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1 Introduction to CPA

CPA is an equation of state which is suitable for modeling associating mixtures, i.e. where hydrogen
bonds occur. CPA stands for Cubic Plus Association, which refers to the fact that association is
modeled as an additive contribution to the Helmholtz energy of a cubic equation of state. If one
uses SRK as the underlying cubic equation of state – which is the most common choice – then one
in other words has

ACPA = Aideal +ASRK +Aassoc. (1)

1.1 The association contribution to Helmholtz energy

Each associating molecule i is assigned association sites Ai, Bi, . . . For example, water is usually
modeled as having four associating sites: each hydrogen atom and each ’free’ electron valence pair
in oxygen is a site. A site is called bonded if it is involved in a hydrogen bond. The association
contribution for a mixture is modeled by

Aassoc

RT
=
∑
i

ni
∑
Ai

(
lnXAi −

XAi

2
+

1

2

)
(2)

where XAi is the fraction of molecules not bonded at site Ai, and is given by the nonlinear equation

XAi =
1

1 + (1/V )
∑

j nj
∑

Bj
XBj∆

AiBj
. (3)

Here ∆AiBj is called the bond association strength, and is in CPA given by

∆AiBj (T, V,n) = g(V,n) · [exp(εAiBj/RT )− 1]bijβ
AiBj , (4)

where the radial distribution function g is given by1

g(V,n) =
1

1− 0.475B(n)/V
, (5)

and B(n) =
∑

i nibi. The quantities bi are the familiar co-volume parameters of the cubic EoS.
The strength of the association is modeled using a square-well potential, and the quantities εAiBj

and βAiBj represent the well depth and width, respectively.

1.2 Mixing rules

When the CPA EoS is used for mixtures, the conventional mixing rules are applied for cubic part
of the equation, namely

a =
∑
i

∑
j

xixjaij , aij =
√
aiaj(1− kij), (6)

b =
∑
i

xibi, (7)

1There are several variants of g; this one from simplified CPA (sCPA).



where xi = ni/n is the molfraction of component i in the mixture. Note that even for mixtures
containing associating components, the interaction parameters kij given here are the only adjustable
parameters. Several alpha-formulation have been used, although the classic formulation is the most
common choice. See also Section 8.1.

There are two recognized sets of mixing rules for the association parameters:
CR-1 mixing rules for association parameters

εAiBj =
εAiBi + εAjBj

2
, βAiBj =

√
βAiBiβAjBj . (8)

Elliot’s combining rule for association parameters
This combining rule gives directly an expression for ∆AiBj :

∆AiBj =
√

∆AiBi∆AjBj . (9)

Mixtures with solvation CPA can be applied to mixtures with one self-associating component
and one non-self-asssociating compound, but where there is cross-association – solvation – between
the two compounds. Examples are the acid-gas mixtures H2O–CO2 and H2O–H2S. Since CO2–H2O
is an especially important binary for CCS applications, modeling solvation will be an important
task for ThermoPack.

One approach to modeling cross-interaction between a self-associating component i and a non
self-associating component j is to set ∆AiBj = sij∆

Ai , where sij is a constant determined by fitting
the model to experimental data. In general, sij is temperature-dependent. With this method, no
self-association is modeled for the non-self-associating component, thus preserving this qualitative
physical aspect.

Another method is discussed by Kontogeorgis [6], who suggests the so-called modified CR-1
combining rule. The procedure is to use the same expression for ∆AiBj , but with

εAiBj =
εassoc

2
, βAiBj (fitted). (10)

Also for this method, a non-self-associating component has no self-association.
The third approach is to simply model the solvating component as an associating molecule.

This approach sort of disregards the underlying physics, but has been found to give good results.
Some experimentation may be needed to figure out the appropriate association scheme.

1.3 CPA compared to other SAFT equations

Although it’s not necessary for the remainder, we briefly mention general SAFT equations. CPA
is just one in a host of equations of state which model associating components, and that are
classified as SAFT equations. SAFT stands for Statistical Associating Fluid Theory, and is –
unlike multiparameter equations of state – a physically based framework for modeling associating
mixtures. Although developed in the late 1980s and early 1990s, there is still much work being
published on SAFT.

Fortunately, all of the SAFT variants use essentially the same expression for Aassoc, the differ-
ence lying in the bond associating strength ∆AiBj . As an example, we will give the ∆AiBj as it
appears in the model PC-SAFT, namely

∆AiBj = gij · [exp(εAiBj/kT )− 1](σ3ijκ
AiBj ). (11)

The radial distribution function of the hard-sphere fluid is

gij =
1

1− ζ3
+

(
didj
di + dj

)
3ζ2

(1− ζ3)2
+

(
didj
di + dj

)2 2ζ22
(1− ζ3)2

. (12)



where
ζn =

π

6
ρ
∑
i

ximid
n
i , n = 0, 1, 2, 3, (13)

and
di = σi

[
1− 0.12 exp

(
−3

εi
kT

)]
. (14)

Note, in particular, the in PC-SAFT, the radial distribution function is temperature dependent.
Mixing rules for the PC-SAFT parameters:

σij =
1

2
(σi + σj) (15)

εij =
√
εiεj(1− kij). (16)

(Note that εAiBj and εij are completely different parameters.)
The biggest strength of PC-SAFT compared to CPA, is that the non-association part is theoreti-

cally justified. This advantage becomes especially clear when modeling polymers, which PC-SAFT
is tailored to be able to handle. For molecules having a chain-like structure, PC-SAFT indeed
outperforms CPA. On the other hand, PC-SAFT has a more complicated non-association part,
making it harder to implement (especially in ThermoPack, for which everything is built around
cubic equations of state), and also more demanding in terms of computation time. Although only
CPA will be implemented at this point, significant portions of the code can be recycled if one at
one point in the future decides to implement other SAFT variants.

1.4 The one-strength association schemes

Huang and Radosz (1990) were the first to publish a SAFT variant with extensive parameter lists.
They also classified association schemes, which has become the standard for later work on SAFT.
Ideally, one should have detailed, independent data from spectroscopy for the associating strength
for each site-site interaction. The scheme of Huang and Radosz reduces the number of parameters
to be fitted for each interaction AiBi to just one. To illustrate this one-strength association scheme,
let us consider the water molecule, with two positively polarized hydrogen atoms (sites A and B),
and two free electron pairs (sites C and D). Huang and Radosz classifies water according to the
so-called 4C scheme:

∆AA = ∆AB = ∆BB = ∆CC = ∆CD = ∆DD = 0

∆AC = ∆AD = ∆BC = ∆BD 6= 0.

Although this is the most physically appropriate one-strength association scheme for water, various
reasons (e.g. limited experimental data, or a desire for reduced complextiy), it is often modeled
according to the 3B scheme:

∆AA = ∆AB = ∆BB = ∆CC = 0

∆AC = ∆BC 6= 0.

Of course, in the 3B scheme the physical interpretation of the association sites is not so clear, but
in the end they are just fitted parameters.

In the end, the big advantage with the one-strength associating scheme, is that one just have to
give the two numbers βAB and εAB, in addition to the particular one-strength association scheme,
to fully describe the association of an associating component. (Of course, the three SRK parameters
come in addition to this.)

When modeling cross-association, there is only a contribution between the sites having the
opposite polarity.



2 The Q function and its relation to F assoc

Define the function

Q(n, T, V,X) =
∑
i

∑
Ai

ni (lnXAi −XAi + 1)− 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj∆
AiBj . (17)

Here ∆AiBj = ∆AiBj (T, V,n) is the bond association strength. If X solves the equations(
∂Q

∂X

)
(T, V,n, X) = 0, i.e.

1

XAi

− 1− 1

V

∑
j

∑
Bj

njXBj∆
AiBj = 0 ∀ XAi . (18)

then the resulting solution X = X(T, V,n) is such that2

F assoc(T, V,n) = Q(T, V,n,X(T, V,n)). (19)

We now clarify the notation used below in the expressions for the derivatives. Given a differential
operator ∂, we will in the following use ∂Qsp to mean (∂Q)(T, V,n,X(T, V,n)). For example,(
∂Qsp

∂V

)
=
(
∂Q
∂V

)
(T, V,n,X(T, V,n)). Moreover, to avoid subscripting every partial derivative to

show which variables are fixed, we agree once and for all that F assoc has (T, V,n) as independent
variables, while Q has (T, V,n,X) as independent variables. The equality (19) can also be stated
as F assoc = Q|X=X(T,V,n).

3 First-order derivatives of F assoc

We find that (
∂F assoc

∂V

)
=

(
∂Qsp
∂V

)
+
∑
i

∑
Ai

(
∂Qsp
∂XAi

)(
∂XAi

∂V

)
=

(
∂Qsp
∂V

)
,

since
(
∂Qsp

∂XAi

)
= 0. Similarly, we have(

∂F assoc

∂T

)
=

(
∂Qsp
∂T

)
and

(
∂F assoc

∂nk

)
=

(
∂Qsp
∂nk

)
.

3.1 Volume derivative(
∂F assoc

∂V

)
=

(
∂Qsp
∂V

)
(20)

=
1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

[
∆AiBj

V
−
(
∂∆AiBj

∂V

)]
.

3.2 Temperature derivative(
∂F assoc

∂T

)
=

(
∂Qsp
∂T

)
(21)

= − 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

(
∂∆AiBj

∂T

)
.

2Where F assoc(T, V,n) = AR(T, V,n)/RT and AR is the association contribution to the residual Helmholtz energy.



3.3 Composition derivative

(
∂F assoc

∂nk

)
=

(
∂Qsp
∂nk

)
=
∑
Ak

(lnXAk
−XAk

+ 1)− 1

V

∑
j

∑
Ak,Bj

njXAk
XBj∆

AkBj (22)

− 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

(
∂∆AiBj

∂nk

)
(23)

=
∑
Ak

lnXAk
− 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

(
∂∆AiBj

∂nk

)
. (24)

4 Second-order derivatives of F assoc

Let the variables ζ1, ζ2 each equal one of the scalar variables in (T, V,n). Recalling that(
∂F assoc

∂ζ1

)
(T, V,n) =

(
∂Q

∂ζ1

)
(T, V,n,X(T, V,n)),

we get (
∂2F assoc

∂ζ2∂ζ1

)
=

∂

∂ζ2

(
∂F assoc

∂ζ1

)
(25)

=

(
∂2Qsp
∂ζ2∂ζ1

)
+

(
∂2Qsp
∂ζ1∂X

)(
∂X

∂ζ2

)
. (26)

We once again stress the meaning of our notation: in the first term of (26), X is to be treated
as a constant when the cross-derivative is taken. Now, the expression (26) involves the derivative
∂X/∂ζ2. To find this derivative, we differentiate the defining relation for X(T, V,n), namely(
∂Q
∂X

)
= 0. Doing this (and taking care to transpose vectors correctly), we get

0 =
∂

∂ζ2

(
∂Qsp
∂X

)
=

(
∂2Qsp
∂X∂ζ2

)
+

(
∂X

∂ζ2

)t(∂2Qsp
∂X2

)
, (27)

yielding (
∂X

∂ζ2

)
= −

(
∂2Qsp
∂X2

)−1(
∂2Qsp
∂X∂ζ2

)t
. (28)

In conclusion, the formula for the second derivative is obtained by combining (26) and (28):(
∂2F assoc

∂ζ2∂ζ1

)
=

(
∂2Qsp
∂ζ2∂ζ1

)
−
(
∂2Qsp
∂ζ1∂X

)(
∂2Qsp
∂X2

)−1(
∂2Qsp
∂X∂ζ2

)t
. (29)

Or, if one prefers summation notation:(
∂2F assoc

∂ζ2∂ζ1

)
=

(
∂2Qsp
∂ζ2∂ζ1

)
−
∑
i,j

∑
Ai,Bj

(
∂2Qsp
∂ζ1∂XAi

)((
∂2Qsp
∂X2

)−1)
ij

(
∂2Qsp
∂XBj∂ζ2

)
. (30)



4.1 Formulas for
(
∂2Qsp

∂ζ2∂ζ1

)
(
∂2Qsp
∂T 2

)
= − 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

(
∂2∆AiBj

∂T 2

)
.

(
∂2Qsp
∂T∂V

)
=

1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

[
1

V

(
∂∆AiBj

∂T

)
−
(
∂2∆AiBj

∂T∂V

)]

(
∂2Qsp
∂T∂nk

)
=− 1

V

∑
j

∑
Ak,Bj

njXAk
XBj

(
∂∆AkBj

∂T

)

− 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

(
∂2∆AiBj

∂T∂nk

)

(
∂2Qsp
∂V 2

)
=

1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

[
−2∆AiBj

V 2
+

2

V

(
∂∆AiBj

∂V

)
−
(
∂2∆AiBj

∂V 2

)]

(
∂2Qsp
∂V ∂nk

)
=
∑
j

∑
Ak,Bj

njXAk
XBj

[
∆AkBj

V 2
− 1

V

(
∂∆AkBj

∂V

)]

+
1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

[
1

V

(
∂∆AiBj

∂nk

)
−
(
∂2∆AiBj

∂V ∂nk

)]
.

(
∂2Qsp
∂nl∂nk

)
=− 1

V

∑
Ak,Bl

XAk
XBl

∆AkBl − 1

V

∑
j

∑
Al,Bj

njXAl
XBj

(
∂∆AlBj

∂nk

)

− 1

V

∑
j

∑
Ak,Bj

njXAk
XBj

(
∂∆AkBj

∂nl

)
− 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

(
∂2∆AiBj

∂nl∂nk

)
These derivatives are all found by performing one more differentiation on the first-order derivatives
we found in section 3. However, when taking an additional derivative of

(
∂Qsp

∂nk

)
, we have to take

care to differentiate the expressions on (22) and (23), and not the simplified expression (24). This
is because the supscript sp means that X(T, V,n) should be substituted in after all the derivatives
have been performed.

4.2 Formulas for
(

∂2Qsp

∂XAi
∂ζ1

)
We have (

∂Q

∂XAi

)
=

ni
XAi

− ni −
ni
V

∑
j

∑
Bj

njXBj∆
AiBj , (31)

and thus (
∂2Qsp
∂T∂XAi

)
= −ni

V

∑
j

∑
Bj

njXBj

(
∂∆AiBj

∂T

)



(
∂2Qsp
∂V ∂XAi

)
= ni

∑
j

∑
Bj

njXBj

[
1

V 2
∆AiBj − 1

V

(
∂∆AiBj

∂V

)]

(
∂2Qsp
∂nl∂XAi

)
= −ni

V

∑
Bl

XBl
∆AiBl − 1

V

∑
j

∑
Bj

njXBjni

(
∂∆AiBj

∂nl

)
.

4.3 Solving for
(
∂X
∂V

)
and

(
∂2Qsp

∂V 2

)
simultaneously

The derivatives
(
∂X
∂V

)
and

(
∂2Qsp

∂V 2

)
are needed in the Newton iteration when solving for volume

given pressure, temperature and composition. When both of these are needed, one wants to first
solve for

(
∂X
∂V

)
from (28), and then use (26) to find

(
∂2Qsp

∂V 2

)
, and therefore a dedicated routine for

this has been implemented. To obtain
(
∂X
∂V

)
, we solve the linear system(

∂2Qsp
∂X2

)(
∂X

∂V

)
= −

(
∂2Qsp
∂V ∂X

)t
. (32)

where3 (
∂2Q

∂XAi∂XBj

)
= − ni

X2
Ai

δAiBj −
ninj
V

∆AiBj . (33)

Having found this derivative, we find
(
∂P
∂V

)
from (26):(

∂2F assoc

∂V 2

)
=

(
∂2Qsp
∂V 2

)
+

(
∂2Qsp
∂X∂V

)(
∂X

∂V

)
. (34)

5 Derivatives when using the CPA-form of ∆AiBj(T, V,n)

We now specialize to a specific functional form of ∆AiBj (T, V,n), namely that used in the CPA-
model. It is given by

∆AiBj (T, V,n) = g(V,n) · [exp(εAiBj/RT )− 1]bijβ
AiBj , (35)

where εAiBj , bij and βAiBj are constants. The first derivatives are thus given by(
∂∆AiBj

∂T

)
= −ε

AiBj

RT 2
g(V,n) exp(εAiBj/RT )bijβ

AiBj (36)(
∂∆AiBj

∂V

)
=

(
∂g(V,n)

∂V

)
· [exp(εAiBj/RT )− 1]bijβ

AiBj =

(
∂ ln g(V,n)

∂V

)
∆AiBj (37)(

∂∆AiBj

∂nk

)
=

(
∂g(V,n)

∂nk

)
· [exp(εAiBj/RT )− 1]bijβ

AiBj =

(
∂ ln g(V,n)

∂nk

)
∆AiBj (38)

3Note that only the diagonal of
(

∂2Q
∂XAi

∂XBj

)
is dependent on X.



while the second derivatives are given by(
∂2∆AiBj

∂T 2

)
= g(V,n)

(
2 +

εAiBj

RT

)
bijβ

AiBj
εAiBj

RT 3
exp(εAiBj/RT ) (39)(

∂2∆AiBj

∂V ∂T

)
= −ε

AiBj

RT 2
g(V,n) exp(εAiBj/RT )bijβ

AiBj

(
∂g(V,n)

∂V

)
(40)(

∂2∆AiBj

∂nl∂T

)
= −ε

AiBj

RT 2
g(V,n) exp(εAiBj/RT )bijβ

AiBj

(
∂g(V,n)

∂nl

)
(41)(

∂2∆AiBj

∂V 2

)
=

(
∂2g(V,n)

∂V 2

)
∆AiBj

g(V,n)
(42)(

∂2∆AiBj

∂nl∂V

)
=

(
∂2g(V,n)

∂nl∂V

)
∆AiBj

g(V,n)
(43)(

∂2∆AiBj

∂nl∂nk

)
=

(
∂2g(V,n)

∂nl∂nk

)
∆AiBj

g(V,n)
(44)

Derivatives of g(V,n)
In all common variants of CPA, the radial distribution function takes the special functional

form g(V,n) = g(η), where η is the adimensional number

η = B(n)/4V = bρ/4, where B(n) = nb =
∑
i

nibi.

Note that n here includes all components, also the non-associating ones. Two common variants for
g(η), along with their first and second derivatives, are given by

g(η) =
1

1− 1.9η
, g′(η) =

1.9

(1− 1.9η)2
, g′′(η) =

2 · 1.92

(1− 1.9η)3
(sCPA)

g(η) =
1− η/2
(1− η)3

, g′(η) =
2.5− η
(1− η)4

, g′′(η) =
3η − 9

(1− η)5
(original)

Its derivatives with respect to variables ζ1, ζ2, each being a member of (T,n), are given by(
∂g

∂ζ1

)
= g′(η)

(
∂η

∂ζ1

)
,

(
∂2g

∂ζ1∂ζ2

)
= g′′(η)

(
∂η

∂ζ1

)(
∂η

∂ζ2

)
+ g′(η)

(
∂2η

∂ζ1∂ζ2

)
, (45)

and (
∂η

∂V

)
= −B(n)

4V 2

(
∂η

∂nk

)
=

bk
4V

, (46)

(
∂2η

∂V 2

)
=
B(n)

2V 3

(
∂2η

∂nl∂V

)
= − bk

4V 2

(
∂2η

∂nk∂nl

)
= 0. (47)

5.1 Simplified CPA Derivatives

Simplified first derivatives

(
∂F assoc

∂V

)
=

1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

[
∆AiBj

V
−
(
∂∆AiBj

∂V

)]
(48)

=
1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj∆
AiBj

[
1

V
−
(
∂ ln g

∂V

)]
(49)

=
1

2

[
1

V
−
(
∂ ln g

∂V

)]∑
i

∑
Ai

ni(1−XAi) (50)



(
∂F assoc

∂T

)
= − 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

(
∂∆AiBj

∂T

)
. (51)

(
∂F assoc

∂nk

)
=
∑
Ak

lnXAk
− 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

(
∂∆AiBj

∂nk

)
(52)

=
∑
Ak

lnXAk
−
(
∂ ln g

∂nk

)
1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj∆
AiBj (53)

=
∑
Ak

lnXAk
− 1

2

(
∂ ln g

∂nk

)∑
i

∑
Ai

ni(1−XAi). (54)

Simplified formulas for
(

∂2Qsp

∂XAi
∂ζ2

)
(

∂2Qsp
∂T∂XAi

)
=− 1

V

∑
j

∑
Bj

ninjXBj

(
∂∆AiBj

∂T

)

(
∂2Qsp
∂V ∂XAi

)
=
∑
j

∑
Bj

ninjXBj

[
1

V 2
∆AiBj − 1

V

(
∂∆AiBj

∂V

)]

=

[
1

V
−
(
∂ ln g

∂V

)]
1

V

∑
j

∑
Bj

ninjXBj∆
AiBj

=

[
1

V
−
(
∂ ln g

∂V

)](
1

XAi

− 1

)
(

∂2Qsp
∂nl∂XAi

)
=− 1

V

∑
Bl

niXBl
∆AiBl − 1

V

∑
j

∑
Bj

njXBj

[
δil∆

AiBj + ni

(
∂∆AiBj

∂nl

)]

=− 1

V

∑
Bl

niXBl
∆AiBl −

[
δil + ni

(
∂g

∂nl

)]
1

V

∑
j

∑
Bj

njXBj∆
AiBj

=− 1

V

∑
Bl

niXBl
∆AiBl −

[
δil + ni

(
∂g

∂nl

)](
1

XAi

− 1

)
Simplified formulas for

(
∂2Qsp

∂ζ1∂ζ2

)
(
∂2Qsp
∂T 2

)
= − 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

(
∂2∆AiBj

∂T 2

)
.

(
∂2Qsp
∂V 2

)
=

1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

[
−2∆AiBj

V 2
+

2

V

(
∂∆AiBj

∂V

)
−
(
∂2∆AiBj

∂V 2
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=
1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj∆
AiBj

[
− 2

V 2
+

2

V

(
∂ ln g(V,n)

∂V

)
−
(
∂2g(V,n)

∂V 2

)
1

g(V,n)

]

=
1

2

∑
i

∑
Ai

ni

(
1

XAi

− 1

)[
− 2

V 2
+

2

V

(
∂ ln g(V,n)

∂V

)
−
(
∂2g(V,n)

∂V 2

)
1

g(V,n)

]



(
∂2Qsp
∂T∂V

)
=

1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj

[
1

V

(
∂∆AiBj

∂T

)
−
(
∂2∆AiBj

∂T∂V
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(
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∂T∂nk

)
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j
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(
∂∆AkBj

∂T
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2V
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(
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∂V ∂nk
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=
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j

∑
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njXAk
XBj

[
∆AkBj
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− 1

V

(
∂∆AkBj
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(
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(
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.
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∑
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∑
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∑
Ai,Bj

ninjXAiXBj

(
∂2∆AiBj

∂nl∂nk

)

6 Efficient implementation of the association contribution

We now describe an efficient implementation of the association contribution, which is outlined in
the papers by Michelsen [3] and [4].

Equation of state models with an association contribution are computationally expensive as
they have to solve an internal chemical equilibrium problem. However, using that the association
contribution to the Helmholtz energy can be found from a certain minimization procedure, will be
used to simplify the calculation of properties like pressure and chemical potentials, together with
their derivatives with respect to temperature, volume and composition.

6.1 Base equations

In the SAFT and CPA models, the association contribution to the mixture Helmholtz energy is
found from

Aassoc

RT
=
∑
i

ni
∑
Ai

(
lnXAi −

1

2
XAi +

1

2

)
. (55)

Here, A and B index bonding sites on a given molecule, and XAi denotes the fraction of A-sites on
molecule i that do NOT form bonds with other active sites. These site fractions are given implicitly
by the nonlinear equations

XAi =
1

1 +
∑

j

∑
Bj
xjXBj∆

AiBj
, (56)

where ∆AiBj is the association strength between site A on molecule i and site B on molecule j,
and depends on T , V and n, but NOT on the fraction of sites that form bonds. Differentiation



of (55) yields derived properties (i.e. the contribution from the association term to the derived
properties), e.g.

P assoc

RT
= − ∂

∂V

(
Aassoc

RT

)
=
∑
i

ni
∑
Ai

(
1

XAi

− 1

2

)
∂XAi

∂V
. (57)

We will now see, however, that by taking advantage of a certain minimization problem, there is a
computationally cheaper expression for the association pressure.

Now, define Q by

Q(n, T, V,X(n, T, V )) =
∑
i

∑
Ai

ni (lnXAi −XAi + 1)− 1

2V

∑
i,j

∑
Ai,Bj

ninjXAiXBj∆
AiBj . (58)

The reason for introducing the Q function, is that the association contribution of SAFT and CPA
to the reduced, residual Helmholtz energy, equals the value of Q at a stationary point with respect
to the site fractions X; i.e. at a point where the gradient of Q with respect to the X-coordinates
vanishes. This is shown in Michelsen [3], in addition to where Q comes from in the first place. The
association contribution to pressure is thus found from

P assoc

RT
= −∂Qsp

∂V
,

where Qsp is a stationary point with respect to the X-variables. To find the derivative on the right
hand side, we use the chain rule:

∂Qsp
∂V

=

(
∂Q

∂V

)
X

+
∑
i

∑
Ai

(
∂Q

∂XAi

)
V

∂XAi

∂V

but since the derivatives with respect to XAi are 0 at the stationary point, we get P assoc =

−RT
(
∂Q
∂V

)
X
. When this is differentiated out, we get

P assoc = −RT
2V

(
1− V

(
∂ ln g

∂V

))∑
i

∑
Ai

ni(1−XAi). (59)

Although the notation we have used up to now is the traditional one, it is unwieldy to use in
what follows. We therefore follow Michelsen [4] and use the following notation

• S is the total number of different sites for all molecules

• The totality of association sites on all molecules are indexed sequentially, k = 1, 2, . . . , S

• mk is the total number of moles of molecules that host a given site k

• Kkl = Klk = mlmk∆
lk/V

Using this notation, we can write

Q(X,m) =
S∑
k=1

mk(lnXk −Xk + 1)− 1

2

S∑
k=1

S∑
l=1

KklXkXl. (60)

When Q = Q(X,m) is written in this form, its X-derivatives are given by

gk :=

(
∂Q

∂Xk

)
= mk

(
1

Xk
− 1

)
−

S∑
l=1

KklXl, (61)



while its Hessian matrix with respect to X is

Hkl :=

(
∂2Q

∂Xk∂Xl

)
= −mk

X2
k

δkl −Kkl. (62)

Observe that, apart from the diagonal, the Hessian matrix is independent of X. The first step in
determining X is to compute K from the component parameters and the ∆-function.

6.2 Solution procedure for X

An attractive way to solve for X is formulating it as a maximation procedure. More precisely, one
utilizes the fact that for a given T , V and n, the correct value of X is the value for which Q is
maximized. The maximization is unconstrained, the maximum unique, and global convergence can
be assured. Michelsen [4] suggests the following quasi-Newton iteration scheme:

Ĥ∆X + g = 0, (63)

where Ĥ is a modified Hessian matrix with the following properties

(i) It is negative definite for all X

(ii) Ĥ→ H as X approaches the solution

Property (i) ensures that ∆X is an ascent direction, because it has a positive projection along the
gradient: gT (−Ĥ−1g) > 0. However, overstepping is still a possibility, and in that case one can
use a linesearch method, or, as we will do, simply bisect the step until an increase in Q is obtained.
Property (ii) ensures quadratic convergence.

The modification is performed as follows: From equations (61) and (62), we see that the diagonal
contribution of the hessian can be written as

mk

X2
k

=
1

Xk

mk

Xk
=

1

Xk

(
mk +

S∑
l=1

KklXl + gk

)
.

To get the modified hessian H we simply drop the gradient contribution, giving

Ĥkl :=

(
∂2Q

∂Xk∂Xl

)
= − 1

Xk

(
mk +

S∑
l=1

KklXl

)
δkl −Kkl. (64)

That Ĥ fulfills property (i) is shown in Michelsen [4], while property (ii) is obvious since g = 0 at
the solution. In conclusion, Michelsen [4] suggests the following approach for solving for X:

(1) Choose an initial estimate of X.

(2) Calculate ∆X from equation (63).

(3) Set Xnew = max(Xold + ∆X, 0.2Xold), denying more than 80% reduction in any component.

(4) Test that Xnew > 0, and that the objective function is increased: Q(Xnew) > Q(Xold).

(5) If (4) is violated, set ∆X = 1
2∆X and repeat from step (3).

(6) Check for convergence. If not converged, set Xold = Xnew and repeat from step (2).



We have also implemented a back-up procedure if the maximization approach (1)-(6) should fail
to converge in a few iterations. The back-up is the method of damped successive substitutions.
This iteration scheme is defined as follows:

X(n+1) = (1− ω)f(X(n)) + ωX(n), where fk(X
(n)) :=

mk

mk +
∑S

l=1KklX
(n)
l

. (65)

Although the damping parameter ω in principle can be tailored to the specific f , we will follow
Michelsen [4] and set ω = 0.2. With this terminology, the back-up procedure can be described as
follows

(1’) Set all elements Xk = 0.2 as the initial estimate.

(2’) Perform five iterations of successive substitutions with damping factor ω = 0.2.

(3’) Use the second-order approach above to converge the equations to desired accuracy.

6.3 Solution procedure for molar volume v

When solving for volume, a twofold nested calculation loop is required. The molar volume v
is adjusted in the outer loop, while the association equations must be solved for the matrix X
corresponding to the assumed volume in the inner loop. Having found X in the inner loop, we will
calculate not only the pressure contribution from the association term P asc = −RT

(
∂Q
∂V

)
, but also

the two derivatives (
∂X

∂V

)
and

(
∂P asc

∂V

)
. (66)

The derivative
(
∂X
∂V

)
is found from differentiating g(X(V ), V ) = 0, which by the chain rule yields

H

(
∂X

∂V

)
+

(
∂g

∂V

)
= 0. (67)

Here H is already found when solving for X, seeing as H = Ĥ− diag(gk/Xk)nk=1. The derivative(
∂Pasc

∂V

)
is then found from

− 1

RT

(
∂P asc

∂V

)
=

(
∂2Q

∂V 2

)
X

+

(
∂g

∂V

)T (∂X

∂V

)
. (68)

The derivative of the association pressure is used in the outer loop to solve for volume using a
Newton-based method, and the volume derivative of X, which is obtained as a byproduced in the
calculation of

(
∂Pasc

∂V

)
, is used to create initial estimates (step (1) above) for the inner solution loop

for X. When a correction ∆V has been determined from the Newton iteration in the outer loop,
we use, as an initial estimate for the inner loop,

X(n+1) = X(n) + ∆V

(
∂X

∂V

)
. (69)

The tolerance for accepting an inner loop solution in the volume iteration is set fairly loose, and
consequently only a single inner-loop iteration is necessary in most cases.

Iterating on the reduced density ζ
Michelsen also offers the following suggestions for a CPA volume solver. First, a robust volume

iteration should use the reduced density ζ = b/v as the independent variable. Choose, as the
equation to be solved to 0, not ζ 7→ P (ζ)− P spec, but as F (ζ) = (1− ζ)(P (ζ)− P spec).

1. Initialization. For the liquid phase, ζ = 0.99 is to be used as initial estimate. For the vapor
phase, use ζ = b/(b+ (RT/P )). The initial limits should be set to ζmin = 0, ζmax = 1.



2. At step k, calculate a new value according to Newton’s method:

ζnew = ζk −
(1− ζk)(P (ζk)− P spec)

P spec − P + (1− ζk)
(
∂P
∂V

)
T,n

Vk/ζk
. (70)

3. If ζmin < ζnew < ζmax, take ζk+1 = ζnew. Otherwise, take ζk+1 = (ζmin + ζnew)/2.

4. If F (ζk+1) > 0, set ζmax = ζnew; otherwise, set ζmin = ζnew.

5. Continue until convergence.

7 Testing the CPA code

7.1 Mathematical consistency

We have implemented unittests for all the derivatives of all the functions occuring in the CPA imple-
mentation. Specifically, we have tested the following analytical derivatives against their numerical
counterpart using finite differences:

• g(V,n), first and second derivatives;

• Q(T, V,n,X), first and second derivatives;

• ∆AiBj (T, V,n), first and second derivatives;

• X(T, V,n), first derivatives;

• F (T, V,n), first and second derivatives;

• P (T, V,n), first and second derivatives;

• Z(T, V,n), first derivatives;

• SR(T, P, n), first derivatives;

• GR(T, P, n), first derivatives;

• HR(T, P, n), first derivatives;

• ln(φ)(T, P, n), first derivatives.

7.2 Thermodynamic consistency

We have set up the supertest cpa_consistency, which is passed with reasonable tolerances. Thus,
all of ThermoPack’s implemented thermodynamic identities are fulfilled to a satisfactory accuracy.

7.3 Testing physical predictions

We tested what SRK-CPA gave as the liquid density of water at 277 K, and compared it with SRK
and PR.

• SRK-CPA: 1019 kg/m3.

• SRK: 766 kg/m3.

• PR: 859 kg/m3.

We thus see that the error of SRK-CPA (1.9 %) is about one order of magnitude smaller than that
of SRK (23.4 %) and PR (14.1 %).



7.4 Reduction to cubic equation

Although the CPA code does not handle pure components without association, we can trick the
code to do so by assigning it an arbitrary association scheme, but with association parameters
ε = β = 0. By assigning a0, b and c1 to be what they are in the SRK equation, SRK-CPA and SRK
should be equivalent. We have verified that the two EoS indeed seem to give the same results, by
computing the pressure at given (T, V ), and solving for the volume at given (T, P ).

8 Overview of the CPA code

8.1 Cubic equations of state with fitted parameters

The usual formulation of PR and SRK for pure components is given by

P =
RT

v − b
− a0α(T )

(v + δ1b)(v + δ2b)
,

with

a0 = Ωa
(RTc)

2

Pc
, b = Ωb

RTc
Pc

, α(T ) =
(

1 + c1(1−
√
T/Tc)

)2
, c1 = m(ω). (71)

The constants δ1, δ2,Ωa,Ωb and the function m are inherent to the equation of state. The critical
temperature Tc, critical pressure Pc and acentric factor ω are properties of the component, and are
needed to capture the peculiarities of the component. The specific forms of a0 and b result from
demanding that dP/dV = d2P/dV 2 = 0 at (T, P ) = (Tc, Pc), while the function m was devised to
fit the vapor pressure data of hydrocarbons.

Instead of using the formulas (71) to compute a0, b and c1, one can also simply fit them (e.g.
using liquid volume and vapor pressure data). This is usually necessary when the cubic term is
not the only term in the full equation of state (as in e.g. CPA), simply because the formulas
(71) were derived under the assumption that the cubic contribution is the only contribution to
pressure. Another approach is of course to retain the expressions (71), and to fit any parameters
in the non-cubic terms accordingly. This latter approach does not seem reasonable, seeing as the
first approach will always give a fit which is as least as good as the latter, and because the latter
approach (71) essentially forces the cubic equation to try to do something it wasn’t designed to do
(e.g. correlate vapor pressure of self-associating compounds).

Kontogeorgis and Folas [6] have compiled fitted parameters for a0, b and c1 for use in the SRK-
CPA equation. Their database covers both self-associating and non self-associating components.
The parameters for some of the most common components have been recorded in ThermoPack, in
the module cpa_parameters.

It should also be mentioned that although the classic alpha formulation α(T ) = (1 + c1((1 −√
T/Tc))

2 is most common, there is nothing in the way for using other alpha formulations, such as
e.g. the well-known variants by Twu or Mathias.

8.2 The Helmholtz energy in ThermoPack

One needs to be careful when adding the contributions F cb and F assoc to get the total reduced
residual Helmholtz energy F . In general we have that the reduced residual Helmholtz energy can
be written as F (T, V,n) = k · F̃ (T, 1000V/k,n/k), where k is a constant, which happens to equal∑

i ni. ThermoPack’s cbhelm-module gives the derivatives of F̃ . Thus, to get the cubic contribution



F cb to the total reduced residual Helmholtz energy, we need to use the following formulas:

F cb = k · F̃ (72)

F cbT = k · F̃T (73)

F cbV = 1000 · F̃V (74)

F cbn = F̃n (75)

F cbTT = k · F̃TT (76)

F cbTV = 1000 · F̃V T (77)

F cbTn = F̃nT (78)

F cbV V = 1000 · 1000 · F̃V V /k (79)

F cbV n = 1000 · F̃nV /k (80)

F cbnn(i, j) = F̃nn/k. (81)

8.3 New modules, and changes in existing modules

Below we list the routines we have modified in order to implement CPA, ordered by module. This
may be helpful if one is working in ThermoPack and sees some CPA-related code one doesn’t
understand.

cpa

cpa_set_scheme_and_fitted_parameters: This routine has different behavior depending on whether
the mixture solvates or not. If it is not solvating, it does the following:

If the component is not in the CPA database, we use the standard (SRK or PR) values already
If the component is in the CPA database, the parameters in the database are used
cpa_init : Allocates memory, retrieves the relevant parameters from the module cpa_parameters,

and finally uses the parameters together with the inputted mixing rules to initialize the global vari-
ables in the cpa-module. Note that cpa_init is called after selectEOS in init_thermoPack.

The routines in this module can be separated into two categories: back-end routines and front-
end routines. The back-end routines sometimes assume that other routines have been called prior
to calling it, a typical example being a routine that takes in X_k and (T,V,n), and assumes
that solve_for_X_k has been called so that the inputted X_k is consistent with (T,V,n). The
dependencies of a back-end routine are given before the code for the routine. The front-end routines
have no such dependencies.

eoslibinit

init_thermopack : The cpa model is used if eosstr(1:3)=”CPA”.SelectEOS is called before cpa_init,
since the global cbeos instance has to be initialized before cpa_init is called. Moreover, cpa_init is
only called for the first component in the cbeos-vector, since we don’t want to recalculate the global
parameters in cpa.f90 over and over. For the other components, we call cpa_set_scheme_and_fitted_parameters
(which involves some removable overhead since some things are done ncbeos times, but this isn’t
critical since it is an initialization routine).

cpa_parameters

A record of pure-component fitted parameters, as well as binary interaction coefficients. Note that
the parameters a0, b and ω are often replaced by fitted parameters.



As of now, the module cpa_parameters is in the file cpa_parameters.f90, but eventually it
should probably be moved to tpinputdb.f90, where all other parameters are stored.

We point out that some common associating components (e.g. ethanol) are not stored in the
module compdatadb, and therefore ThermoPack can not be initialized with these components.

The c1 parameter is used only when ThermoPack is initialized with the classic alpha formulation.
The fitted parameters a0 and b, if they exist in the database, are per now always used for CPA.
However, if one wants to use the “standard” (SRK or PR) values for these parameters in terms of
critical properties, then one can simply iterate through the global comp-vector, set a0 and b equal
to zero, and call the routine cbCalcMixtureParams. Using the fitted parameters if they exist seems
like reasonable default behavior.

compdata

Added the three parameters b_cpa, a0_cpa and c1_cpa in the gendata struct (which is the struct
holding component data). These are initially set to zero, and then possibly – depending on the
options the user chooses and whether fitted values exist in the database – updated to their fitted
values in cpa_parameters.

eosdata

Added the integer parameters cpaSRK and cpaPR, which will be set to eosidx in the global eoscubic-
instance cbeos. Also added the integer parameter cbMixClassicCPA, which will be set to mruleidx
in cbeos. The reason we need an own CPA-indicator for the classical (van der Waals) mixing rule,
is that we need to retrieve the interaction parameters from the CPA_parameters database, and
not the eosdatadb database where the other interaction parameters are stored.

tpselect

selectEOS : Initialize cbeos%eosidx to the integer parameter cpaSRK if eosstr=’CPA-SRK’. Simi-
larly for CPA-PR. Also cbeos%mruleidx is set to cbMixClassicCPA.

tpSelectInteractionParameters: If cbeos%mruleidx=cbMixClassicCPA, retrieve interaction pa-
rameters from the cpa_parameters database if they exist. If not, use the interaction parameters
from the usual eosdatadb database.

copyFromDB : Called from SelectComp, this helper function now also sets component%b_cpa=0.0,
component%a0_cpa=0.0 and component%c1_cpa=0.0.

tpcbmix

cbCalcParameters: cpaSRK and cpaPR are assigned the same alpha, beta, delta and gamma as
cbSRK and cbPR, respectively. However, (α, β, γ) are only used to compute m(ω) = α+βω− γω2

if c1 isn’t fitted (i.e. if it is set to 0.0 in the global eoscubic-instance cbeos).
cbCalcM : cpaSRK and cpaPR behaves the same way as cbSRK and cbPR, namely that cbeos%m1

and cbeos%m2 are calculated. The denominator in the attractive part of the cubic EoS is then m1
times m2.

cbCalcOmegaZc: This routine computes many single-component properties, amongst other a0
and b. Therefore we have to stipulate that, in the case of a CPA model, b_cpa and a0_cpa should
be used.

cbCalcAmix : No significant changes; cbMixClassicCPA should behave the same way as cbMix-
Classic, i.e. call vanderWaalsMix.



cbAlpha

calcAlpha_classic_CPA: New routine. Does the same as calcAlpha_classic, except that instead of
using m(ω) = α+ βω − γω2, it uses the fitted parameter c1 stored in the global comp-vector.

cbCalcAlphaTerm: If cbeos%eosidx equals cpaSRK or cpaPR, and if one uses the classical alpha
correlation, then we should use the fitted parameter if it has been set, and the usual formulation
α-formulation using m(ω) if not.

tpsingle

The only changes made were that the following functions also works with CPA: TP_CalcZfac,
TP_CalcEnthalpy, TP_CalcEntropy, TP_CalcFugacity, TP_CalcPressure, Gres.

9 Adapting pure component parameters

There does not seem to be any readily available CPA-parameters for CO2 modeled as an associating
component. We have therefore fitted the five pure component parameters a0, b, c1, ε, β to PVT-
points on CO2’s boiling point curve, using the association scheme 1 (i.e. modeling CO2 as having
one association site). The objective function minimized was

O(Λ) =
∑
i

(Pbub(T expi ; Λ)− P exp

P exp

)2

+

(
vliq(T

exp
i , Pi;

exp Λ)− vexpliq

vexpliq

)2
 ,

where Λ = (a0, b, c1, ε, β) represents the adjustable parameters. According to [6] one should use
PVT data on the boiling point curve ranging from reduced temperatures 0.5 to 0.95. Extending
the reduced temperature to values close to one is of minor importance, since association models
overpredict the critical temperature.

Note that we have chosen to minimize the squared deviations – not the squared relative devia-
tions – since we want to weight more the deviations near the critical point (high pressures).

The resulting parameters have been stored in the parameter database, cpa_parameters.f90.

References

[1] Gross J., Sadowski G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation
Theory for Chain Molecules. Industrial and Engineering Chemistry Research 2001, 40, 1244–
1260.

[2] Kontogeorgis, Georgis M. and Folas, Georgios K., Thermodynamic Models for Industrial Ap-
plications, Wiley 2010

[3] Michelsen M.L., Hendriks E.M. Physical Properties from Association Models. Fluid Phase
Equilibria 2001, 180, 165–174.

[4] Michelsen M.L. Robust and Efficient Solution Procedures for Association Models. Industrial
and Engineering Chemistry Research 2006, 45, 8449–8453.

[5] Müller E.A., Gubbins K.E. Molecular-Based Equations of State for Associating Fluids: A
Review of SAFT and Related Approaches. Industrial and Engineering Chemistry Research
2001, 40, 2193–2211.

[6] Kontogeorgis, G.M., Folas, G.K. Thermodynamic Models for Industrial Applications. Wiley
2010.


	Introduction to CPA
	The association contribution to Helmholtz energy
	Mixing rules
	CPA compared to other SAFT equations
	The one-strength association schemes

	The Q function and its relation to Fassoc
	First-order derivatives of Fassoc
	Volume derivative
	Temperature derivative
	Composition derivative

	Second-order derivatives of Fassoc
	Formulas for (2 Qsp2 1)
	Formulas for (2 QspXAi 1)
	Solving for (XV) and (2 QspV2) simultaneously

	Derivatives when using the CPA-form of Ai Bj(T,V,n)
	Simplified CPA Derivatives

	Efficient implementation of the association contribution
	Base equations
	Solution procedure for X
	Solution procedure for molar volume v

	Testing the CPA code
	Mathematical consistency
	Thermodynamic consistency
	Testing physical predictions
	Reduction to cubic equation

	Overview of the CPA code
	Cubic equations of state with fitted parameters
	The Helmholtz energy in ThermoPack
	New modules, and changes in existing modules

	Adapting pure component parameters

