together make up any of the eight identities. The
Relative deviation is then given by:

∆I

I
=
I1 − I2

I1
(5.1)

The tests are performed for arbitrary values of reduced temperature, reduced pressure and
composition, but it is ensured that both sub- an supercritical values are tested. The phase is set
to gas for all calculations, but automatically changed to liquid, where gas phase is not an allowed
solution. Calculations are done separately for simple fluid and reference fluid; only the largest
deviation is given in the tables. For identities where there is an index that is summed over, this
index is set to one.

The results for the identity consistency test presented in Table 1 and 2 are very good, and
indicate that all the analytical derivatives that are part of these tests are analytically correct. One
might expect that the deviation should be exactly zero, since this is the analytical result. The
10−16 magnitude of the relative deviation practically equals zero deviation in the analytical result,
since this deviation is due to the number of digits in the real data type used in the FORTRAN
90 implementation. If all the digits in the real are equal, subtraction one from another does not
necessarily give zero as a result. It rather gives the result of subtraction by the random digits
behind the stored digits in the reals, which start at one magnitude smaller than the smallest valid
decimal point.

In addition to the consistency tests results presented here, all analytical derivative functions
Tables 6 and 8 in Appendix E, have been compared to their numerical derivatives, using by
Equations (2.45) - (2.49). Hence, all analytical derivatives should be correct.



Table 1: Test of the partial derivatives of the Helmholtz function.
Test Tr Pr CO2 Methane Deviation Relative deviation

equation # moles # moles ∆I ∆I
I

(2.50) 0.100 0.050 0.95 0.50 10−13 10−14

0.200 0.050 0.95 0.10 10−14 10−16

0.900 0.800 0.60 0.50 10−16 10−16

0.900 1.200 0.60 0.10 10−16 10−16

1.150 1.250 0.10 0.50 10−17 10−16

(2.51) 0.100 0.050 0.95 0.50 10−11 10−16

0.200 0.050 0.95 0.10 10−14 10−16

0.900 0.800 0.60 0.50 10−15 10−16

0.900 1.200 0.60 0.10 10−15 10−16

1.150 1.250 0.10 0.50 10−15 10−16

(2.52) 0.100 0.050 0.95 0.50 10−7 10−16

0.200 0.050 0.95 0.10 10−8 10−16

0.900 0.800 0.60 0.50 10−11 10−16

0.900 1.200 0.60 0.10 10−11 10−16

1.150 1.250 0.10 0.50 10−13 10−16

Table 2: Test results for the fugacity coefficient identities.
Test Tr Pr CO2 Methane Deviation Relative deviation

equation # moles # moles ∆I ∆I
I

(2.53) 0.100 0.050 0.95 0.50 10−11 10−13

0.200 0.050 0.95 0.10 10−14 10−15

0.900 0.800 0.60 0.50 10−16 10−16

0.900 1.200 0.60 0.10 10−15 10−16

1.150 1.250 0.10 0.50 10−16 10−16

(2.54) 0.100 0.050 0.95 0.50 10−12 10−13

0.200 0.050 0.95 0.10 10−14 10−14

0.900 0.800 0.60 0.50 10−16 10−16

0.900 1.200 0.60 0.10 10−16 10−15

1.150 1.250 0.10 0.50 10−17 10−16

(2.55) 0.100 0.050 0.95 0.50 10−11 -
0.200 0.050 0.95 0.10 10−14 -
0.900 0.800 0.60 0.50 10−13 -
0.900 1.200 0.60 0.10 10−15 -
1.150 1.250 0.10 0.50 10−16 -

(2.56) 0.100 0.050 0.95 0.50 10−22 10−17

0.200 0.050 0.95 0.10 10−22 10−17

0.900 0.800 0.60 0.50 10−23 10−16

0.900 1.200 0.60 0.10 10−24 10−17

1.150 1.250 0.10 0.50 10−23 10−15

(2.57) 0.100 0.050 0.95 0.50 10−14 10−16

0.200 0.050 0.95 0.10 10−16 10−16

0.900 0.800 0.60 0.50 10−17 10−16

0.900 1.200 0.60 0.10 10−18 10−16

1.150 1.250 0.10 0.50 10−18 10−16
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Figure 6: z(0) as a function of reduced pressure, for Tr = 0.900. Line plots show computational
results with phase set to liquid (red) and gas (green), respectively. Data points show tabulated
values from Table 5 in [1]

5.2 Direct comparison to tabulated values

The original article by Lee and Kesler [1] include a large set of data, which give calculated values for
the compressibility factor, departure entropy, departure enthalpy, mixture fugacity coefficient and
departure heat capacity. The first of these three match thermodynamic properties calculated in
this implementation of the method, and serve as a good set of data for comparison with calculated
values. The data for the compressibility factor is given as z(0) and z(1) = (z(r) − z(0))/ω(r), where

the superscripts are consistent with the notation in this report. Similarly the negatives of S
(0)
dep,

S
(1)
dep, H

(0)
dep and H

(1)
dep can be found in the tables in the article.

All tabulated values are given for reduced temperature and reduced pressure, hence they should
be valid for any fluid mixture. The fluid mixture used here is a 50-50 mix of CO2 and methane.
This gives critical mixing values: TcM ' 237.8 K, PcM ' 57.9 bar. Only a few selected reduced
temperatures plotted, to avoid that the plots getting too messy. The pressure in the calculated
results, and in the tabulated values, is varied from Pr = 0.010 to Pr = 10.000.

Compressibility

Consider Figure 6. For low pressures (Pr < 0.600) both the liquid phase and the gas phase exist.
It is assumed that only one of these is an equilibrium solution, and as seen in the figure, the
tabulated data points give an exact match with the computational results for phase set to gas. For
P ≥ 0.600 only the liquid phase is a physically acceptable solution. Therefore, the phase is forced
to liquid, for both computational runs. The results match exactly with the tabulated results, until
Pr > 5.000. There is a large, seemingly discontinuous deviation for both the gas calculations and
the liquid calculations from Pr ≈ 6.5 and beyond. This is the area where no numerical solution for
the reduced specific volume is found by the method implemented here.
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Figure 7: z(1) as a function of reduced pressure, for Tr = 0.900. Line plots show computational
results with phase set to liquid (red) and gas (green), respectively. Data points show tabulated
values from Table 6 in [1]

The results plotted in Figure 6 represent typical behaviour of the simple fluid compressibility
factor, calculated by this implementation. The area of deviation, caused by the absence of a good
result for vr, is larger (it occurs for a lower pressure) for a smaller reduced temperature, and smaller
for a larger reduced temperature. During the implementation and testing of this module, few
calculations have been done for reduced pressures larger than 1.5. However, to further improve
the calculations, the shape of f in Equation (4.1) should be studied for large pressures, and an
improvement made to the numerical solver, to cope with these pressures. Ideally, behaviour as
seen for Pr > 6.5 will then be eliminated from the program.

The pressure interval where both gas and liquid are valid solution varies with different reduced
temperature. For some temperatures, only a single phase is a valid solutions, for all pressures.
However, if this is not the case, as seen in Figure 6 for Pr < 0.600, this interval may give rise to
errors when using the program: If the user is only after the equilibrium solution, the wrong result
will be calculated if the non-equilibrium phase is specified, as mentioned in 4.2.

The results for z(1) presented in Figure 7 are very similar to the ones in Figure 6. Although
the numerical values are quite different, the troublesome regions occur at the same pressures. This
is expected, as it is the reduced specific volume calculations that give rise to these phenomena.

Over all, the results for the compressibility, z(0) and z(1) are good, for a large pressure interval,
for the reduced temperature studied here. This is also true for a quite large interval of reduced
temperatures.

Departure Entropy

The departure entropy for simple fluid calculations are given in Figure 8, for reduced temperature
Tr = 0.500. The results are in agreement with the tabulated values, for the pressure interval that
give the correct reduced specific volume. However, since the reduced temperature is lower, than
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Figure 8: S
(1)
dep as a function of reduced pressure, for Tr = 0.500. Line plots show computational

results with phase set to liquid (red) and gas (green), respectively. Data points show the negatives
of tabulated values from Table 9 in [1]
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Figure 9: S
(1)
dep as a function of reduced pressure, for Tr = 0.500. Line plots show computational

results with phase set to liquid (red) and gas (green), respectively. Data points show the negatives
of tabulated values from Table 10 in [1]



that in Figures 6 and 7, the reduced specific volume calculations are constrained to a more narrow

interval (Pr < 3.8). The results for S
(1)
dep, given in Figure 9 share these characteristics.

Departure enthalpy

The departure enthalpy H
(0)
dep and H

(1)
dep, for reduced temperature Tr = 1.300 is plotted in Figures

10 and 11, respectively. The computational results are in exact agreement with the tabulated
values, for the entire pressure interval in the figures. Again, this is due to the choice of reduced
temperature. A high reduced temperature allows for accurate calculations of the reduced specific
volume, even for high pressures. The reduced pressure Pr = 10.000 equals an actual pressure of
579 bar, for this specific fluid mixture.
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Figure 10: H
(0)
dep as a function of reduced pressure, for Tr = 1.300. Line plots show computational

results with phase set to liquid (red) and gas (green), respectively. Curves overlap in the entire
pressure interval. Data points show the negatives of tabulated values from Table 7 in [1]

5.3 Computational comparison of fugacity coefficients

To have some reasonable values to compare the component fugacity coefficients to, an implementa-
tion of the Soave-Redlich-Kwong (SRK) equation of state, is used. Component fugacity coefficients
are computed for the same mixture, and the same reduced temperatures, as used in the Subsection
5.2. Pressures range from Pr = 0.010 to Pr = 5.000. The results calculated with the Lee-Kesler
implementation, and the results calculated by use of the SRK equation of state are plotted together
in Figures 12, 13 and 14, for Tr = 0.500, Tr = 0.900 and Tr = 1.300, respectively.

The plots show that the fugacity coefficients for the two different thermodynamic models
behave similarly, even though there is some deviation in the numerical values. The largest relative
deviation is the temperature, Tr = 0.500 (T = 118 K). But, if only pressures below the threshold
that yields inaccurate reduced specific volume vales, these results look quite good. To get a better
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Figure 11: H
(1)
dep as a function of reduced pressure, for Tr = 1.300. Line plots show computational

results with phase set to liquid (red) and gas (green), respectively. Curves overlap in the entire
pressure interval. Data points show the negatives of tabulated values from Table 8 in [1]
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Figure 12: Fugacity coefficients φi as a function of reduced pressure Pr, for Tr = 0.500. Line plots
show computational results done by the Lee-Kesler method, and data point represent computational
results done by calculations with the SRK equation of state. Red curve/green data points represent
CO2 component, blue curve/pink data points represent methane component.
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Figure 13: Fugacity coefficients φi as a function of reduced pressure Pr, for Tr = 0.500. Line plots
show computational results done by the Lee-Kesler method, and data point represent computational
results done by calculations with the SRK equation of state. Red curve/green data points represent
CO2 component, blue curve/pink data points represent methane component.
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Figure 14: Fugacity coefficients φi as a function of reduced pressure Pr, for Tr = 0.500. Line plots
show computational results done by the Lee-Kesler method, and data point represent computational
results done by calculations with the SRK equation of state. Red curve/green data points represent
CO2 component, blue curve/pink data points represent methane component.



understanding of the actual precision of the numerical calculations done with this implementation,
accurate experimental results should be used for comparison.

6 Conclusion and further work

The main challenge in the implementation of the Lee-Kesler model is solving the Lee-Kesler equation
of state, with respect to the reduced specific volume. The equation to be solved is a high order
non-linear equation, with exponential damping, with particular roots that corresponds to particular
physical phases of the fluid studied. In solving this equation, a routine written by Anders Austegard
has been used, with some modifications to be more robust in choosing correct phase. The results
are satisfactory in certain temperature and pressure ranges, but not good enough to be trusted
in general. Problems arise for states where the reduced pressure is much larger than the reduced
temperature. A discontinuity in the computed thermodynamic properties results can clearly be
seen in Figures 6, 7, 8, 9 and 12. This is discontinuity is a direct consequence of the reduced volume
solver not finding an accurate result. It is recommended to take a closer look at the behaviour of
f given by Equation 4.1, for high reduced pressure to reduced temperature ratios, to get a better
understanding of the reduced specific volume for these states. This will hopefully help constructing
a more general solver for the equation.

Despite the challenges posed by the reduced volume, the implementation of the Lee-Kesler
model, with the modern Helmholtz function approach has been successful. The thermodynamic
properties compressibility factor, entropy departure and enthalpy departure, yield identical results
by this method, as by the original implementation, in the region where the volume is accurate.

Take note of the following: Even if the modern method was not used to find these values, but
instead the Equations in [1], inaccurate reduced specific volume values would result in deviations
just the same. The modern approach does not introduce any new errors in the implementation, but
gives a large range of consistency test, to check derivatives used in the implementation. In addition,
with small additions in the program, other thermodynamic properties can easily be calculated. This
includes Gibbs free energy and heat capacities, which can be found expressed by the Helmholtz
function F , and its partial derivatives in [3]. Since these are already implemented in the module,
the modification is straightforward, and does not require more than a few lines of code.

The component fugacity coefficients have been calculated and compared to similar calculations
done with the Soave-Redlich-Kwong equation of state. The behaviour of these coefficients are
similar in the two models, but the relative deviation increases as the reduced temperature is
lowered. None of the thermodynamic properties have been compared to experimental results. This
is highly recommended, before taking the module into use.



References

[1] Lee, B.I., Kesler, M.G., A Generalized thermodynamic correlation based on a three-parameter
corresponding states, AlChE Journal, 21 (3), 510 (1975)

[2] Plocker, U., Knapp, H., Prausnitz, J., Calculations of High-Pressure Vapor-Liquid Equilibria
from a Corresponding-States Correlation with Emphasis on Asymmetric Mixtures, Ind. Eng.
Chem. Process Des. Dev, 17 (3) 324 (1978)

[3] Michelsen, M. L., Mollerup, J. M., Thermodynamic Models: Fundamentals & computational
aspects, second edition, Tie-Line Publications (2007)



A The triple product rule

The triple product rule, is a formula which relates partial derivatives of three interdependent
variables. That is, partial derivatives of functions of three variables, where each variable is given as
an implicit function of the two other variables. For a function f = f(x, y, z) with interdependent
variables, the partial derivatives of the variables are related by:(

∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 (A.1)

The subscripts indicate which of the variables are held constant when the partial derivative is
taken.

Partial volume derivatives

In thermodynamics, pressure, temperature, volume and composition may be expressed as dependent
on each other. Therefore, three of these variables is enough to decide the last one (for a given
phase). Hence, if we let f = T and x, y, z = V, P,n, and insert into Equation (A.1) we get:(

∂V

∂P

)
ni

(
∂P

∂ni

)
V

(
∂ni
∂V

)
P

= −1 (A.2)

By rewriting this, we find the partial derivative of the volume, with respect to composition, for
fixed pressure, expressed in terms of the pressure derivatives:

(
∂V

∂ni

)
P

= −

(
∂P
∂ni

)
V(

∂P
∂V

)
ni

(A.3)

Similarly, if we insert f = ni and x, y, z = V, P, T into Equation (A.1) we get:(
∂V

∂P

)
T

(
∂P

∂T

)
V

(
∂T

∂V

)
P

= −1 (A.4)

By rewriting this, we find the partial derivative of the volume, with respect to temperature, for
fixed pressure, expressed in terms of the pressure derivatives:(

∂V

∂T

)
P

= −
(
∂P
∂T

)
V(

∂P
∂V

)
T

(A.5)

B Partial derivatives of thermodynamic properties

In this appendix section, thorough derivations for the partial derivatives of the thermodynamic
properties of interest are presented. In these derivations, Equations (2.27) - (2.32) are used to
simplify notation.



B.1 Compressibility

Partial derivative of the compressibility with respect to temperature:(
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(B.1)

Partial derivative of the compressibility with respect to pressure:(
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Partial derivative of the compressibility with respect to composition:(
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B.2 Entropy

Partial derivative of entropy with respect to temperature:(
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Partial derivative of entropy with respect to pressure:(
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Partial derivative of entropy with respect to composition:(
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The derivatives of SR(T, V,n) in these equations can be found by differentiating Equation
(2.21): (
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By use of Equations B.7 - B.9, together with Equations Equations (2.27) - (2.35), the expressions
for the derivatives of the reduced entropy can be simplified to:(
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B.3 Enthalpy

Partial derivative of enthalpy with respect to temperature:(
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Partial derivative of enthalpy with respect to pressure:(
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Partial derivative of enthalpy with respect to composition:(
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B.4 Fugacity coefficients

Partial derivative of fugacity coefficients with respect to temperature:(
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Partial derivative of fugacity coefficients with respect to pressure:(
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Partial derivative of fugacity coefficients with respect to composition:(
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Table 3: Constants that separate calculations for simple and reference fluid
Constant Simple fluid Reference fluid

b1 0.1181193 0.2026579
b2 0.265728 0.331511
b3 0.154790 0.203488
b4 0.030323 0.203488
c1 0.0236744 0.0313385
c2 0.0186984 0.0503618
c3 0.0 0.016901
c4 0.042724 0.041577

d1 · 104 0.155488 0.48736
d2 · 104 0.623689 0.0740336
β 0.65392 1.226
γ 0.060167 0.03754

C Constants for simple fluid and reference fluid

D Solving the Helmholtz function integral for the Lee-Kesler
model

The integral at hand is:

F (T, V,n) = −n
∫ V
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By changing integration variable from V ′ to u = v′r =
PcMV

′

nRTcM
this can be written in a more

convenient form:
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The tricky part of this integral is the exponential term. For convenience we separate the integral
into three parts:

F (T, V,n) = I1 + I2 (D.3)

where
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The first of these can be solved straightforward:
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When solving the second integral, consider the exponential factor:(
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Hence, the integrand in I2 may be rewritten to a more convenient form:
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This is all that is needed to solve the integral:

I2 = −nE
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Combining the solutions for I1 and I2 we get an expression for the reduced residual Helmholtz
function, as intended by these calculations:
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E Implementation - Symbols, subroutines and functions

Table 4: Symbols used as input and output in subroutines and functions

Symbol Type Represents

T real Temperature

P Pressure Pressure

nMoles real, array Composition vector

moles real Total number of moles in fluid mixture

phase integer Phase argument. Liquid = 1, Gas = 2

usedPhase Integer Phase argument, that may be altered to get cor-
rect result

simpOrRef integer Argument that separates simple fluid (= 1) from
reference fluid (= 2)

TcM real Pseudo critical mixing temperature

vcM real Pseudo critical mixing reduced, specific volume

zcM real Pseudo critical mixing compressibility factor

wM real Pseudo critical mixing acentric factor

PcM real Pseudo critical mixing pressure

Tr real Reduced temperature

Pr real Reduced pressure

vr real Reduced specific volume

correctPhase logical Boolean variable that is true if the selected phase
is physically allowed

i integer Component i in composition array

j integer Component j in composition array

B, C, D, E real Reduced temperature dependent coefficients

B Tr, C Tr,
D Tr, E Tr

real First order derivatives of reduced temperature
dependent coefficients

B TrTr, C TrTr,
D TrTr, E TrTr

real Second order derivatives of reduced temperature
dependent coefficients

vrInit real Initial value for reduced specific volume

vrMin real Lower bound for reduced specific volume

vrMax real Upper bound for reduced specific volume

z real Compressibility factor

S real Entropy

H real Enthalpy

lnphi real, array Fugacity coefficients of each component

Sdep real Departure entropy

Hdep real Departure enthalpy

The constants in Table 3 are not mentioned in Table 4. This is because they are all defined as
global constants for the Lee-Kesler module, along with η in Equations (3.6), (3.44) and (3.49), and



the gas constant R. Hence, these constants are accessible for use in all functions and subroutines,
even though they are not defined as input parameters. As are the individual components critical
properties, Tc, Pc, zc and wc, that are initialized outside the module.



Table 5: Subroutines implemented in the Lee-Kesler program, in order of appearance

Routine Input Output Intent

mainLeeKesler T, P, nMoles,
phase

Tr, Pr, z, Sdep,
Hdep, lnphi

Main routine, called by Ther-
moPack.

thermProps Tr, Pr, vr, nMoles,
TcM, vcM, PcM,
wM, moles, sim-
pOrRef

z, S, H, lnphi Calculates thermodynamic proper-
ties. Called once for simple fluid
calculations, and once for reference
fluid calculations.

mixRules nMoles, moles TcM, vcM, PcM,
wM

Calculates critical mixing properties
by Equations (3.6) - (3.10).

TrCoeff Tr, simpOrRef B, C, D, E Calculates the reduced tempera-
ture dependent coefficients given by
Equations (3.13) - (3.16).

TrCoeffDiff1 Tr, simpOrRef B Tr, C Tr, D Tr,
E Tr

Calculates the first order derivatives
of the reduced temperature depen-
dent coefficients, according to Equa-
tions(3.23) - (3.26).

TrCoeffDiff2 Tr, simpOrRef B TrTr, C TrTr,
D TrTr, E TrTr

Calculates the second order deriva-
tives of the reduced temperature de-
pendent coefficients, according to
Equations(3.23) - (3.26).

vrNewtRaps Tr, Pr, usedPhase,
simpOrRef

vr, correctPhase Calculates the reduced specific
volume by the Newton-Raphson
method.

vrInitial Pr, Tr, usedPhase,
simpOrRef

vrInit, vrMin, vr-
Max

Calculates initial value and value
bound for the reduced specific vol-
ume. To be used in vrNewtRaps.

zPRTshape T, Tr, B, C, D, E,
simpOrRef

.txt-file Optional routine, not called by pro-
gram without modifying it. Prints
data to file that can be used to plot
reduced pressure as a function of re-
duced volume, by Equation (3.2).

fvShape T, P, Tr, Pr, B, C,
D, E, simpOrRef

.txt-file Optional routine, not called by pro-
gram without modifying it. Prints
data to file that can be used to plot
Equation (4.1) as a function of re-
duced specific volume.



Table 6: Functions for calculating the Helmholtz functions, and its partial derivatives

Function Input Equation

fv Pr, Tr, vr, B, C, D, E, simpOrRef (4.1)

fvDiff Pr, Tr, vr, B, C, D, E, simpOrRef (4.2)

FSolver moles, vr, B, C, D, E, simpOrRef (3.18)

FDiffTr moles, Tr, vr, simpOrRef (3.21)

FDiff2Tr moles, Tr, vr, simpOrRef (3.22)

FDiffVr moles, vr, B, C, D, E, simpOrRef (3.29)

FDiff2Vr moles, vr, B, C, D, E, simpOrRef (3.30)

FDiffNi Tr, vr, TcM, vcM, PcM, zcM, wM, nMoles, moles, i, B, C,
D, E, simpOrRef

(3.31)

FDiff2NiNj Tr, vr, TcM, vcM, PcM, zcM, wM, nMoles, moles, i, j, B, C,
D, E, simpOrRef

(3.32)

FDiffN moles, vr, B, C, D, E, simpOrRef (3.33)

FDiff2VrN moles, vr, B, C, D, E, simpOrRef (3.36)

FDiff2TrN moles, Tr, vr, simpOrRef (3.35)

FDiff2TNi moles, Tr, vr, TcM, vcM, PcM, zcM, wM, nMoles, i, sim-
pOrref

(3.55)

FDiff2TrVr moles, Tr, vr, simpOrRef (3.37)

VDiffNi moles, Tr, vr, TcM, vcM, PcM, zcM, wM, B, C, D, E,
nMoles, i, simpOrRef

(2.31)

VDiffT T, P, moles, Tr, vr, TcM, PcM, B, C, D, E, simpOrRef (2.32)

PDiffT T, P, moles, Tr, vr, TcM, PcM, simpOrRef (2.28)

PDiffV moles, Tr, vr, TcM, PcM, B, C, D, E, simpOrRef (2.29)

PDiffNi moles, Tr, vr, TcM, vcM, PcM, zcM, wM, B, C, D, E,
nMoles, i, simpOrRef

(2.30)



Table 7: Functions for calculating derivatives of the reduced quantities

Function Input Equation

TrDiffNi Tr, TcM, vcM, nMoles, moles, i (3.39)

vrDiffNi vr, TcM, vcM, PcM, wM, nMoles, moles, i (3.40)

TrDiff2NiNj Tr, TcM, vcM, nMoles, moles, i, j (3.42)

vrDiff2NiNj vr, TcM, vcM, PcM, zcM, wM, nMoles, moles, i, j (3.43)

TcMDiffNi TcM, vcM, nMoles, moles, i (3.44)

TcMDiff2NiNj TcM, vcM, nMoles, moles, i, j (3.49)

vcMDiffNi nMoles, vcM, moles, i (3.46)

vcMDiff2NiNj nMoles, moles, vcM, i, j (3.51)

PcMDiffNi TcM, vcM, PcM, zcM, wM, nMoles, moles, i (3.45)

PcMDiff2NiNj TcM, vcM, PcM, zcM, wM, nMoles, moles, i, j (3.45)

zcMDiffNi moles, wM, i (3.47)

zcMDiff2NiNj moles, wM, i, j (3.52)

wMDiffNi moles, wM, i (3.48)

wMDiff2NiNj moles, wM, i, j (3.53)

Table 8: Functions for calculating the partial derivatives of the thermodynamic properties of interest

Function Input Equation

zDiffT z, T, P, moles, Tr, vr, TcM, PcM, B, C, D, E, simpOrRef (2.33)

zDiffP z, P, moles, Tr, vr, TcM, PcM, B, C, D, E, simpOrRef (2.34)

zDiffNi z, moles, Tr, vr, TcM, vcM, PcM, zcM, wM, B, C, D, E,
nMoles, i, simpOrRef

2.35

SDiffT T, P, moles, Tr, vr, TcM, PcM, B, C, D, E, simpOrRef (2.36)

SDiffP T, P, moles, Tr, vr, TcM, PcM, B, C, D, E, simpOrRef (2.37)

SDiffNi T, P, moles, Tr, vr, TcM, vcM, PcM, zcM, wM, B, C, D, E,
nMoles, i, z, simpOrRef

2.38

HDiffT T, P, moles, Tr, vr, TcM, PcM, B, C, D, E, simpOrRef (2.39)

HDiffP T, P, moles, Tr, vr, TcM, PcM, B, C, D, E, simpOrRef (2.40)

HDiffNi T, P, moles, Tr, vr, TcM, vcM, PcM, zcM, wM, B, C, D, E,
nMoles, i, simpOrRef

(2.41)

lnphiDiffT T, P, moles, Tr, vr, TcM, vcM, PcM, zcM, wM, B, C, D, E,
nMoles, i, simpOrRef

(2.42)

lnphiDiffP T, P, moles, Tr, vr, TcM, vcM, PcM, zcM, wM, B, C, D, E,
nMoles, i, simpOrRef

2.43

lnphiDiffNj moles, Tr, vr, TcM, vcM, PcM, zcM, wM, B, C, D, E,
nMoles, i, j, simpOrRef

(2.44)



In addition to the functions and subroutines presented in Tables 5 - 8 an optional function
PrSolve is implemented. This is a straightforward function to calculate the reduced pressure from
Equation (3.2) for given reduced pressure, reduced specific volume and composition. As of now,
it is not in use, but the code may be modified to use this function, if derivatives with constant
volume are to be tested.

F Newton-Raphson method

The Newton-Raphson method (also known as Newton’s method) is an iterative method in finding
successively better approximations of the roots of a real-valued function. That is, finding an
approximation of x so that:

x : f(x) = 0 (F.1)

Given a function f and its derivative f ′ (both defined for real x), and an initial guess for x,
denoted x0, an better approximation of x is given by:

x1 = x0 −
f(x0)

f ′(x0)
(F.2)

Further iteration yields an improved approximation:

xn+1 = xn −
f(xn)

f ′(xn)
(F.3)
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