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1 Introduction

The intention of this memo is to describe the equations used for mapping phase envelopes in
thermopack.

2 Liquid-Vapor envelopes

The equations:

gi = lnKi + lnϕvap
i − lnϕliq

i , i = 1, . . . , n (1)

gn+1 =

n∑
i=1

(Yi −Xi) , (2)

gn+2 = S − Sspec. (3)
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Relation between overall composition and phase compositions:

X =
Z

1 − β + βK
, (4)

Y =
KZ

1 − β + βK
. (5)

Vector form of the equations:

G (W ) =

 g1
...

gn+2

 (6)

Variables:

W =

lnK
lnT
lnP

 (7)

2.1 Differentials

The Jacobean matrix needs the following differentials:

∂Xi

∂lnKi
= − KiZiβ

(1 − β + βKi)
2 = − KiXiβ

(1 − β + βKi)
= −βYiXi

Zi
. (8)

∂Yi
∂lnKi

= −Ki
KiZiβ

(1 − β + βKi)
2 +Ki

Ziβ

(1 − β + βKi)
= −(1 − β)

β

∂Xi

∂Ki
= (1 − β)

YiXi

Zi
. (9)

∂gi
∂lnKj

= δij +

(
(1 − β)

∂ lnϕvap
i

∂Yj
+ β

∂ lnϕliq
i

∂Xj

)
XjYj
Zj

. (10)

∂gn+1

∂lnKj
=
XjYj
Zj

. (11)

3 Extension to include solids

Since β will vary along the saturation lines, it must be included as a variable. The same applies
for βsol. Typically one of these will be fixed to zero when mapping a three-phase line, while the
other is a variable.

The equation set must be extended with the following equilibrium relation:

gn+3 = lnϕvap
s + lnYs − lnϕsol. (12)

Earlier it was assumed, βvap = β, and βliq = 1− β. There are three options when extending to
include solids, (1) to continue to assume this within the vapor-liquid part of the mixture, or (2)
to use βliq = 1 − β − βsol, or (3) to introduce a new variable for βliq. Since we typically need to
specify one of the phase fractions to be zero, only the first and the last option can be used.

For the first option, the corrected fluid composition, Z∗
i , becomes,

Z∗
i =

{
Zi−βsol
1−βsol , if i = s
Zi

1−βsol , otherwise.
(13)



For the third option, the new mass balance for the solid component, Zs, becomes:

Zi =

{
βvapYi + βliqXi + βsol, if i = s

βvapYi + βliqXi, otherwise.
(14)

Equation 6 for the fluid equilibrium then changes form completely. To simplify, it is therefore
suggested to use the first approach.

Substituting Equation 13 into equations 4 we get,

Xi =

{
Zi−βsol

(1−βsol)(1−β+βKs)
, if i = s

Zi
(1−βsol)(1−β+βKs)

, otherwise.
(15)

To calculate Y , we still use, Yi = KiXi. To calculate the real gas (β̃vap) and liquid (β̃liq) phase
fractions, the mass balance for the solid component yields,

β̃vap =
Zis −Xis + βsol (Xis − 1)

Yis −Xis
(16)

β̃liq = 1 − β̃vap − βsol (17)

3.1 Additional differentials

∂Xi

∂β
= − Z∗

i (Ki − 1)

(1 − β + βKi)
2 = −Xi (Yi −Xi)

Z∗
i

. (18)

∂Yi
∂β

= − KiZ
∗
i (Ki − 1)

(1 − β + βKi)
2 = −Yi (Yi −Xi)

Z∗
i

. (19)

∂Xi

∂βsol
=

 Xi
(1−βsol)

(
1 − 1

Z∗
i

)
, if i = s

Xi
(1−βsol) , otherwise.

(20)

∂Yi
∂βsol

= Ki
∂Xi

∂βsol
. (21)

∂gi
∂β

= −
n∑
j=1

(
∂ lnϕvap

i

∂Yj
Yj −

∂ lnϕliq
i

∂Xj
Xj

)
(Yi −Xi)

Z∗
i

(22)

∂gn+1

∂β
=

n∑
i=1

(Ki − 1)
∂Xi

∂β
. (23)

The differential with regards to βsol will have the same shape.

∂gn+3

∂lnKi
=

(
∂ lnϕvap

s

∂Yi
+
δis
Ys

)
∂Yi

∂lnKj
=

(
∂ lnϕvap

s

∂Yi
+
δis
Ys

)
(1 − β)

YiXi

Z∗
i

. (24)

∂gn+3

∂lnT
= T

(
∂ lnϕvap

s

∂T
− ∂ lnϕsol

∂T

)
. (25)

∂gn+3

∂lnP
= P

(
∂ lnϕvap

s

∂P
− ∂ lnϕsol

∂P

)
. (26)

∂gn+3

∂β
=

n∑
i=1

∂ lnϕvap
s

∂Yi

∂Yi
∂β

+
1

Ys

∂Ys
∂β

. (27)

The differential with regards to βsol will have the same shape.



3.2 Liquid-solid or vapor-solid equilibrium

One equilibrium and on specification equation is required,

g1 = lnϕvap
s + lnYs − lnϕsol, (28)

g2 = S − Sspec. (29)

Variables:

W =

(
lnT
lnP

)
(30)

One of the variables must be specified, and βsol must be set. The fluid mole fractions then become,

Yi =

{
Zs−βsol
1−βsol , if i = s
Zi

1−βsol , otherwise.
(31)

For Yi the differentials are,

∂Yi
∂βsol

=

{
Yi−1
1−βsol , if i = s
Yi

1−βsol , otherwise.
(32)

Using these the other differentials are simple.

4 Illustrations

Figure 1 show an example of the phase diagram of a multicomponent mixture with approximately
91 % CO2.
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Figure 1: Illustration of a multicomponent mixture (CO2-H2-N2-O2-CH4) with all its phase areas.
The blue and the black line encircle the vapor-liquid region. Above the red line and left of the
orange line we have the vapor solid region. The green line is the solid appearance line in from the
liquid phase. Right of the orange and left of the black and brown line there is a vapor-liquid-solid
line. Between the purple and green line there is a liqid solid region. The mole fraction vector of
the mixture is [0.9094, 0.0103, 0.0402, 0.0184, 0.0217]

.



5 Two-component system

For a two-component system there is no three phase area, only a three phase line. This means, that
at the same temperature and pressure, several equilibrium states can be found. The state differ
only in different solid fraction and different fluid phase fractions. That is; while dry-ice freeze, the
phase compositions are constant. The chemical potential of the component freezing then remain
constant, as seen from Equation 12.

This is illustrated in Figure 2. Figure 2 show the phase diagram of a mixture containing 87.5 %
CO2 and 12.5 % N2.
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Figure 2: Illustration of a binary mixture (CO2-N2) with all its phase areas. The blue and the
black line encircle the vapor-liquid region. Above the red line and left of the orange line we have
the vapor solid region. The green line is the solid appearance line in from the liquid phase. It is
seen that there is no three phase area, only a line, as the orange and black line coincide. The mole
fraction vector of the mixture is [0.875, 0.125]

.

The Gibbs’ phase rule, state that the degree of freedom (F ) is given as number of components
(C) and number of phases (P ),

F = C − P + 2. (33)

For three phases and two components, the degree of freedom become 1. That is; the it is not
possible to change the temperature independently of the pressure, giving a three-phase line in
temperature-pressure space.

Applying the same rule to pure CO2, no degree of freedom is seen for the three-phase region,
giving a triple point in temperature-pressure space.
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