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1 Introduction

In the project CO2 Dynamics, the overall aim is to provide knowledge about safe and efficient design
and operation of CO2-pipeline transport and injection systems. To achieve this, models capable of
predicting the thermophysical properties of multiphase CO2-mixtures are needed. Since evaluation of
transient CO2-pipeline operation is made with fluid dynamical models connected to thermodynamic
models and phase-calculations, a high degree of robustness and accuracy is necessary for numerical
stability. State-of-the-art algorithms are thus needed for the phase calculations. Another reason
to implement the best routines for phase-calculations is the need of a flexible framework capable
of handling multiple liquid-phases and solids such as dry-ice. The latest algorithms proposed by
Michelsen and Mollerup (2007) have been implemented as part of the development of the new
flexible workbench for thermodynamics, called ThermoPack, documented in the Memo DA1201.
The underlying equations and algorithms used to solve the phase equilibrium between two-phase
vapour and liquid with specified temperature and pressure (TP -flash), specified enthalpy and
pressure (HP -flash) and specified entropy and pressure (SP -flash) will be described.

Many systems in CCS contain several phases. Austegard et al. (2006) for instance, investigated
thermodynamic models for H2O-CO2-CH4 mixtures. In their Fig. 8, for the system H2O-CO2-CH4

at 298K, a three-phase system occurs between 70-72 bar in which one water rich liquid-phase forms,
one CO2 rich liquid-phase forms and a CH4 rich vapour-phase is formed. To be able to predict
when a CO2-rich system will consist of several liquid-phases and also to calculate the composition
of them, a multiphase flash routine has been implemented in ThermoPack. In this memo, it will be
shown that the implementation can successfully predict phase-diagrams with more than one liquid
phase for two relevant mixtures.

All the code has been implemented in a Fortran 90/95-syntax and a Mercurial version control has
been used to track changes and merge the developments in the source-code of ThermoPack. The
same test functionality in the COTT-code developed in Task B and C of this project has been used
to test the code. To have an active and up-to-date documentation, comments have been added in a
syntax used by the popular program Doxygen. The algorithms and equations used may be found
in Section 2. Results from tests and comparisons are located in Section 4, while conclusions and
suggestions for further work can be found in Section 5.

2 Algorithms and equations

2.1 Chemical potential

Chemical potential, µ, of a fluid, i, with composition zi, is given by the following equation,

∂G
∂ni

= µi = µ0i + RT ln

(
fi
P0

)
(1)

fi = ziϕiP (2)

Where f is the fugacity and ϕ is the fugacity factor.



2.2 Wilson-K factors

Wilson-K factors are used as initial values in the TP -flash, and are given as

KWilsoni = P
c
i

P
exp

(
5.373(1+ωi)

(
1− T

c
i

T

))
. (3)

Pc , T c and ω are component specific parameters.

2.3 Phase stability

Phase stability is calculated using the tangent plane criterion method, as described by Michelsen
and Mollerup (2007).

The modified tangent plane criterion is given as

tMod(W) = 1.0+
∑
i
Wi(lnWi + lnϕ(W)− di − 1), (4)

di = lnzi + lnϕ(z) (5)

(6)

For the two–phase TP -flash, z, is the overall composition, feed. For a multiphase flash, z initially
is the feed, but as more phases are added, z is one of the equilibrium phases.

The optimisation problem (modified tangent plane criterion) is solved by first trying successive
substitution, and switching to a Newton-Raphson solver if it fails to converge in 3 iterations.

2.3.1 Successive substitution

The successive substitution approach used to solve the modified tangent plane criterion is given by
Equation 7.

lnW (k+1)i = di − lnϕi(W (k)) (7)

2.3.2 Newton-Raphson solver

In order to solve the modified tangent plane criterion using a Newton-Raphson, a variable transfor-
mation is introduced,

α = 2
√
W . (8)

The differential of the modified tangent plane criterion then becomes:

gi =
∂tMod

∂αi
=
√
Wi(lnWi + lnϕ(W)− di), (9)

Hij =
∂gi
∂αj

= δij +
√
WiWjΦij +

1

2

(
lnWi + lnϕ(W)− di

)
, (10)

Φij =
∂ lnϕi

∂Wj
, (11)

δij =

1 i = j

0 i ≠ j
. (12)

We see that lnWi + lnϕ(W)− di will be zero at the solution of the tangent plane minimisation. It
can therefore be removed from the second derivative, without affecting the convergence properties.



2.4 The two-phase TP -flash

The two-phase TP -flash is solved as follows:

• Initialise a two phase mixture, using the Wilson K-factors.

• Try solving the Rachford-Rice equation in 10 iterations.

• If no solution found do stability check. If single phase stable exit. Otherwise switch to
Newton-Raphson solver.

2.4.1 Rachford-Rice

The Rachford-Rice equation to be solved:

g(β) =
n∑
i
(yi − xi) =

n∑
i

zi(Ki − 1)
1− β+ βKi

= 0. (13)

g is a monotonous function in β, and is solved using a Newton-Raphson method combined with
bracketing.

∂g
∂β
= −

n∑
i
zi
(

Ki − 1

1− β+ βKi

)2
< 0. (14)

To avoid problems for β ≈ 1.0, the problem is instead solved for 1.0− β.

The TP -flash is converged using successive substitution for the K-values. In order to speed up the
convergence, a dominant eigenvalue method is used.

2.4.2 Newton-Raphson solver

The objective function, fT,P, is the dimensionless change in Gibbs energy when splitting the single
phase feed, z, in a liquid, `, and gas , v, phase.

fT,P =
∆G
RT

=

∑
i
viµ

g
i +

∑
i
liµ`i −

∑
i
ziµzi

RT
=
∑
i

vi ln(yiϕ
g
i )+ li ln(xiϕ`i )− zi ln(ziϕzi ) (15)

ϕzi is the single phase solution with the smallest Gibbs free energy. A requirement for a stable
two–phase split, is a negative fT,P.

The differential of fT,P is

gi =
∂fT,P

∂vi
= ln

yi

xi
+ lnϕg

i − lnϕ`i . (16)

The second differential of fT,P is

Hij =
∂gi
∂vj

= 1

β(1− β)

(
zi
xiyi

δij − 1+ βΦ`ij + (1− β)Φ
g
ij

)
, (17)

Φij =
∂ lnϕi

∂vj
, (18)

δij =

1 i = j

0 i ≠ j
. (19)



2.5 The multiphase TP -flash

If we use three phase LLV as an example, the multi–phase TP -flash problem can be illustrated.
Assuming a gas composition, w, and the liquid phase compositions, l and v. The overall composition
is z.

The equilibrium condition then become:

min gl(l)+ gw(w)+ gv(v) (20)

st. z−w − l − v = 0 (21)

Where the Gibbs energies are given as:

gx(x) =
n∑
i
xiµi(x). (22)

It is common practice to remove the linear constraints by substituting then into the nonlinear
Gibbs equations. Here w is removed:

min gl(l)+ gw(z− l − v)+ gv(v). (23)

The overall phase fractions are defined as follows:

W =
n∑
i
wi, L =

n∑
i
li, V =

n∑
i
vi. (24)

Differentiating the objective functions, g = gl + gw + gv , with respect to l and v:

∂g
∂li
= ∂g

l

∂li
+ ∂g

w

∂wi
∂wi
∂li

= ∂g
l

∂li
− ∂g

w

∂wi
= ln

(liϕli
L

)
− ln

(wiϕwi
W

)
(25)

∂g
∂vi

= ∂g
v

∂vi
+ ∂g

w

∂wi
∂wi
∂vi

= ∂g
v

∂vi
− ∂g

w

∂wi
= ln

(viϕvi
V

)
− ln

(wiϕwi
W

)
(26)

Differentiating once more to get the Hessian:

∂2g
∂li2

= 1

li
− 1

L
+
∂ lnϕli
∂li

+ 1

wi
− 1

W
+
∂ lnϕwi
∂wi

(27)

∂2g
∂vi2

= 1

vi
− 1

V
+
∂ lnϕvi
∂vi

+ 1

wi
− 1

W
+
∂ lnϕwi
∂wi

(28)

∂2g
∂li∂vi

= ∂2g
∂vi∂li

= 1

wi
− 1

W
+
∂ lnϕwi
∂wi

(29)

We see from Equation 29 that a small wi will give an ill–conditioned Hessian. At the same time
the calculation of wi will be prone to numerical error,

wi = zi − li − vi, (30)

because we are subtracting numbers that are almost equal to get a much smaller number.

The suggested way to handle the numerical issues, are to select the dependent variables as:

di = max
k∈1...F

nki . (31)

This introduce considerable administrative effort when calculation the Hessian.



2.5.1 Dropping phase from flash iterations

The phase with the smallest phase fraction, jmin, is combined with all the other phases one by one.
If one combination, jmin + k, gives a reduction in Gibbs energy, the jmin phase is removed. The
removed phase is added to phase k.

2.5.2 The multiphase TP -flash – Successive substitution

The multiphase Rachford-Rice equation to be solved,

q(β,z) =
F∑
k
βk −

n∑
i
zi lnEi, Ei =

F∑
k

βk
ϕik

(32)

The equation is constrained by βk ≥ 0.

The gradient vector elements of q,

gk =
∂q
∂βk

= 1−
n∑
i

zi
Eiϕik

. (33)

The Hessian matrix elements of q,

Hkl =
∂gk
∂βl

=
n∑
i

zi
E2iϕilϕik

(34)

The minimum condition for the Rachford-Rice equation are:

gk = 0, βk > 0 or gk > 0, βk = 0 (35)

2.5.3 Initial guess

The multiphase flash generates initial guesses for the K-values by testing the stability of a pure
liquid and a pure gas. If the stability calculation for gas is negative, tmg < 0, we will get a phase
with fugacity coefficients ϕtm

g . The single phase fugacity coefficient with the minimum Gibbs

energy is denoted: ϕgmin
z . The K-values are calculated from the results of the stability calculations.

K =


ϕtm
` /ϕ

tm
g tm` < 0 & tmg < 0

ϕtm
` /ϕ

gmin
z tm` < 0 & tmg ≥ 0

ϕgmin
z /ϕtm

g tm` ≥ 0 & tmg < 0

KWilson otherwise

(36)

2.5.4 Phase stability

Trial compositions for the stability analysis. Liquid trials are given the subscript, `, and the gas
trial phase is given the subscript, g. If as gas phase is already present, the gas trial is omitted.

wg = xϕx, (37)

w`,1 = (1, 0, . . . , 0)T , (38)

... (39)

w`,n = (0, 0, . . . , 1)T , (40)

w`,n+1 = z. (41)

(42)

Where x is one of the phases already found.



2.5.5 Inclusion of solid phases

The inclusion of a pure solid phase only represent one new variable, while hydrates are a mixture
of water and a host molecule, and therefore represent more than one variable. To get a general
framework, it is found best to include all components of the solid phase as variables in the equation
system. The variables can also be selected as before, treating the solid mole number both as a
dependent and independent variable. This will for dry ice introduce n− 1 dummy variables. The
only adaption needed for solid is the special treatment of these dummy variables. The special
treatment includes setting differentials to zero, and setting diagonal elements to unity.

2.6 The PS-flash and PH-flash

Both the PS-flash and PH-flash can be solved using a nested loop approach. The inner loop is a
PT -flash flash, while the outer loop is a equation for entropy or enthalpy. The method is based on
the methods of Michelsen (1999).

The outer loop specification for the PH-flash is

Fh,p
(

1

T

)
= −g − hspec

T
. (43)

The differentials then become

∂Fh,p

∂
(

1
T

) = −h+ hspec, (44)

∂2Fh,p

∂
(

1
T

)2 = T 2 ∂h
∂T
. (45)

The outer loop specification for the PS-flash is

Fs,p(T) = −(g + Tsspec). (46)

The differentials then become

∂Fh,p
∂T

= s − sspec, (47)

∂2Fh,p
∂T 2

= 1

T
∂h
∂T
. (48)

2.6.1 Mixture ∂h
∂T

In order to calculate the differential of the mixture enthalpy wrpt. the temperature the Jacobian
for the PH-flash is required.

Fh,P(v, T ) =


g1
...
gN
aT

 (49)

aT =
1

RT

(
hspec − h

)
(50)



Differentiating the equation system Fh,P in Equation 49 with respect to hspec gives:

∂Fh,P
∂X

∂X
∂hspec

+ ∂Fh,P
∂hspec

= 0, (51)

∂Fh,P
∂X

∂X
∂hspec

=
[

0, . . . , 0,− 1

RT

]T
. (52)

Solving this linear system we will get the following temperature differential wrpt. enthalpy.

2.7 The UV -flash

In order to solve the UV -flash fast and reliable, a combination of a full Newton-Raphson solver
and a nested loop is required. See Hammer and Giljarhus (2011).

2.7.1 Nested-loop

The UV -flash problem is formulated as a constrained maximisation of S.

max S(T , P,ng,nl)
st.

U −Uspec = 0
V − Vspec = 0

ng + nl − z = 0

(53)

The linear constraints are usually substituted into the entropy function to yield S(T , P,ng, z−
ng). In the same manner the nonlinear constranits are modified. But maximising a nonlinear
function, S, with two nonlinear constraints is very difficult. It is no way to formulate this problem
that guarantees convergence.

The entropy state function maximisation is transformed to a maximisation of a state function
Q. The maximisation of Q is solved by a nested loop where the minimum gibbs energy, Gmin, is
calculated by a TP-flash in the inner loop. In the outer loop T and P is used to maximise Q in T
and P .

Q = 1

T

(
Gmin −Uspec − PVspec

)
(54)

Gmin(T , P, z) = min G(T , P, z)
st.

T = Tspec
P = Pspec

(55)

z is the overall molar composition. The inner loop, TP -flash, does a stability check of its solution.
The outer loop uses the results from the inner loop, and no stability check is therefore required for
the outer loop.

By differentiating Q in T and P we see that the stationary point of Q satisfies the flash specifications.
The full differentiation of Q is shown in appendix 2.7.1, Equation 57. The results are summarised
in Equation 56. Differentiating with respect to ng will give a requirement for identical chemical
potentials in gas and liquid for the stationary point. This requirement is ensured by the PT -flash
calculation.

∂Q
∂P

∣∣∣∣
T
= 0 a V − Vspec = 0

∂Q
∂T

∣∣∣∣
P
= 0 a H −Uspec − PVspec = 0

(56)



To solve the maximisation of Q, a Newton method for unconstrained minimisation is used. The
method is described by Dennis and Schnabel (1996), section 5.5. The search direction is modified
to always be decent. (An indefinite second derivative matrix of Q is modified to have positive
eigenvalues). To guarantee reduction in the objective function, −Q, in every iteration, a Wolfe line
search is used. The Wolfe line search is described by Nocedal and Wright (1999).

In order to optimise the state function, Q, defined in Equation 54, the first and second differentials
are required. To document the implementation of the state function optimisation, the Q differentials
are included here.

∇Q =


∂Q
∂T

∣∣∣∣
P,z

∂Q
∂P

∣∣∣∣
T ,z

 =
−

1
T2

(
Hmin −Us − PVs

)
1
T

(
Vmin − Vs

)
 (57)

∇2Q =
 ∂2Q
∂T2

∂2Q
∂T∂P

∂2Q
∂P∂T

∂2Q
∂P2

 (58)

∂2Q
∂T 2

= − 1

T 2

∂Hmin

∂T

∣∣∣∣
P,z

(59)

∂2Q
∂P2

= 1

T
∂Vmin

∂P

∣∣∣∣
T ,z

(60)

∂2Q
∂T∂P

= ∂2Q
∂P∂T

= 1

T
∂Vmin

∂T

∣∣∣∣
P,z

(61)

This requires the following mixture differentials:

∂H
∂T

∣∣∣∣
P,z
= ∂Hg
∂T

+ ∂Hl
∂T

+
N∑
i=1

[ ∂Hg
∂ng,i

− ∂Hl
∂nl,i

]∂ng,i
∂T

(62)

∂V
∂P

∣∣∣∣
T ,z
= ∂Vg
∂P

+ ∂Vl
∂P
+

N∑
i=1

[ ∂Vg
∂ng,i

− ∂Vl
∂nl,i

]∂ng,i
∂P

(63)

∂V
∂T

∣∣∣∣
P,z
= ∂Vg
∂T

+ ∂Vl
∂T
+

N∑
i=1

[ ∂Vg
∂ng,i

− ∂Vl
∂nl,i

]∂ng,i
∂T

(64)

∂H/∂T is calculated as shown in section 2.6.1. ∂V/∂T and ∂V/∂P can be calculated in a similar
manner, specifying an equilibrium condition for a VP -flash and VT -flash respectively.

2.7.2 The Newton approach

The UV -flash can in the multi-phase case can be formulated as a non-linear system of equations
suitable for a Newton–Raphson iteration. Note however that in this case both the number of
variables and their scaling can change between iterations.

As for the two-phase case we can use the fact that the molar fractions sum up to unity to reduce
the number of independent variables. For an F-phase, C-component system we can assert

niF = zi −
F−1∑
k=1
nik. (65)



The equilibrium conditions for the system can then be written as

FU,V (n1, . . . ,nF−1, T , P) =



g11
...
gC1
g12

...
gC2
...
...

g1(F−1)
...

gC(F−1)
rT
rP



(66)

where

gik =
∂Q
∂nik

(67)

and Q is the objective function for the minimization of the Gibbs energy

Q =
C∑
i=1

F∑
k=1
nik lnφ(k)i (68)

However, as discussed by Michelsen and Mollerup (2007), the choice (65) might lead to numerical
difficulties in round-off when the reference phase F is present only in very small quantities. As an
alternative, one can choose a component-specific reference phase Mi and let

niMi = zi −
F∑

k≠Mi

nik. (69)

Mi should be chosen to be the phase for which the component is present in the largest amount
(Michelsen and Mollerup (2007)). Furthermore, for better conditioning, the phase variables are
scaled by the overall composition by setting

ñi =
ni
zi
. (70)

In terms of individually chosen reference phases Mi, the equilibrium conditions become

FU,V (ñ1, . . . , ñC , T , P) =


g1
...
gC
rT
rP

 (71)

where

gi =



∂Q
∂ñi0

...
∂Q

∂ñi(Mi−1)
∂Q

∂ñi(Mi+1)
...
∂Q
∂ñiF


(72)



and
∂Q
∂ñik

= zi
(
lnφ(k)i − lnφ(Mi)i

)
. (73)

The Newton iteration then uses the formulation

M11 . . . M1C g1T g1P
...

. . .
...

...
...

MC1 . . . MCC gC T gC P
gT
1T . . . gT

C T ETT ETP
gT
1P . . . gT

C P EPT EPP




∆ñ1

...
∆ñC
∆ lnT
∆ lnP

 =

g1
...
gC
rT
rP

 , (74)

where

rT =
1

RT
(U spec + PV spec −H) , rP =

P
RT

(V − V spec) , (75)

Mij =
∂gi
∂ñj

, (76)

ETT = −
Cp
R
, ETP =

P
R
∂V
∂T
, EPP =

P2

RT
∂V
∂P
, (77)

gi T ,j = T
∂

(
lnφ(j)i

)
∂T

−
∂
(
lnφ(Mi)i

)
∂T

 , (78)

gi P,j = P
∂

(
lnφ(j)i

)
∂P

−
∂
(
lnφ(Mi)i

)
∂P

 , (79)

where j = 1, . . . , F − 1 and

ñi =



ñi0
...

ñi(Mi−1)
ñi(Mi+1)

...
ñiF


. (80)

A NR iteration then becomes:
∇XFU,V∆X+ FU,V = 0 (81)

The search direction is limited to yield valid component masses. The gas masses must be positive,
and are upwards limited by the overall composition.

0 ≤ ñij ≤ 1, i ∈ {1, . . . , C} and j ∈ {1, . . . , F − 1} (82)

To guaranty reduction of the function residual, a simple line search is applied.

2.8 Symmetry in the second derivative of Q

Using mole numbers as variables, the second derivative of Q becomes symmetric. This follows from
the thermodynamic identity,

1

RT
∂HR

∂ni

∣∣∣∣
T ,P
= − ∂φi

∂lnT

∣∣∣∣
P,n
, (83)



where the relation between the residual enthalpy HR
i =

∂HR

∂ni
and overall enthalpy Hi is given from,

Hi = HR
i +HId

i . (84)

The ideal contribution for one component is simply a termperature function, HId
i = HId

i (T).
Differenting rT with respect to mole numbers, using phase indices as as earlyer, therefor give,

∂rT
∂n(j)i

= −
H(j)i
RT

−
H(Mi)i
RT

 = −HR,(j)
i
RT

+
HR,(Mi)
i
RT

. (85)

Using the thermodynamic identity, Equation 83, it is seen that

∂rT
∂n(j)i

= g(j)iT . (86)

There exsist a similar theremodynamic identity for resudial volume,

P
RT
∂VR

∂ni

∣∣∣∣
T ,P
= ∂φi
∂lnP

∣∣∣∣
T ,n
. (87)

Overall this give a symmetric second derivative of Q.

2.9 Maintained symmetry when using scaled mole numbers as variables

Using scaled variables ñ we get,
M̃ij = ZiZjMij , (88)

and the symmetry of M remains.

With scaled variables one get
g̃i = Zigi, (89)

further
1

RT
∂HR

∂ñi

∣∣∣∣
T ,P
= Zi
RT
∂HR

∂ni

∣∣∣∣
T ,P
= −Zi

∂φi
∂lnT

∣∣∣∣
P,n
, (90)

and the symmetry remains.

Since ETP and EPT are unaffected by the mole number scaling, the full symmetry remains.

3 Special issues in single and two-component fluids

Write about single phase and integrate with rest of text.

Solving the internal-energy–volume flash for a two component CO2rich mixture involves solving
along the triple line. The triple line behaves in this case, much as the saturation line for single
component, ie. the phase transition can not be plotted in temperature-pressure space alone. Other
variables must be used, like the phase fraction of one of the phases.

This three-phase line is illustrated in Figure 1a. Figure 1 show three phase diagrams of a mixture
containing 87.5 % CO2 and 12.5 % N2.

Here we choose the use of pressure and solid phase fraction. As the temperature is fairly constant
along the three-phase line, it is considered better to use pressure. The strategy when solving is to
search along the three-phase line, implying that temperature (T = T(p)), gas phase composition
(Y = Y(T(p),p)) and liquid phase composition (X = X(T(p),p)) are known from the pressure
alone.
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(a) Phase diagram for the temperature–pressure space.
The blue and the black line encircle the vapor-
liquid region. Above the red line and left of the
orange line we have the vapor solid region. The
green line is the solid appearance line in from the
liquid phase. It is seen that there is no three-
phase area, only a line, as the orange and black
line coincide, ending in a critical point.
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(b) Phase diagram for the internal-energy–volume
space.
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(c) Phase diagram for the pressure–entropy space.
Here the three phase line in the temperature-
pressure space represent an area enclosed by the
black, purple and yellow line. The pressure maxi-
mum of this region coincide with a critical point.

Figure 1: Phase diagrams for a CO2-N2 mixture. The mole fraction vector of the mixture is

[0.875, 0.125]



3.1 Three-phase line

3.1.1 The UV-flash

The equations required to calculate the three phase line is given in the envelope memo, and best
calculated for βsol = 0. Not that at a given temperature and pressure, changing βsol = 0, do not
change the phase composition of the gas or liquid phase.

The enthalpy, specific volume and internal energy of a gas-liquid-solid mixture is described as,

hmix = βghg + β`h` + βsolhsol, (91)

vmix = βgvg + β`v` + βsolvsol, (92)

emix = hmix − pvmix. (93)

Differentiating the mixture enthalpy along the three-phase line, using pressure and solid fraction as
variables, yields,

∂hmix

∂p
= ∂hmix

∂p
+ ∂hmix

∂t
∂t
∂p
+
∂
(
βghg

)
∂ng

∂ng

∂p
+ ∂

(
β`h`

)
∂n`

∂n`
∂p
, (94)

∂hmix

∂βsol
= hsol +

∂
(
βghg

)
∂ng

∂ng

∂βsol
+ ∂

(
β`h`

)
∂n`

∂n`
∂βsol

. (95)

The specific volume differentials take the same form. The required differentials along the three-phase
line therefore becomes,

∂t
∂p

∣∣∣∣
βsol
,
∂ng

∂p

∣∣∣∣
βsol
,
∂n`
∂p

∣∣∣∣
βsol
,
∂ng

∂βsol

∣∣∣∣
p
,
∂n`
∂βsol

∣∣∣∣
p

(96)

The envelope solver give the gas phase fraction, β̃g, given a zero solid phase β̃sol = 0. To calculate
the real gas (βg) and liquid (β`) phase fractions, the mass balance for the solid component yields,

βg =
Zis −Xis + βsol (Xis − 1)

Yis −Xis
, (97)

β` = 1− β̃g − βsol. (98)

The relation between mole numbers and mole fractions are as follows,

ng = Yβg, (99)

n` = X
(
1− βg − βsol

)
. (100)

The differentials at constant pressure therefore becomes,

∂ng

∂βsol
= Y ∂βg

∂βsol
, (101)

∂n`
∂βsol

= −X
(
∂βg
∂βsol

+ 1

)
. (102)

From Equation 97 we have,
∂βg
∂βsol

= Xis − 1

Yis −Xis
. (103)



The envelope three-phase line lineraisation will provide information on how the temperature, com-
position and gas phase fraction changes with pressure, ie. ∂T/∂ lnp, ∂ lnK/∂ lnp and ∂βg/∂ lnp.
These can be used to construct the required pressure differentials.

The relation between K and β̃g and the gas and liquid composition, are

X = Z
1− β̃g + β̃gK

, (104)

Y = KX. (105)

The differentials of the compositions then become,

∂X
∂K
= − β̃gZ(

1− β̃g + β̃gK
)2 = − β̃gX

1− β̃g + β̃gK
, (106)

∂Y
∂K
= X − β̃gY

1− β̃g + β̃gK
, (107)

∂X
∂β̃g

= − Z (K − 1)(
1− β̃g + β̃gK

)2 = − X (K − 1)
1− β̃g + β̃gK

, (108)

∂Y
∂β̃g

= − Y (K − 1)
1− β̃g + β̃gK

. (109)

From Equation 99, the mole number differentials can be derived,

∂ng

∂p
= β̃g

(
∂Y
∂K
+ ∂Y
∂K

)
∂K
∂p
+ Y ∂β̃g

∂p
(110)

3.1.2 The PS-flash

The three-phase line must also be treated separately for two-component mixtures. By locating the
three-phase line point for the specified pressure, the entropies at βsol = 0, s[βsol=0], and β` = 0,
s[β`=0], will determine if the solution resides on the three-phase line.

The solid and gas phase fractions at zero liquid phase fraction is found from Equation 97 and
Equation 98, when setting β` = 0,

βsol =
Zis − Yis
1− Yis

, (111)

βg = 1− βsol. (112)

If the specified entropy , ss, satisfies,

s[β`=0] ≤ ss ≤ s[βsol=0], (113)

the solution resides on the three-phase line. In this case, the phase fractions must be determined
from the following equation,

ss = βgsg + β`s` + βsolssol. (114)



Combining Equation 114 with the equations 97 and 98, the problem is reduced to solving for βsol,

βsol =

(
ss − s`

)(
Yis −Xis

)
−
(
sg − s`

)(
Zis −Xis

)
(
sg − s`

)(
Xis − 1

)
+
(
ssol − s`

)(
Yis −Xis

) . (115)

4 Results

In order to test the new implementation, TPlib and a thermodynamic library from Danmarks
Tekniske Universitet (DTU), is used. This work could therefore be performed in parallel with the
new implementation for the equation of state with mixing rules.

The algorithms are tested on a temperature-pressure grid, for multiple compositions.

4.1 Testing TP -flash

The main testing of the TP -flash, has been to solve the flash problem on large temperature-pressure
grid, and compare the phase envelope and results with TPLib.

Multiple CO2 rich mixtures of CO2-CH4-N2 have been tested.

4.2 Multiphase TP -flash

The main testing of the multiphase TP -flash algorithm has been on the following two mixtures.

4.2.1 Test case 1 - Multiphase TP -flash

A 5 component mixture (66% CH4, 3% C2H6, 3% C3H8, 5% CO2 and 25% H2S), is selected because
it is known to produce multiple phases (LLV, LV and LL).

Figure 2 shows the number of stable phases found for this test mixtures in the T -P space.

4.2.2 Test case 2 - Multiphase TP -flash

A 3 component mixture (5% CH4,90% CO2 and 5% H2O), is selected because it is known to produce
multiple phases (LLV, LV and LL).

Figure 3 shows the number of stable phases found for this test mixtures in the T -P space.

4.3 Testing HP -flash and SP -flash

Test prosedure for the HP -flash and SP -flash:

1. Perform a TP -flash.

2. Calculate enthalpy or entropy.

3. Set a random initial value for the temperature. 120 ≥ Tinit ≥ 999 K.

4. Perform a HP -flash or SP -flash, and compare the resulting temperature with the specified
temperature.

Multiple CO2 rich mixtures of CO2-CH4-N2 have been tested.



Figure 2: 5 component test mixture. The red area is LLV. The blue area is single phase. The green
area to the left is LL, and the other green area is LV.

Figure 3: 3 component test mixture. The red area is LLV. The blue area is single phase. The green
area to the left is LL, and the other green area is LV.



4.4 Testing UV -flash

Test prosedure for the UV -flash:

1. Perform a TP -flash, for (T∗, P∗).

2. Calculate internal energy and specific volume.

3. Set an random initial value for the temperature. T∗ − 50 ≥ Tinit ≥ T∗ + 50 K.

4. Set a random initial value for the pressure. P∗ − 5e5 ≥ Pinit ≥ P∗ + 5e5 K.

5. Perform a UV -flash, and compare the resulting temperature and pressure with the specified
temperature and pressure.

Multiple CO2 rich mixtures of CO2-CH4-N2 have been tested.

5 Conclusion and future work

In this memo, it has been described how state-of-the-art algorithms for the TP -flash, HP -flash,
SP -flash and UV -flash have been implemented in the new flexible thermodynamic workbench
developed at SINTEF: ”ThermoPack”. A new multiphase-flash capable of handling several liquid
phases has also been implemented. The multiphase-flash implementation successfully predicted the
phase diagrams for two relevant mixtures.

Future work for the multiphase-flash will be to validate that it calculates accurately for other
mixtures relevant for CCS, and use it to predict for which mixtures and temperature, pressure ranges
multiphase systems should be expected. In addition, formation of solids should be implemented as
part of the multiphase-flash.

Due to improvement of the other flash calculations it is expected that the new UV -flash is faster
and more robust than the previous implementation.
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