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1 Introduction

The UNIFAC (UNIQUAC Functional-group Activity Coefficients) model [5], is a group contribu-
tion model, and a further development of the UNIQUAC model [1]. Being a group contribution
model, it accounts for molecular groups like C-H2 and C-H3, that can be thought upon as monomers
in a polymer.

The UNIFAC excess Gibbs mixing rule have found application in the predictive SRK, PSRK
[8], model, and VTPR [3]. It is also used as the universal mixing rule (UMR) [17] togther with
t-mPR [11, 2]. The combined model is denoted UMR-PR.
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2 UNIFAC model

The UNIFAC model [5] is given as follows,
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RT
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RT
− AE

RT0
= −

NC∑
i

ni

NG∑
k

vikQk(Λk − Λik). (1)

The symbols and formalism of Michelsen [13] is used. AE/(RT0) is the combinatorial term and is
described in a later sub section. It is assumed that AE = GE.

The different symbols are defined as follows,
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Ũjk
RT

)
, (4)

Θj =

Qj
NC∑
l

nlv
l
j

NC∑
l

nl
NG∑
m
vlmQm

, (5)

Θi
j =

Qjv
i
j

NG∑
k

vikQk

. (6)

Here Qk is the group surface area of group k, and vik is the number of groups k in molecule i. Both
Qk and vik are constants. Ũjk is the interaction energy per unit surface area of the j − k group
interaction. Ũjk can be a constant, or a temperature function.

2.1 Differentials

Differentiating 1 with respect to nα we get,
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Michelsen [13, Chap. 5,Eq. 56] show that
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But since second differentials are required, it do not help much for the compositional differentials.
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Differentiating 7 further with respect to nβ we get,
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Differentiating Equation 10 we get the second differential of Λk,

∂2Λk
∂nα∂nβ

= −

(
NG∑
j
vαj QjẼjk
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)2 +

(
NG∑
m
vαmQm

)(
NG∑
m
vβmQm

)
(

NC∑
l

nl
NG∑
m
vlmQm

)2 . (13)

We immediately see that 13 give a symmetric matrix of the second differentials.
Differentiating 1 with respect to T we get,
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−
(
∂Λk
∂T

)2

, (18)

∂2Λik
∂T 2

=

NG∑
j
Qjv

i
j
∂2Ẽjk
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Differentiating Equation 7 we get
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The cross differential of Λk is found by differentiating Equation 10 with respect to T ,
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2.2 The combinatorial term

The combinatorial term is comprised of a Flory-Huggins (FH) and a Staverman-Guggenheim (SG)
contribution,

GE,comb = GE,FH +GE,SG, (23)
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Where z = 10,
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(28)

ri and qi are molecule paramaters and non of the parameters are temperature dependent. ri is
the molecular van der Waals volume and qi is the molecular van der Waals surface area. They are
calculated from the group paramaters as follows,
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2.2.1 Differentials of the Flory-Huggins combinatorial term

Writing Equation 24 as a function of mole numbers, we get,
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Differentiating GE,FH with respect to nα we get,
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2.2.2 Differentials of the Staverman-Guggenheim combinatorial term

Writing Equation 25 as a function of mole numbers, we get,
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Differentiating GE,SG with respect to nα we get,

GE,SG
α =

z

2
qα

ln
qα
rα

− ln

NC∑
j

njqj + ln

NC∑
j

njrj − 1 +

rα
NC∑
i
niqi

qα
NC∑
j
njrj

 , (41)

=
z

2
qα

− ln


rα

NC∑
j
njqj

qα
NC∑
j
njrj

− 1 +

rα
NC∑
i
niqi

qα
NC∑
j
njrj

 , (42)

=
z

2
qα

(
ln

(
θα
φα

)
− 1 +

φα
θα

)
. (43)

Differentiating 41 with respect to nβ we get,
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2.2.3 Comparing to combinatorial activity coefficient of Fredenslund et al.

Fredenslund et al. [5] uses the following expression for the activity combinatorial coefficient,
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Inserting for li in the last term of Equation 45, we get,
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Inserting Equation 48 and Equation 46 into Equation 45 we get,
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We see that
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3 UMR-PR model

The UMR-PR model is developed by Voutsas et al [17], and uses the UNIFAC mixing rules together
with a volume translated Peng-Robinson EOS, t-mPR [2].



UMR-PR applies the following covolume mixing rule,

b =
∑
i

∑
j

xixjbij , (51)

bij =

b 1
s
i + b

1
s
j

2

s , (52)

with s = 2.
UMR-PR ignores the Flory-Huggins contribution, Equation 24, of the combinatorial term,

Equation 23.
UMR-PR uses the original temperature independent UNIFAC parameters published by Hansen

et al [7] and Dortmund Data Bank, Wittig et al [18].
Data source: https://en.wikipedia.org/wiki/UNIFAC
http://www.ddbst.com/unifacga.html

http://www.aim.env.uea.ac.uk/aim/info/UNIFACgroups.html

The volume correction temperature differentials used in UMR is not continous. This might be
a good reason not to use the model.

3.1 t-mPR model

t-mPR [2] is an extension of the t-PR [11] to mixtures.
The t-mPR model take the following form,

P =
RT

V + t− b
− a

(V + t)(V + t+ b) + b(V + t− b)
, (53)

where,

t = t(x, T ) =
∑
i

xiti(T ). (54)

We see that by introducing Ṽ = V + t, the relations for this equation of state can be related to
the standard Peng-Robinson equation of state. The translation is slightly more complicated than
the Péneloux [14] volume shift, due to the temperature dependency, and the lack of correction to
the covolume.

4 PSRK model

PSRK [8] uses SRK with Mathias-Copeman α-correlation [12], and a UNIFAC excess Gibbs energy
model.

The zero pressure limit, Equation 55, is used when including the mixing rules into the SRK
EOS. hPSRK(β0) = 0.64663 is used.

The zero pressure limit is used when including the excess Gibbs energy into the equation of
state,

a

RTb
=
∑
i

xi
ai

RTbi
− 1

h(β0)

(∑
i

xi ln
b

bi
+
GE

RT

)
, (55)

where h(β0) is a constant that depend on the EOS. We have hPR(β0) = 0.53.

Implement terms additional to the infinite pressure terms? - Or ignore?

The linear mixing of the covolume is used in PSRK,

b =
∑
i

xibi. (56)

Parameters: [10, 8, 9, 4, 6]

https://en.wikipedia.org/wiki/UNIFAC
http://www.ddbst.com/unifacga.html
http://www.aim.env.uea.ac.uk/aim/info/UNIFACgroups.html


5 VTPR model

The Volume-Translated-Peng-Robinson (VTPR) EOS [3], uses a constant volume correction for
each component. The correction in volume therefore don’t depend on temperature. The Twu,
Bluck, Cunningham and Coon α-correlation [16] is used.

For the excess Gibbs energy, the UNIFAC model is used without the combinatorial term,
Equation 23. The infinite pressure limit is used when including the activity coefficient model into
the EOS.

Covolume mixing uses Equation 52 with s = 4/3.
Parameters: [15]

6 The general mixing rule for the covolume

The general mixing rules for the covolume take the following form,

nB = n2b =
∑
i

∑
j

ninjbij , (57)

b
1
s
ij = (1 − lij)

b
1
s
i + b

1
s
j

2
. (58)

Where lij is assumed constant, symmetric, and have a default value of zero.
Differentiating and manipulating Equation 57, Bi and Bij become,

nBi = = 2
∑
j

njbij −B, (59)

nBij = = 2bij −Bi −Bj . (60)
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