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1 Introduction

This memo documents the theory behind and ThermoPack-implementation of the MBWR-19 and
the MBWR-32 equations of state for pure fluids, as well as their extension to mixtures via the
SPUNG equation of state. ThermoPack is a SINTEF Energy Research in-house thermodynamic
library, and is documented in Skaugen et al. [9].

MBWR-19 and MBWR-32 are single-component equations of state, having respectively 19 and
32 parameters fitted to a specific substance. They are both examples of so-called multiparameter
equations of state, and generally outperform cubic equations of state when it comes to accuracy,
but lose to them in speed. MBWR-19 was first used by Bender (1970), and is also referred to as
the Bender equation. MBWR-32 is due to Jacobsen and Stewart (1973), and is sometimes called
the Jacobsen-Stewart equation, or simply the MBWR equation. The MBWR-19 and MBWR-32
have been fitted to a range of components.

MBWR equations are often used as reference equations for so-called Corresponding States equa-
tions. The prevously implemented Lee-Kesler equation of state, documented in Aarnes [1], is one
example. Another Corresponding States equation is the SPUNG equation. SPUNG stands for
State Research and Development Program for Utilization of Natural Gas, after the Norwegian state
program which partly financed the equation’s development, and is documented in Jørstad [2].

1.1 How to implement equations of state in ThermoPack

ThermoPack is a thermodynamics library which is documented in Skaugen et al. [9]. The library
has the convention of using (T, P,n) as independent variables. For an equation of state to be
considered implemented in ThermoPack, the following is required: For each of the thermodynamic
functions

• the compressibility z

• the residual entropy SR

• the residual enthalpy HR

• the logarithmic fugacity coefficients lnφi

there should be routines which takes in temperature T , pressure P , composition n and phase as
input, and returns the values of these functions, as well as the values of their first order partial
derivatives when the independent variables are (T, P,n).

In addition, a routine for calculating the residual Gibbs energy Gr and its partial derivatives is
usually desired.

When it comes to units, ThermoPack mostly uses base SI-units, e.g K for temperature and Pa
for pressure. An important exception is molar volume and density, which are measured in dm3/mol
and mol/dm3.



2 Expressing thermodynamic functions using the reduced Helmholtz
energy

2.1 Residual properties

An arbitrary temperature-volume-composition state (T, V,n) can be reached by mixing the pure
fluids at temperature T0 and approximately zero density and pressure, heating the mixture to the
temperature T and then compressing it to the volume V . It follows that the calculation of an
arbitrary thermodynamic property M(T, V,n) can be split up according to

M = (∆M?)mixing +

∫ T

T0

(
∂M?

∂T

)
V=∞,n

dT +

∫ V

∞

(
∂M

∂V

)
T,n

dV (2.1)

whereM? denotes the property at zero density and pressure, and (∆M?)mixing denotes the property
due to mixing at zero density and pressure.

If instead (T, P,n) are used as independent variables, the equivalent of (2.1) is

M = ∆M? +

∫ T

T0

(
∂M?

∂T

)
P=0,n

dT +

∫ P

0

(
∂M

∂P

)
T,n

dP. (2.2)

The right-hand sides of (2.1) and (2.2) can be rearranged to comprise two terms, one which is the
propertyM? of the hypothetical perfect gas at the state (T, V,n) or (T, P,n) over some fixed, chosen
zero, and a second term MR = M −M?, called the residual. From its definition MR = M −M?,
we see that the residual MR must be defined as

MR(T, V,n) =

∫ V

∞

[(
∂M

∂V1

)
T,n

−
(
∂M?

∂V1

)
T,n

]
dV1,

MR(T, P,n) =

∫ P

0

[(
∂M

∂P1

)
T,n

−
(
∂M?

∂P1

)
T,n

]
dP1.

(2.3)

Beware that in general we have MR(T, V,n) 6= MR(T, P,n). This may seem strange since the
value of a thermodynamic property shouldn’t depend on which coordinates one happens to use; for
example it is of course always true that M(T, P,n) = M(T, V,n). The reason this equality does
not hold for residual properties is that having temperature, volume and composition (T, V,n) as a
perfect gas state, is not the same the same perfect gas state as having temperature, pressure and
composition (T, P,n), because in general PV 6= nRT , and thus M?(T, V,n) 6= M?(T, P,n)

2.2 Relating thermodynamic functions functions to F

Let
A = −PV +

∑
µini

denote the Helmholtz energy of an arbitrary fluid. We have dA = −SdT−PdV +
∑

i µidni, and the
natural variables for A are T, V,n, all of which are accessible variables (in contrast to e.g. entropy).
Let as above AR denote the residual Helmholtz energy. Then from (2.3) we see that

AR(T, V,n) =

∫ V

∞
(−P (T, V1,n) + nRT/V1) dV1. (2.4)

A quantity of prime importance is the reduced residual Helmholtz energy, defined as

F (T, V,n) =
AR(T, V,n)

RT
(2.5)



In modern thermodynamic engineering, equations of state are usually formulated as an expression
for F as a function of temperature and volume. Note that F is written as a function of (T, V,n),
and indeed explicit functional expressions for F are usually only obtainable in these variables. Thus
if one wants to compute F from knowledge only of (T, P,n), one first has to compute V . For all
but the simplest equations of state (like e.g. cubic equations), this has to be done using an iterative
solver, and can be a time-consuming part of the program. See also section 5.

When we are dealing with pure fluids, which after all is the setting of the MBWR equations,
we have n = n, where n is the total number of moles of the pure fluid, and it is more convenient
to consider extensive properties such as F on a per mole (molar) basis. In this setting it is natural
to use density ρ = n/V as a variable (or alternatively, molar volume v = 1/ρ). Indeed, the
MBWR equations are usually formulated as equations for the pressure P = P (T, ρ). They are
easily converted – using (2.5) – to an equation for the molar Helmholtz energy α as a function of
(T, ρ), where α is defined as:

α(T, ρ) =
AR(T, n/ρ, n)

nRT
(2.6)

=
F (T, n/ρ, n)

n
, (2.7)

where the functions on the right hand sides are the ones in equation (2.5). Note that F has units
mol, while α is adimensional.

If one has an equation for F , it turns out that all thermodynamic properties can be computed
from F and its partial derivatives. Below, the thermodynamic functions needed in ThermoPack,
together with their first order partials, are given in terms of F and its first and second order partial
derivatives.

Compressibility factor

The compressibility factor z is a dimensionless number which can be written in several equivalent
forms:

z =
PV

nRT
=
Pv

RT
=

P

ρRT
=

v

vig
(2.8)

In the equation (2.8) v = V/n is the specific molar volume, ρ = 1/v is the molar density, vig is the
specific volume of an ideal gas, R is the universal gas constant, and P , V , T and n are pressure,
volume, temperature and total number of moles of the fluid, respectively. For ideal gases z = 1 for
all T and P and n, wheras for real gases z is a non-constant function of T and P and n.

Residual entropy

SR(T, P, n) = nR ln z −RF −RT
(
∂F

∂T

)
V,n

. (2.9)

Residual enthalpy

HR(T, P, n) = −RT 2

(
∂F

∂T

)
V,n

+ PV − nRT, (2.10)

Logarithmic fugacity coefficent

lnφi(T, P, n) =

(
∂F

∂ni

)
T,V

− ln z. (2.11)



2.3 Partial derivatives of the thermodynamic properties

The following formulas are mostly taken directly from Aarnes [1].

Pressure

To simplify the notation in the following derivatives, a relation between the pressure and its deriva-
tives, and the reduced residual Helmholtz function is introduced.

P (T, V,n) = −RT
(
∂F

∂V

)
T,n

+
nRT

V
(2.12)

The partial derivatives of the pressure, with respect to temperature, volume and composition,
respectively, are given by: (

∂P

∂T

)
V,n

=
P

T
−RT

(
∂2F

∂T∂V

)
ni

(2.13)(
∂P

∂V

)
T,n

= −RT
(
∂2F

∂V 2

)
T,n
− nRT

V 2
(2.14)(

∂P

∂ni

)
T,V

= −RT
(

∂2F

∂ni∂V

)
T

+
RT

V
(2.15)

Furthermore, the partial derivatives of the volume with respect to composition and temperature
are defined, by the use of the triple product rule and the derivatives of the pressure:

V̄i ≡
(
∂V

∂ni

)
T,P

= −

(
∂P
∂ni

)
T,V(

∂P
∂V

)
T,n

(2.16)

V̄T ≡
(
∂V

∂T

)
P,n

= −

(
∂P
∂T

)
V,n(

∂P
∂V

)
T,n

(2.17)

The following derivatives are all carried out for functions that are (T, P,n)-states, that is z =
z(T, P,n), SR = SR(T, P,n), HR = HR(T, P,n) and lnφi = lnφi(T, P,n). Several of these
calculations get rather involved, and only the resulting expressions are presented here.

Compressibility

(
∂z

∂T

)
P,n

= −z
[

1

T
− V̄T
V

]
(2.18)(

∂z

∂P

)
T,n

= z

[
1

P
+

1

V
(
∂P
∂V

)
T,n

]
(2.19)(

∂z

∂ni

)
T,P

= −z
[

1

n
− V̄i
V

]
(2.20)



Entropy

(
∂SR(T, P,n)

∂T

)
P,n

= V̄T

(
∂P

∂T

)
V,n
−R

[
2

(
∂F

∂T

)
V,n

+ T

(
∂2F

∂T 2

)
V,n

+
n

T

]
(2.21)(

∂SR(T, P,n)

∂P

)
T,n

=
nR

P
− V̄T (2.22)(

∂SR(T, P,n)

∂ni

)
T,P

= V̄i

(
∂P

∂T

)
V,n
−R

[(
∂F

∂ni

)
T,V

+ T

(
∂2F

∂T∂ni

)
V

+ 1− ln z

]
(2.23)

Enthalpy

(
∂HR

∂T

)
P,n

= V̄TT

(
∂P

∂T

)
V,n
−RT

[
2

(
∂F

∂T

)
V,n

+ T

(
∂2F

∂T 2

)
V,n

+
n

T

]
(2.24)(

∂HR

∂P

)
T,n

= V − T V̄T (2.25)(
∂HR

∂ni

)
T,P

= V̄iT

(
∂P

∂T

)
V,n
−RT 2

(
∂2F

∂T∂ni

)
V

−RT (2.26)

Fugacity coefficients

(
∂ lnφi
∂T

)
P,n

=

(
∂2F

∂T∂ni

)
V

+
1

T
− V̄i
RT

(
∂P

∂T

)
V,n

(2.27)(
∂ lnφi
∂P

)
T,n

=
V̄i
RT
− 1

P
(2.28)

(
∂ lnφi
∂nj

)
T,P

=

(
∂2F

∂nj∂ni

)
T,V

+
1

n
+

(
∂P
∂V

)
T,n

RT
V̄j V̄i (2.29)

Gibbs energy

Residual Gibbs energy is not documented in Aarnes [1] and is therefore documented here. From
Michelsen [3] we have

GR(T, P,n) = RTF (T, V,n) + PV − nRT (1 + ln z),

whence(
∂GR

∂T

)
P,n

= R

(
F + T

(
∂F

∂T

)
V,n

− n ln z

)
+

(
P − P/z +RT

(
∂F

∂V

)
T,n

)
V̄T (2.30)(

∂GR

∂P

)
T,n

= V − nRT

P
(2.31)(

∂GR

∂ni

)
T,P

= RT

((
∂F

∂ni

)
T,P

− ln z

)
(2.32)



Internal energy

Residual internal energy is not documented in Aarnes [1] and is therefore documented here. We
have

UR(T, P,n) = nRT ln z −RT 2

(
∂F

∂T

)
V,n

and thus (
∂UR

∂T

)
P,n

= nR

[
ln z +

T V̄T
V
− 1

]
−RT

(
2

(
∂F

∂T

)
V,n

+ T

(
∂2F

∂T 2

)
V,n

)
(2.33)

(
∂UR

∂P

)
T,n

= nTR

[
1

P
+

1

V
(
∂P
∂V

)
T,n

]
−
RT 2

(
∂2F
∂T∂V

)
n(

∂P
∂V

)
T,n

(2.34)(
∂UR

∂ni

)
T,P

= TR

[
ln z +

nV̄i
V
− 1

]
−RT 2

(
∂2F

∂T∂ni

)
V

(2.35)

2.4 Relating F -derivatives to α-derivatives

In the case of pure fluids, it is as mentioned more convenient to use the function α defined by

F (T, V, n) = nα(T, ρ). (2.36)

This implies the following relations between the derivatives of F and the derivatives of α.

T -derivatives (
∂F

∂T

)
V,n

= n

(
∂α

∂T

)
(2.37)(

∂2F

∂T 2

)
V,n

= n

(
∂2α

∂T 2

)
(2.38)

V -derivatives (
∂F

∂V

)
T,n

= − n
2

V 2

(
∂α

∂ρ

)
(2.39)(

∂2F

∂V 2

)
T,n

=
2n2

V 3

(
∂α

∂ρ

)
+
n3

V 4

(
∂2α

∂ρ2

)
(2.40)

n-derivatives (
∂F

∂n

)
V,n

= α+
n

V

(
∂α

∂ρ

)
(2.41)(

∂2F

∂n2

)
V,n

=
2

V

(
∂α

∂ρ

)
+

n

V 2

(
∂2α

∂ρ2

)
(2.42)



Cross-derivatives (
∂2F

∂T∂V

)
V

= − n
2

V 2

(
∂2α

∂T∂ρ

)
(2.43)(

∂2F

∂T∂n

)
V,n

=

(
∂α

∂T

)
+
n

V

(
∂2α

∂T∂ρ

)
(2.44)(

∂2F

∂V ∂n

)
V,n

= − 2n

V 2

(
∂α

∂ρ

)
− n2

V 3

(
∂2α

∂ρ2

)
(2.45)

3 The MBWR equations of state

Both the MBWR-19 and the MBWR-32 equations of state take the general form

P (T, ρ) = ρRT +

Ipol∑
k=1

akT
tkρdk +

Itot∑
k=Ipol+1

akT
tkρdk exp

(
−γρ2

)
. (3.1)

The last sum on the right hand side of (3.1) side is referred to as the exponential part, and the rest
is called the polynomial part1. The dk are positive integers and the tk are rational numbers, both
inherent to the equation of state. Their values are given in Table 1 for MBWR-19, and in Table
2 for MBWR-32. The parameters a1, . . . , aItot are not inherent to the equation of state, but are
substance-specific and thus have to be fitted to experimental measurements. For MBWR-19 and
MBWR-32 we have Itot equal to 19 and 32, respectively. The parameter γ usually equals 1/ρ2c , but
may have been fitted with something else. In any case, even though γ is component dependent, it is
not optimized in the fitting process, which is the reason it is not counted as a bona fide parameter.
MBWR-19 is however only our choice of name, and other sources (e.g. Jørstad [2]) instead calls it
MBWR-20.

Note that, for both MBWR-19 and MBWR-32, all the density exponents dk are positive. This
is not coincidental, but a necessity to make it have the desired asymptotic behavior

lim
ρ→0

P (T, ρ) = 0.

The MBWR equations are sometimes written with terms grouped according to powers of ρ:

P (T, ρ) =

BPlen∑
i=1

BPi(T ) · ρi + exp(−γρ2)
BElen∑
i=1

BEi(T ) · ρ2i+1. (3.2)

This aggregation of the temperature dependents terms is sometimes convenient, because one often
wants to evaluate P (T, ρ) for the same T but several different ρ, the prime example being the
iterative procedure in the density solver, see section 5. In this case it is computationally efficient
to pre-calculate the coefficients BPi(T ) and BEi(T ).

4 Database for the MBWR substance-specific parameters

The correlated values of ak for various substances are stored in the file tpmbwrdata.f90, and have
been retrieved from the old TPlib thermodynamics library. In the current database 9 substances
have correlations for MBWR-32, while 54 substances have correlations for MBWR-19.

1This is somewhat misleading, since not all the tk are positive integers.



k dk tk type k dk tk type
1 2 1 pol 11 5 1 pol
2 2 0 pol 12 5 0 pol
3 2 −1 pol 13 6 0 pol
4 2 −2 pol 14 3 0 exp
5 2 −3 pol 15 3 −1 exp
6 3 1 pol 16 3 −2 exp
7 3 0 pol 17 5 0 exp
8 3 −1 pol 18 5 −1 exp
9 4 1 pol 19 5 −2 exp
10 4 0 pol

Table 1: Overview of inherent parameters in the MBWR-19 model. Ipol = 13, Itot = 32.

k dk tk type k dk tk type
1 2 1 pol 17 8 −1 pol
2 2 0.5 pol 18 8 −2 pol
3 2 0 pol 19 9 −2 pol
4 2 −1 pol 20 3 −2 exp
5 2 −2 pol 21 3 −3 exp
6 3 1 pol 22 5 −2 exp
7 3 0 pol 23 5 −4 exp
8 3 −1 pol 24 7 −2 exp
9 3 −2 pol 25 7 −3 exp
10 4 1 pol 26 9 −2 exp
11 4 0 pol 27 9 −4 exp
12 4 −1 pol 28 11 −2 exp
13 5 0 pol 29 11 −3 exp
14 6 −1 pol 30 13 −2 exp
15 6 −2 pol 31 13 −3 exp
16 7 −1 pol 32 13 −4 exp

Table 2: Overview of inherent parameters in the MBWR-32 model. Ipol = 19, Itot = 32.



It is important to understand exactly what these coefficients in the database mean. Let us first
consider the MBWR-32 equation. For MBWR-32, each correlation in the database consists of 33
coefficients (a1, . . . , a32, γ), which fit into the equation as follows (see Jørstad [2]):

P (T, ρ) =
19∑
i=1

BPi · ρi + e−γρ
2

6∑
i=1

BEi · ρ2i+1.

where
BP1 = RT

BP2 = a1T + a2T
1/2 + a3 + a4/T + a5/T

2

BP3 = a6T + a7 + a8/T + a9/T
2

BP4 = a10T + a11 + a12/T

BP5 = a13

BP6 = a14/T + a15/T
2

BP7 = a16/T

BP8 = a17/T + a18/T
2

BP9 = a19/T
2

BE1 = a20/T
2 + a21/T

3

BE2 = a22/T
2 + a23/T

4

BE3 = a24/T
2 + a25/T

3

BE4 = a26/T
2 + a27/T

4

BE5 = a28/T
2 + a29/T

3

BE6 = a30/T
2 + a31/T

3 + a32/T
4.

(4.1)

Here P is measured in Pascal, T is measured in Kelvin and ρ is measured in moles per litre – the
convention in ThermoPack.

Let us next consider the MBWR-19 equation. In the database each substance has associated
with it an array of 20 parameters (a1, . . . , a19, γ) with the property that (see Polt [5])

P (T, ρ) = BP1ρ+
[
BP2ρ

2 +BP3ρ
3 +BP4ρ

4 +BP5ρ
5 +BP6ρ

6 + (BE1ρ
3 +BE2ρ

5)e−γρ
2
]
· 103,

where
BP1 = RT

BP2 = a1T − a2 − a3/T − a4/T 2 − a5/T 3

BP3 = a6T + a7 + a8/T

BP4 = a9T + a10

BP5 = a11T + a12

BP6 = a13

BE1 = a14/T
2 + a15/T

3 + a16/T
4

BE2 = a17/T
2 + a18/T

3 + a19/T
4.

(4.2)

Take note of the factor 103, as well as the sign inversions for terms a2, a3, a4, a5. Also for MBWR-19,
P is measured in Pascal, T is measured in Kelvin and ρ is measured in moles per litre.

No MBWR data set for CO2

Although there was a data set for CO2 for MBWR-19 in the old TPlib library, it is wrong. According
to this data set, CO2 is still subcritical at 310 K, which is about 5 K over its measured critical



temperature. VLE calculations using SPUNG with CO2 as reference component also gives absurd
results. Although the dissertation by Polt [5] has been checked, he surprisingly doesn’t give a
correlation for CO2. The correlation in the TPlib database has no reference.

5 The MBWR density solver

When the MBWR equations of state are called from ThermoPack, the temperature, pressure and
the phase is usually what is given as input. However, the independent variables in MBWR equations
are density and temperature, not temperature and pressure. Therefore, an algorithm which takes
in T and P and solves for ρ is needed.

The density solver in the old thermodynamics library, TPlib, was not as robust as desired.
Jørstad writes the following in his thesis [2]: Calculation of the density results sometimes in an
incorrect solution or in a few circumstances breaks down (...) Approximately 1 out of 500 calcula-
tions fails. A better density solver is therefore required. This section discusses the theory behind
the implementation of a new, more robust density solver.

In this section T0 and P0 will denote arbitrary but fixed temperatures and pressures.

5.1 Phases and the correct density root

A typical plot of the function ρ 7→ P (T0, ρ) is given in Figure 1. As illustrated by this graph, there
will from a purely mathematical standpoint be several choices of ρ which satisfies P (ρ, T0) = P0.
However, not all of these densities correspond to a physically realistic state. A first criterion for
the density being a physical solution is that belongs to some interval over which P (T0, ρ) is positive
and increasing. This is due to the fact that, at a given temperature, higher pressure will always
correspond to a higher density. Applying this first criterion, we see that there are two candidates
for the physically correct density. To choose the correct one of these two, we need to know what
phase, gas or liquid, the fluid is in: the gas phase corresponds to the lowest density, the liquid phase
corresponds to the highest density. Let us call the part of the graph corresponding to valid vapor
densities the “vapor hill”, and similarly call the part of the graph corresponding to liquid solutions
the “liquid hill”. Thus, given the phase, one has to choose the solution lying on the corresponding
hill.

The choice of root is even easier for supercritical temperatures, T0 > Tc, as illustrated in
Figure 2. In this case there is only one interval where P (T0, ρ) is increasing, and so the density is
independent of phase. Physically, this reflects the fact that for supercritical temperatures, there is
no discontinuous phase change.

A case where it is not so straightforward how choose the physical density is shown in Figure 3.
If the user inputs liquid phase, the question is whether one should return the solution corresponding
to the gas phase, or the density corresponding to the liquid phase having minimum pressure.

Sometimes the user may not want to give the algorithm an input phase, but rather ask that it
chooses the phase which corresponds to the physically stable solution. This is possible by letting
the algorithm search for both the liquid and gas root, and then returning the density corresponding
to minimum Gibb’s energy.

5.2 The density solver algorithm

Although we tried many algorithms (e.g. the Illonois algorithm, the Pegasus method, Halley’s
method), in the end the best method proved to be Newton’s method. A major reason for its
speed is that it is cheap to calculate the derivative ∂ρP (T0, ρ) by precalculating the temperature
dependent coefficients, and that if one evaluates both P (T0, ρ) and its derivative at the same point,
much of the computation overlaps, allowing a considerable speedup compared to computing each
of them separately. (Of course, the same overlap occurs when computing the second derivative.)
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Figure 1: A log-log plot of the MBWR-19 density-pressure curve for CH4 and a subcritical temperature,
and an example input pressure (green) drawn in. Where P (T0, ρ) becomes negative we have plotted |P (T0, ρ)
in red.

The never-ending worry with Newton’s method is that it may shoot off and not converge to the
desired root. But there are special cases where Newton’s method is guaranteed to converge:

1. If a function is concave and increasing and the initial guess is smaller than the root, then
Newton’s method is guaranteed to converge, and the rate of convergence is quadratic.

2. If a function is convex and increasing and the initial guess is larger than the root, then
Newton’s method is guaranteed to converge, and the rate of convergence is quadratic.

This of course requires us to know something about the convexity of P (T0, ρ). Interestingly,
by plotting ∂2P (T0, ρ)/∂ρ2 and P (T0, ρ) together, we have found evidence for the “gas hill” being
concave and increasing, and the “liquid hill” being convex and increasing2. An example is shown
in Figure 4. Of course, these convexity properties have not been checked for all substances in the
database. It has been verified to hold for the most commonly used components, including. C1,
C2, C3, N2, O2, H2O, R152a, R134a, HE. Moreover, for some components (e.g. NC7, benzene),
the vapor hill is only concave for pressures below the saturated vapor pressure. If these convexity
properties really demonstrate an inherently physical feature of fluids, rather than simply being
numerical artefacts, is not known. E.g. Span [8] seems not to mention anything about convexities.
In any case, let us from now on call the criterion

∂2ρP (ρvap, T0) < 0, ∂2ρP (ρliq, T0) > 0 (5.1)

the phase convexity test.
Now, by 1. above, we know that if one is looking for a gas root, then Newton’s method will

always converge if given an initial density lower than the true gas density. Similarly, 2. guarantees
that Newton’s method converges to the liquid density if the starting density is a little higher than

2A possible physical interpretation: When density is low, increasing pressure increases density little at first, but
then more and more as long-range attraction becomes significant. When density is high, increasing pressure increases
density less and less as short-term repulsion becomes dominant.
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Figure 2: The MBWR-19 density-pressure curve for CH4 and a supercritical temperature, and an example
input pressure drawn in.

the true liquid density. Of course, this is only true if there really exists a density solution in the
required phase. If not, Newton’s method may shoot off. To prevent this, the density algorithm
uses three tests. If the input phase is vapor, they are:

i) ∂ρP (ρn) > 0,

ii) P (ρn−1) < P (ρn),

iii) (P (ρn)− P (ρn−1)) /(ρn − ρn−1) < ∂ρP (ρn).

If the input phase is liquid, they are the same with the exception of ii, where the direction of the
inequality has to be reversed. If the current iterate fails any of these tests, there is no density root
with the given input phase. Once again, this assumes that the initial guess is an underestimate in
the case of vapor phase, and an overestimate in the case of liquid phase.

If there exists a vapor root, the solver will always find it when given vapor as input phase,
simply because it is very easy to find a good underestimate (see section 5.3). Given liquid as
input phase, a too large overestimate may result in the density solver diverging. The problem is
illustrated in figure 5 for the MBWR-32 equation (this problem does not occur with MBWR-19):
if the initial liquid density is too great, we will have negative slope, and Newton’s method will
diverge. To counter this from happening, a fallback Newton solver is implemented which kicks in
if the main density solver fails. The differences between the fallback Newton solver and the main
solver are two things: the initial liquid guess is lower, and there are less tests for divergence. In
fact, the only situation where the fallback Newton solver terminates (besides from performing more
than the maximum number of iterations), is when ∂ρP (ρn) becomes negative. A second fallback is
also implemented as a last resort, namely the old solver in TPlib, which is described in section 5.4.

Finally, some words about the actual code. The density solver is now divided up into three
routines. The routine the user actually calls is MBWR_density. MBWR_density generates initial
guesses and then calls newton_density, which given an initial density on the correct side of the
root, either determines the root, or outputs −1 if no root is found. An optional argument can force
the algorithm to choose the metastable extremum if no density exists for the input phase; once
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Figure 3: The MBWR-19 density-pressure curve for CH4 and a temperature below but close to the critical
temperature, and an example input pressure drawn in.

again, the routine will only converge if the initial guess is on the correct side of the density root. If
the newton_density fails, the function barenewton is called, and if also this fails the TPlib solver
is called.

5.3 Choosing the initial density

As already pointed out, choosing a good initial density is of the utmost importance for the algorithm
to converge to the correct root. For the purposes of reaching the correct density in a robust and
time-efficient manner, experimentation showed that the following choices were favorable.

Choosing the initial vapor density

For the vapor root, we use the initial guess

• ρ0,vapor = 10−6 if P ≥ 100 Pa,

• ρ0,vapor = 10−12 if P < 100 Pa,

This will be lower than the MBWR vapor density (if it exists), just as we desire. Moreover,
experiments show that Newton’s method converges quickly even though the initial guess is so low.
Another advantage of this method of choosing the initial value is that no computation time is spent.

Choosing the initial liquid density

Although one might think that analogously to the choice of initial vapor density, a really large value
(e.g. 102 mol/L) would be a good choice of initial liquid density, there are two reasons that this is a
bad idea. The first is that unlike in the vapor phase, where the MBWR equation is designed to have
the correct asymptotic behavior limρ→0 P (T, ρ) = 0, one has no guarantee of physical behavior for
large ρ. Indeed, for MBWR-32, for large enough densities, P (T, ρ) becomes negative. Interestingly
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Figure 4: A log-log plot of P (T0, ρ) and ∂2ρP (T0, ρ) for the MBWR-19 equation with component C3.

and luckily, however, the MBWR-19 equation has a predictable behavior for large ρ, namely3

lim
ρ→∞

PMBWR-19(T, ρ) =∞, lim
ρ→∞

∂ρPMBWR-19(T, ρ) =∞, lim
ρ→∞

∂2ρPMBWR-19(T, ρ) =∞

No one in the consulted literature seems to mention this, and although it hasn’t been checked for
all substances in the MBWR-19 database of substances, it holds in all cases we have encountered.

For subcritical temperatures, the density computed by Soave-Redlich-Kwong is used. For su-
percritical temperatures, the ideal gas equation is used. For temperatures and pressures near the
critical point, the critical density is used. In all of these three cases, the initial density is scaled up
by up to 50% or more to ensure that the density is on the right side of the MBWR density. The
actual scaling factor varies depending on the situation, guided by experimentation.

5.4 The density solver in TPlib

TPlib uses the second order Newton method, also called Halley’s method:

∆xn = − f
′(xn)

f ′′(xn)
± 1

f ′′(xn)

√
f ′(xn)2 − 2f ′′(xn)(f(xn)− P )

= − f
′(xn)

f ′′(xn)
±

√(
f ′(xn)

|f ′′(xn)|

)2

+ 2
P + f(xn)

f ′′(xn)
,

and if the radicand is negative, one sets ∆xn = −f ′(xn)/f ′′(xn).
If the reduced pressure is less than 1, a so-called Modified Rackett technique4 is used to estimate

the saturated vapor pressure at the given temperature, and from this the saturated vapor density
can be estimated. This estimate is then scaled by a factor greater than 1.

zrackett = (0.29056− 0.08775ω)1+(1−Tr)2/7

ρ0 =
Pc

RTczrackett
3Of course, the two first limits are implied by the last limit.
4See e.g. [4], section 4.11.
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For supercritical pressures, the critical density is used as the initial value.
The density solver from TPlib has been copied over to the MBWR module in ThermoPack,

with the only modification being that it has been given the same initial density guess as the main
density algorithm. This reimplementation of the TPlib solver is used to compare the robustness
and computational time with the new density solver. It is also used as a last fallback routine if the
new density algorithm fails.

5.5 Testing the density solver robustness

To optimize and test the density solver, a program which bombards the density solver with test
cases was written. The density solver is tested for 1000 equispaced temperatures between the triple
point temperature and 1000 K; for each of these the pressure input is 1000 equispaced points from
the triple point pressure to 107 Pa. This is done for both the vapor and the liquid phase. All in
all, the density solver is tested on a grid of 2 · 106 points. Our critieria for convergence are

1. |PMBWR(ρ)− Pin| < 10−5,

2. ∂ρPMBWR(ρ) > 0,

3. the phase convexity criterion is fulfilled.

Results from the robustness tests are presented below.

MBWR-32

For the tested components,

• C1,

• C2,

• C3,



• R134a,

• O2,

• N2,

the density solver converges in all cases.
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Figure 6: Density versus pressure for the MBWR-19 equation, component C2, temperature 99 K.
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Figure 7: Density versus pressure for the MBWR-19 equation, component C2, temperature 101 K.

MBWR-19

For MBWR-19, we tested 10 components. For the following components the density solver converges
in all cases:

• C1,



T [K] P [Pa] Comp. ThermoPack vap. [s] TPlib vap. [s] Thermopack liq. [s] TPlib liq. [s]
254 1.26e6 C3 0.14 0.34 0.11 0.15
143 2.09e6 O2 0.076 0.21 0.12 0.16
129 7.46e4 HE 0.065 0.14 0.059 0.068
172 5.12e5 R152a 0.12 0.27 0.10 0.13
1000 1e8 C1 0.087 0.32 0.087 0.12

Table 3: Performance of the ThermoPack and TPlib density solvers in various circumstances.

• C3,

• O2,

• N2,

• R152a,

• HE,

• H2O,

• NH3.

We also tested NC7 and C2. As mentioned above, the NC7 vapor hill becomes convex for pressures
higher than the saturated vapor pressure, and therefore some of the computed vapor densities can
fail the phase convexity test. This is indeed what happens – 175 failed cases – when testing the
solver and giving “vapor” as input phase (using “liquid” as input phase always yields convergence).
If one reruns the tests for NC7 while only using the 1. and 2. convergence criterion, while ignoring
the phase convexity tests, we get attain convergence in all cases.

For C2, the liquid hill looks unusual, see figures 6 and 7. These nonstandard features make
it hard for any gradient based solver to solve for the density, as it requires a very accurate initial
density guess. These problems disappear for temperatures above 100 K, and the solver then chooses
as liquid density the root corresponding to the rightmost solution; but in this case it is not clear
whether this is really the correct root. In other words, C2 seems to be a difficult component for
MBWR-19. Although this can be further investigated, and can probably be remedied by tweaking
the solver, this has not been done.

5.6 Testing the density solver which minimizes the Gibbs energy

We have also implemented a density algorithm which finds the density in the phase such that the
Gibbs energy is minimized. A quick test using MBWR-19 and water shows that for P = 101325
Pa it changes from having ρ = 53.2 mol/L to having ρ = 0.0331 mol/L at 373.14 K. This indeed
coincides with the normal boiling point of water.

5.7 Speed test

When the MBWR main density routine converges, it is always faster than the TPlib solver. The
speedup depends on the phase, and to a lesser extent on the given temperature and pressure.
Typical situations are shown in Table 3, for various substances and temperature-pressure states.
For this table the MBWR-19 equation has been used, and the cpu-time has been measured for
105 calls to the density solver (to render the inherent inaccuracy in the measurement of CPU-time
insignificant).



5.8 Further improvements

In one sense the density solver converges too often; indeed, it often finds a vapor density even though
we are far above the saturated vapor pressure at the given temperature. Ideally, a correlation for
the saturated vapor pressure should be used in the density routine. This information could stop
the density solver from finding nonexistent roots, and could further speed up the density solver
by terminating the search when the pressure at the current density iterate is above/below the
saturated vapor pressure (depending on which phase is being solved for).

6 Routines for calculating necessary thermodynamic functions

To get a complete program for the MBWR equations, we have also written a module for calcu-
lating the residual entropy, the residual enthalpy, the residual Gibbs energy, the z-factor and the
logarithmic fugacity coefficients, as well as their first order partial derivatives with respect to T
and P . Per now the MBWR equations are only used as a part of the SPUNG framework, so these
thermodynamic functions are never called. The one exception is the routine for calculating Gibbs
energy, which is used in the in the density routine which chooses the root having minimal Gibbs
energy.

7 Testing the MBWR models

To validate the implementation of the MBWR-19 and MBWR-32 models, various tests have been
performed.

7.1 Thermodynamic identities

In addition to the numerical test of the derivatives, thermodynamic identities and identities found
from Euler’s theorem, serve as decent consistency tests for the analytical derivatives. The test
supplied here are all found in Michelsen [3]. To test the derivatives of the reduced residual Helmholtz
function, the following identities may be applied:

F = V

(
∂F

∂V

)
T,n

+
∑
i

ni

(
∂F

∂ni

)
T,V

(7.1)

V

(
∂2F

∂V ∂ni

)
T

+
∑
j

nj

(
∂2F

∂nj∂ni

)
T,V

= 0 (7.2)

V

(
∂2F

∂V 2

)
T,n

+
∑
j

nj

(
∂2F

∂nj∂V

)
T

= 0 (7.3)

When these are all satisfied, the fugacity coefficients and their derivatives may be tested by the



identities: (
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)
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i

ni

(
∂ lnφi
∂T

)
P,n

= −H
R(T, P,n)

RT 2
(7.8)

Of course, since it is an equation for pure substances, the MBWR equations only has one fugacity
coefficient. All of these identities have been implemented, and the code seems to fulfill them when
tested on a few points.

7.2 Comparing numerical and analytical derivatives

The analytical derivatives for the implemented thermodynamic functions have been compared to
their finite-difference counterparts, with consistent results.

7.3 Comparison with previous MBWR implementations

In the code there is an algorithm which calculates the component-specific coefficients for α(T, P )
using the component-specific coefficients for P (T, ρ). The coefficents for the Helmholtz energy in
the MBWR-32 model with R152a as the substance, checks out with the coefficients computed by
an earlier implementation in the NIST thermodynamic library REFPROP.

8 Extension to mixtures: The SPUNG equation of state

8.1 Pure fluid scale factors from a cubic equation of state

Consider a generic cubic equation of state,

P =
RT

v − b
− a(T )

(v + δ1b)(v + δ2b)
.

From an equation for P , one can find the residual Helmholtz energy from the integral Ar(T, V,n) =

−
∫ V
∞ (P − nRT/V ′) dV ′, and for the generic cubic equation we get

Ar(T, v)

RT
= − ln(1− b/v)− a(T )

RTb

1

δ1 − δ2
ln

(
1 + δ1b/v

1 + δ2b/v

)
(8.1)

= − ln(1− β)− Γ

δ1 − δ2
ln

(
1 + δ1β

1 + δ2β

)
, (8.2)

where we defined the adimensional parameters Γ = a(T )/bRT and β = b/v.
We first develop the SPUNG model for pure fluids. Suppose therefore we have two pure fluids

called fluid 1 and fluid 0. We say they are in corresponding states when Γ1 = Γ0 and β1 = β0,
i.e. when

a1(T1)

b1RT1
=
a0(T0)

b0RT0
, and

b1
v1

=
b0
v0
. (8.3)



In particular, this implies that the fluids have the same reduced residual Helmholtz energy. Now,
for cubic equations of state like PR and SRK, a(T ) and b take the special form

a(T ) = Ωa(R
2T 2

c /Pc)α(T ), α(T ) =
(

1 +m(ω)(1−
√
T/Tc)

)2
(8.4)

and
b = Ωb ·RTc/Pc, (8.5)

where Ωa and Ωb are substance-independent constants. From equations (8.3) and (8.4) and (8.5),
we will be able to calculate the pure fluid scale factors, defined as

h = v1/v0, f = T1/T0.

The scale factor for volume is
h =

v1
v0

=
b1
b0

=
Tc1Pc0
Tc0Pc1

, (8.6)

while the scale factor for temperature can be written

f =
T1
T0

=
a1(T1)b0
a0(T0)b1

=
Tc1
Tc0

α(Tr1)

α(Tr0)
, (8.7)

Explicit temperature scale factor when α = αSRK or α = αPR

When the ratio of reduced temperatures, θ = Tr1/Tr0 , is calculated from Soave’s or Peng-Robinson’s
correlation for α, we get

θ =

(
1 +m1 −m1

√
Tr1

1 +m0 −m0

√
Tr0

)2

, (8.8)

It is possible to solve for θ1 as an explicit function of Tr1 . Indeed, taking the square root on both
sides of (8.8) and substituting Tr0 = Tr1/θ, we get

√
θ =

1 +m1 −m1

√
Tr1

1 +m0 −m0

√
(Tr1/θ)

,

and multiplying both sides with the denominator, we can easily solve for θ:

θ =

(
1 +m1

1 +m0
+
m0 −m1

1 +m0

√
Tr1

)2

.

The morale is: when obtaining pure fluid scale factors from cubic equations of state, one can
get explicit expressions for the scale factors, depending only on the accentric factors and critical
parameters, together with the temperature of one of the substances.

8.2 Mixtures

The most interesting application of SPUNG is when one is dealing with a mixture of components, to
which we now turn our focus. The idea is to map the thermodynamic state (T, v) for the mixture
to some corresponding (T0, v0) of a reference fluid. The idea is that if one has a very accurate
description (using e.g. a multiparameter equation of state) of the thermodynamics of the pure fluid
0, then one can use this mapping to get an accurate description of the mixture.



Using a cubic equation, the expression for the Helmholtz energy for n moles of a mixture is (see
e.g. Michelsen [3, p.105–107])

Ar(T, V,n)

nRT
= − ln(1−B(n)/V )− D(T,n)

nRTb

1

δ1 − δ2
ln

(
1 + δ1B(n)/V

1 + δ2B(n)/V

)
= − ln(1− βmix)− Γmix

δ1 − δ2
ln

(
1 + δ1βmix
1 + δ2βmix

)
,

where we have defined the adimensional mixture parameters as Γmix = D(T,n)/bRT and βmix =
B(n)/V . The quantities D(T,n)/n2 and B(n)/n are the mixture analogs of the parameters a(T )
and b for a pure fluid.

The principle of corresponding states allows us to calculate the reduced residual energy of
a mixture from the reduced residual Helmholtz energy of a pure reference fluid 0, by equating
Γmix = Γ0 and βmix = β0, i.e.

D(T,n)

nRTB(n)
=
a0(T0)

RT0b0
and

B(n)

V
=
b0
v0
.

We thus get the two mixture scale factors Ĥ and F̂

Ĥ =
V

v0
=
B(n)

b0
, and F̂ =

nT

T0
=
D(T,n)

B(n)

b0
a0(T0)

.

Note that the mixture scale factors are first order homogeneous functions in the mole numbers. The
mixing rules adopted for B(n) and D(T,n) are optional as long as they give a consistent model.

Adopting the conventional mixing rules – also called the van der Waals one-fluid mixing rules,
or the quadratic mixing rules – for B(n) and D(T,n), we get

Ĥnb0 = nB(n) =
∑
i,j

ninjbij

and
F̂ Ĥa0(T0) = F̂ Ĥa0(nT/F̂ ) = D(T,n) =

∑
i,j

ninjaij(T ).

For mixtures involving polar substances, mixture rules based on excess Gibbs energy models may
be more appropriate. The Huron-Vidal mixing rule is a prominent example. We mention that the
cubic equation of state which is used to calculate the scale factors Ĥ and F̂ is called the scale
factor equation or the shape factor equation. Ĥ and F̂ are often called shape factors.

Although Ĥ is given explicitly in terms of the mixture composition as Ĥ = B(n)
b0

, it is in the
general case impossible to give an explicit expression for F̂ in terms of the mixture temperature
and composition. In certain cases however, this can be done.

Explicit temperature scale factor when α = αSRK or α = αPR

If a0(T0) = a0c(1 + m0 − m0

√
T0/T0c)

2, it turns out that we can solve for F̂ from the implicit
expression

F̂ =
1

Ĥ

D(T,n)

a0(nT/F̂ )
.

Indeed, by inserting the form for a0 we get

F̂ =
D(T,n)

Ĥa0c

(
1 +m0 −m0

√
nT/(F̂ T0c)

)2



√
F̂

(
1 +m0 −m0

√
nT

F̂T0c

)
=

(
D(T,n)

Ĥa0c

)1/2

√
F̂ (1 +m0) = m0

√
nT

T0c
+

(
D(T,n)

Ĥa0c

)1/2

F̂ =
1

(1 +m0)2

(
m0

√
nT

T0c
+

(
D(T,n)

Ĥa0c

)1/2
)2

. (8.9)

Temperature scale factor when α = αTWU

Suppose now that we use the alpha formulation of Twu-Coon-Cunningham:

a0(T0) = a0c · TN(M−1)
0r exp

(
L− LTMN

0r

)
,

where the L,M and N have been fitted to vapor pressure data for each fluid. This alpha correlation
is more tailored to specific components than αSRK , seeing as the only component-specific input to
αSRK is the acentric factor and the critical temperature. In the current database the parameters
have only been stored for the four substances CO2, CH4, H2S and H2O.

Let us find the temperature shape factor using this alpha formulation. Using F̂ = D(T,n)

Ĥa0cαTWU (T0)

and T0 = nT/F̂ , we get

F̂ ·
(
nT

F̂T0c

)N(M−1)
exp

(
L− L

(
nT

F̂T0c

)MN
)

=
D(T,n)

Ĥa0c
,

or

F̂ 1+N(1−M) exp

(
L− L

(
nT

F̂T0c

)MN
)

=

(
T0c
nT

)N(M−1) D(T,n)

Ĥa0c
. (8.10)

From this last expression, it is clear that it is not possible to solve for F̂ using simple functions5.
The code therefore solves this using Newton’s method, with the F̂ factor computed with αSRK ,
(8.9), as starting value.

A drawback is that these coefficients are only valid for subcritical temperatures T0r < 1. Skaugen
[7] gives a more detailed discussion of the Twu correlation, and what can be done for supercritical
temperatures.

Finally, we point out that if one wants to implement other α-formulations into the SPUNG
code, this is straightforward as one can simply mirror the code for αSRK (if an explicit expression
for F̂ is available) or αTWU (if F̂ has to be solved iteratively).

8.3 Partial derivatives

We now calculate partial derivatives in the case where we use a cubic equation to compute the
shape factors, and where we use the conventional mixing rules for D and B. Note that they choice
of α in the cubic equation can be anything.

Let us sum up the relevant formulas once more. The principle of corresponding states tells us
that given a mixture in the state (T, V,n), we have that

Ar(T, V,n) = F̂M(T0, v0), (8.11)
5It is solvable by using the Lambert W function, but this transcendental function is not available from the

numerical libraries used by ThermoPack.



where (T0, v0) is the reference state, defined as

v0 =
V

Ĥ
, T0 =

nT

F̂
, (8.12)

where the scale factors Ĥ and F̂ are given by

Ĥ =
B

b0
, F̂ =

D

B

b0
a0(T0)

. (8.13)

Here D and B given by the van der Waals mixing rule

nB =
∑
i

ni
∑
j

njbij (8.14)

D =
∑
i

ni
∑
j

njaij(T ) (8.15)

B(n) and D are completely determined from the underlying cubic equation of state.
We again stress the point that Ĥ = Ĥ(n) only depends on composition, while F̂ = F̂ (T,n)

only depends on temperature and composition.
First we calculate the first and second order partial derivatives of Ar(T, V,n) with respect to

T , V and ni in terms of the partial derivatives of Ĥ and M with respect to T , V and ni.(
∂Ar

∂T

)
V,n

= F̂TM + F̂MT (8.16)(
∂Ar

∂V

)
T,n

= F̂MV (8.17)(
∂Ar

∂ni

)
T,V

= F̂iM + F̂Mi (8.18)(
∂2Ar

∂T 2

)
V,n

= F̂TTM + 2F̂TMT + F̂MTT (8.19)(
∂2Ar

∂V 2

)
T,n

= F̂MV V (8.20)(
∂2Ar

∂ni∂nj

)
T,V

= F̂ijM + F̂iMj + F̂jMi + F̂Mij (8.21)(
∂2Ar

∂T∂V

)
n

= F̂TMV + F̂MTV (8.22)(
∂2Ar

∂T∂ni

)
V

= F̂T iM + F̂iMT + F̂TMi + F̂MTi (8.23)(
∂2Ar

∂V ∂ni

)
T

= F̂iMV + F̂MV i (8.24)

Next we calculate the first and second order partial derivatives of M with respect to T , V and ni
in terms of the partial derivatives of M with respect to T0, v0 and the derivatives of T0 and v0 with



respect to T , V and ni.

MT = MT0T0,T (8.25)
MV = Mv0v0,V (8.26)
Mi = MT0T0,i +Mv0v0,i (8.27)

MTT = MT0T0T
2
0,T +MT0T0,TT (8.28)

MV V = Mv0v0v
2
0,V +Mv0v0,V V (8.29)

Mij = MT0T0T0,iT0,j +MT0T0,ij +Mv0v0v0,iv0,j (8.30)
+Mv0v0,ij +MT0v0(T0,iv0,j + T0,jv0,i) (8.31)

MTV = MT0v0T0,T v0,V (8.32)
MT i = MT0T0T0,TT0,i +MT0v0T0,T v0,i +MT0T0,T i (8.33)
MV i = Mv0v0v0,V v0,i +MT0v0T0,iv0,V +Mv0v0,V i (8.34)

Partial derivatives of B with respect to n

Bi =
∂

∂ni

(∑
i

∑
j ninjbij

n

)
=

(
2
∑

j njbij

)
n−

∑
i

∑
j ninjbij

n2
=

2
∑

j njbij −B
n

Bij =
∂2

∂ni∂nj

(
2
∑

k nkbik −B
n

)
=

(2bij −Bj)n− (2
∑

k nkbik −B)

n2
=

2bij −Bi −Bj
n

Partial derivatives of Ĥ with respect to n

We can get the partial derivatives of Ĥ can be written in terms of the partial derivatives of B:

Ĥi =
Bi
b0

=
2
∑

j njbij −B
nb0

(8.35)

Ĥij =
Bij
b0

=
2bij −Bi −Bj

nb0
(8.36)

Partial derivatives of v0 with respect to V and n

We now find the partial derivatives of v0. To find the derivatives with respect to composition, we
use Ĥv0 = V to get

Ĥiv0 + Ĥv0,i = 0, Ĥijv0 + Ĥiv0,j + Ĥjv0,i + Ĥv0,ij = 0.

Thus
v0,i
v0

= −Ĥi

Ĥ
= −Bi

B
, (8.37)

and
v0,ij
v0

= −Ĥij

Ĥ
− Ĥi

Ĥ

v0,j
v0
− Ĥj

Ĥ

v0,i
v0

= −Bij
B

+ 2
Bi
B

Bj
B

(8.38)

The V -derivatives of v0 can be found by differentiating Ĥv0 = V with respect to V . This gives

v0,V =
1

Ĥ
(8.39)

v0,V V = 0 (8.40)

v0,V i = − Ĥi

Ĥ2
= −Bib0

B2
(8.41)



Partial derivatives of T0 with respect to T and n

To find the derivatives with respect to composition, we use F̂ T0 = nT to get

F̂iT0 + F̂ T0,i = T, F̂ijT0 + F̂iT0,j + F̂jT0,i + F̂ T0,ij = 0.

Thus
T0,i
T0

=
T

F̂T0
− F̂i

F̂
=

1

n
− F̂i

F̂
, (8.42)

and similarly we find
T0,T
T0

=
1

T
− F̂T

F̂
(8.43)

The second order partials are given by

T0,ij
T0

= − F̂ij
F̂
− F̂i

F̂

T0,j
T0
− F̂j

F̂

T0,i
T0

, (8.44)

T0,T i
T0

= − F̂T i
F̂
− F̂i

F̂

T0,T
T0
− F̂T

F̂

T0,i
T0

+
1

F̂
(8.45)

T0,TT
T0

= − F̂TT
F̂
− 2

F̂T

F̂

T0,T
T0

. (8.46)

Note that Michelsen [3] has an error in the expression for T0,T i/T0, as the last term on the right
hand side is missing.

Partial derivatives of D with respect to T and n

Di = 2
∑
j

njaij (8.47)

DiT = 2
∑
j

nj (∂aij/∂T ) (8.48)

Dij = 2aij (8.49)

DT = 1
2

∑
i

niDiT (8.50)

DTT =
∑
i

ni
∑
j

nj
(
∂2aij/∂T

2
)

(8.51)

Partial derivatives of F̂ with respect to T and n

We now calculate the partial derivatives for F̂ with respect to temperature and composition in terms
of the partial derivatives of D, Ĥ and a0. To do this differentiate F̂ (T,n)Ĥ(n)a0(T0) = D(T,n)
with respect to composition, giving

F̂iĤa0 + F̂ Ĥia0 + F̂ Ĥa0,T0T0,i = Di = 2
∑
j

njaij ,

which when divided by D = F̂ Ĥa0 becomes

F̂i

F̂
+
Ĥi

Ĥ
+
a0,T0
aT0

T0,i =
Di

D
.



By using the expression (8.42) to eliminate T0,i, we end up with

F̂i

F̂

(
1−

a0,T0
a0

T0

)
+
Ĥi

Ĥ
+
a0,T0
aT0

T0
n

=
Di

D
,

and thus
F̂i

F̂
=

Di
D −

Bi
B −

a0,T0
aT0

T0
n

1− a0,T0
a0

T0
. (8.52)

Similarly, we find
F̂T

F̂
=

DT
D −

a0,T0
aT0

T0
T

1− a0,T0
a0

T0
. (8.53)

To derive the second order partial derivative of F̂ with respect to composition we differentiate
F̂ (T,n)Ĥ(n)a0(T0) = D(T,n) twice. This gives

F̂ijĤa0 + F̂iĤja0 + F̂iĤa0,T0T0,j+

F̂jĤia0 + F̂ Ĥija0 + F̂ Ĥia0,T0T0,j+

F̂jĤa0,T0T0,i + F̂ Ĥja0,T0T0,i + F̂ Ĥ(a0,T0T0T0,iT0,j + a0,T0T0,ij) = 2aij ,

and dividing by D = F̂ Ĥa0, we get the cleaner expression

F̂ij

F̂
+
F̂i

F̂

Ĥj

Ĥ
+
F̂i

F̂

a0,T0
a0

T0,j+

F̂j

F̂

Ĥi

Ĥ
+
Ĥij

Ĥ
+
Ĥi

Ĥ

a0,T0
a0

T0,j+

F̂j

F̂

a0,T0
a0

T0,i +
Ĥj

Ĥ

a0,T0
a0

T0,i +
a0,T0T0
a0

T0,iT0,j +
a0,T0
a0

T0,ij =
Dij

D
.

(8.54)

We similarly get
F̂T i

F̂
+
F̂i

F̂

a0,T0
a0

T0,T+

F̂T

F̂

Ĥi

Ĥ
+
Ĥi

Ĥ

a0,T0
a0

T0,T+

F̂T

F̂

a0,T0
a0

T0,i +
a0,T0T0
a0

T0,iT0,T +
a0,T0
a0

T0,T i =
DT i

D
,

(8.55)

and
F̂TT

F̂
+

2F̂T

F̂

a0,T0
a0

T0,T +
a0,T0T0
a0

(T0,T )2 +
a0,T0
a0

T0,TT =
DTT

D
. (8.56)

By substituting the expression for T0,ij into (8.54), we get

F̂ij

F̂
+
F̂i

F̂

Ĥj

Ĥ
+
F̂i

F̂

a0,T0
a0

T0,j+

F̂j

F̂

Ĥi

Ĥ
+
Ĥij

Ĥ
+
Ĥi

Ĥ

a0,T0
a0

T0,j+

F̂j

F̂

a0,T0
a0

T0,i +
Ĥj

Ĥ

a0,T0
a0

T0,i +
a0,T0T0
a0

T0,iT0,j +
a0,T0
a0

(
− F̂ij
F̂
T0 −

F̂i

F̂
T0,j −

F̂j

F̂
T0,i

)
=
Dij

D
,



and thus
F̂ij

F̂
=

Dij

D −
F̂i

F̂

Ĥj

Ĥ
− F̂j

F̂

Ĥi

Ĥ
− Ĥij

Ĥ

1− a0,T0
a0

T0

+
− Ĥj

Ĥ

a0,T0
a0

T0,i − Ĥi

Ĥ

a0,T0
a0

T0,j −
a0,T0T0
a0

T0,iT0,j

1− a0,T0
a0

T0
.

(8.57)

We also get6

F̂T i

F̂
=

DiT
D −

F̂T

F̂

Ĥi

Ĥ
− Ĥi

Ĥ

a0,T0
a0

T0,T −
a0,T0T0
a0

T0,iT0,T −
a0,T0
a0F̂

1− a0,T0
a0

T0
. (8.58)

and
F̂TT

F̂
=

DTT
D − a0,T0T0

a0
(T0,T )2

1− a0,T0
a0

T0
. (8.59)

Relationship between P0 and P

In general, we have

P = −
(
∂Ar

∂V

)
T,n

+
nRT

V
.

Using that Ar(T, V,n) = F̂M(T0, v0) we get

P = −∂V
(
F̂ (T,n)M(T0, v0)

)
+
RT

v

= −F̂Mv0v0,V +
nR(F̂ T0/n)

Ĥv0

=
F̂

Ĥ

(
−Mv0 +

RT0
v0

)
=
F̂

Ĥ
P0.

Expressing F in terms of M

Often we are more interested in the reduced residual Helmholtz energy F (T, V,n) = Ar(T, V,n)/RT
than in Ar(T, V,n) itself. First note that since F̂ = nT/T0 we get that Ar(T, V,n) = F̂M(T0, v0)
is equivalent with

F (T, V,n) =
n

RT0
M(T0, v0).

6Michelsen [3] has an error in the expression for F̂Ti/F̂ : he is missing the last term in the numerator.



(
∂F

∂T

)
V,n

= − n

RT 2
0

T0,TM +
n

RT0
MT (8.60)(

∂F

∂V

)
T,n

=
n

RT0
MV (8.61)(

∂F

∂ni

)
T,V

=

(
1

RT0
− n

RT 2
0

T0,i

)
M +

n

RT0
Mi (8.62)(

∂2F

∂V 2

)
T,n

=
n

RT0
MV V (8.63)(

∂2F

∂T∂V

)
n

= − n

RT 2
0

T0,TMV +
n

RT0
MTV (8.64)(

∂2F

∂V ∂ni

)
T

=

(
1

RT0
− n

RT 2
0

T0,i

)
MV +

n

RT0
MV i (8.65)(

∂2F

∂T 2

)
V,n

=

(
2n

RT 3
0

T 2
0,T −

n

RT 2
0

T0,TT

)
M − 2n

RT 2
0

T0,TMT +
n

RT0
MTT (8.66)

(
∂2F

∂ni∂nj

)
T,V

=

(
− 1

RT 2
0

T0,j −
1

RT 2
0

T0,i +
2n

RT 3
0

T0,iT0,j −
n

RT 2
0

T0,ij

)
M

+

(
1

RT0
− n

RT 2
0

T0,i

)
Mj +

(
1

RT0
− n

RT 2
0

T0,j

)
Mi +

n

RT0
Mij

(8.67)

(
∂2F

∂T∂ni

)
V

=

(
− 1

RT 2
0

T0,T +
2n

RT 3
0

T0,iT0,T −
n

RT 2
0

T0,T i

)
M

+

(
1

RT0
− n

RT 2
0

T0,i

)
MT −

n

RT 2
0

T0,TMi +
n

RT0
MT i

(8.68)

9 Testing the SPUNG model

To validate the implementation of the SPUNG model, various tests have been performed.

9.1 Equivalence of cubic equations vs SPUNG with cubic reference equation

Using SPUNG with SRK as both shape factor equation and reference equation should be equivalent
to using SRK directly. It is readily checked that this is indeed the for the ThermoPack SPUNG
implementation.

9.2 Computing phase envelopes

We compare the performance of the ThermoPack SPUNG model against the TPlib SPUNG model,
as well as experimental measurements. We use SRK as the shape equation and MBWR-32 as the
reference equation The mixture we consider consists of CO2 and N2 at fixed temperature T = 240 K.
The results are shown in Figure 8.

The reason why there are no TPlib points on the top of the graph is that the TPlib SPUNG
model is not able to close the envelope. This demonstrates the improved robustness of the Ther-
moPack library compared to TPlib.

Since the model is the same in TPlib and ThermoPack, the computed points for TPlib should
lie exactly on the computed curve for ThermoPack. This is clearly not the case in Figure 8. The
reason for this is that in TPlib there is a database of interaction parameters kij that have been
optimized for the SPUNG model. They are given for SRK, SRK-GD and PR, and for a range
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Figure 8: Computed and measured points on the phase envelope for the mixture CO2 −N2 at T = 240 K.

of mixtures. In Figure 9 we have plotted the same curve as in Figure 8, but using the optimized
interaction parameters in ThermoPack. The TPlib points fit perfectly, except one point (the second
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Figure 9: The CO2 −N2 phase envelope using optimized interaction parameters.

point from the left) which is an almost perfect match with with the experimental measurement.
The reason for this one anomaly is unknown. Fortunately, we have experimental data also for
CO2-O2, and Figures 10 and 11 show that the ThermoPack implementation is consistent with the
TPlib implementation. How much the optimized interaction parameters actually improve the fit,
is not known.

9.3 Comparing with density measurements

We compare density measurements for a mixture of 98 % CO2 and 2 % CH4 with three models:
standard SRK, and SPUNG-SRK with CH4 as reference component, and using respectively MBWR-
19 and MBWR-32 as reference equation. The measurements are in the pressure range 2·106−−3.5·
107 Pa, and the temperature range 225−−350 K. In Figure 12 we have plotted the deviation from
the measurements (the line) and the results using SRK (the points). There are two outliers, which
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Figure 10: The CO2 −O2 phase envelope using regular interaction parameters.
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Figure 11: The CO2 −O2 phase envelope using optimized interaction parameters.

is probably due to the SRK density solver choosing the wrong phase. To avoid this from happening
to the SPUNG calculations, the density solver which minimizes Gibbs energy was invoked when
the density for the reference component was computed. The results for the SPUNG models are
shown in Figure 13 and Figure 14.

It is clear that the SPUNG-MBWR models grossly outperforms SRK, and it seems like SPUNG-
MBWR32 is slightly better than SPUNG-MBWR19, as is to be expected. To verify this, the
absolute average (relative) deviation was computed for the datasets. The two outliers in the SRK
computations were removed before the AAD was computed, as they can probably be remedied by
choosing the most stable phase. The results are given in Table 4.

SRK SPUNG-MBWR19 SPUNG-MBWR32
AAD (%) 6.693 1.527 0.867

Table 4: Absolute average deviation from experimental density measurements.
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Figure 12: Comparing measured densites with SRK-densities. The vertical distance from point to line is
the deviation measured in mol/L.
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Figure 13: Comparing measured densites with SPUNG-MBWR19-densities. The vertical distance from
point to line is the deviation measured in mol/L.
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