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1 Introduction

The starting point for developing a kinetic model for multicomponent, high density mixtures is the same
as that for the binary, single component case, with a minor modification. The Boltzmann equations for
an N component mixture may be written as

[
∂

∂t
+ ui · ∇+

(
Fi

mi

)
· ∂

∂ui

]
fi =

∑
j

Jij(fifj), i = {1, 2, ..., N} (1.1)

where t is the time, ui is the velocity, Fi is the sum of external forces, mi is the mass and fi is the
velocity distribution function (vdf.) of species i. Jij is the streaming operator which becomes

Jij(fifj) ≡
∫ ∫ ∫

χij(r, r+ σij k̂)f
′
i(r)f

′
j(r+ σij k̂)− χij(r, r− σij k̂)fi(r)fj(r− σij k̂)bdbdϵduj (1.2)

where k̂ is the unit vector connecting the two particles, b is the impact parameter and ϵ is the angular
coordinate in the plane of b. The prime in f ′i denotes functions of the post-collision velocities. In the
same manner as for low-density mixtures, the streaming operator describes the rate of change in the vdf.
of species i due to collisions with species j.
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The modification when comparing to the low-density streaming operator is the introduction of the factor
χij , the pair distribution function of the particles, which modifies the probability of finding particles i
and j at positions ri and rj . Furthermore, the vdf. of particle j in the integral of Equation (1.2) is

evaluated at r±σij k̂ rather than at r. Here, σij is taken to be the distance between the centre of mass of
the particles ”at contact”. For hard spheres, this definition is unproblematic but for particles interacting
with some realistic potential the definition of being ”at contact” is slightly less clear. For now, σij may
be regarded as a parameter in the range of the molecular sizes, that is independent of particle velocity
and position.

Following the Enskog solution method, [1] de Haro et al. find that a first approximation to the vdf. may
be written as

f
(1)
i = f

(0)
i [1 + Φi] (1.3)

where

f
(0)
i = ni

(
mi

2πkBT

) 3
2

exp
[
−U 2

i

]
(1.4)

is the Maxwell distribution function, with the peculiar velocity Ui ≡ ui − um defined relative to the
centre of mass velocity um and the dimensionless peculiar velocity defined as U 2

i ≡ mi

2kBT Ui. ni is used
to denote the particle density of species i.

Equivalently to the low-density case, f
(0)
i satisfies the conservation equations of mass, energy and mo-

mentum exactly. That is, ∫
f
(0)
i dui = ni, ∀ i∑

i

∫
f
(0)
i miuidui = ρum

∑
i

∫
f
(0)
i

mi

2
U2

idui =
3

2
nkBT

(1.5)

where ρ denotes the mass density of the mixture. Thus, for all r > 0 we can require that∫
f
(r)
i dui = 0, ∀ i∑

i

∫
f
(r)
i miuidui = 0

∑
i

∫
f
(r)
i

mi

2
U2

idui = 0.

(1.6)

The equation of conservation of momentum is obtained by multiplying Equation (1.1) by miui. Reorder-

ing this equation and inserting for f
(0)
i , one can identify the hydrostatic pressure as

p = pk + pϕ, pk = nkBT, pϕ =
2π

3
n2kBT

∑
i

∑
j

xixjσ
3
ijχij (1.7)

where xi denotes the mole fraction of species i.

In determining the first order approximation to the vdf. it is found that Φi is of the form

Φi = − 1

n
Λi∇ lnT − 1

n
BBBi : ∇um +

1

n
Hi∇ · um − 1

n

∑
j

D
(j)
i d′

j (1.8)

where d′
j is defined by
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di =
∑
j ̸=i

ωjd
′
i − ωid

′
j (1.9)

with ωi denoting the weight fraction of species i and

di = − ρi
ρnkBT

∇p+∑
j

ρj

(
Fi

mi
− Fj

mj

)+∑
j

xi

(
δi,j +

4π

3
njMijσ

3
ijχij

)
∇ lnT +

xi
kBT

∇Tµj (1.10)

where δi,j is the Kronecker delta and Mij = mi

mi+mj
. The final term, the gradient in chemical potential

at constant temperature may be rewritten as

xi
kBT

∇Tµi =
xi
kBT

∑
j

(
∂µi

∂nj

)
T,nk ̸=j

∇nj (1.11)

yielding

di = − ρi
ρnkBT

∇p+∑
j

ρj

(
Fi

mi
− Fj

mj

)+
∑
j

xi

(
δi,j +

4π

3
njMijσ

3
ijχij

)
∇ lnT +

1

n
Eij∇nj (1.12)

where one should recall that ni denotes the particle density of component i.

The response functions Λi, BBBi, Hi and D
(j)
i are related to the thermal conductivity, shear viscosity, bulk

viscosity and diffusion coefficient of the mixture. In the same manner as for a dilute mixture, one may
determine the transport coefficients by writing the response functions as polynomial expansions in the
Sonine polynomials, and requiring that these expansions obey the constrains posed by the summational
invariants.

In the following sections the resulting equations for the transport coefficients, and their relation to the
fluxes will be given. In the case of diffusion, the matter of how the diffusion coefficient should be defined
will be addressed.

2 Diffusion

The molar flux of species i in the centre-of-mass frame of reference is related to the vdf. as

J
(n,m)
i = ni(ūi − um) =

∫
fiUidui. (2.1)

The diffusive response functions D
(j)
i are written as the Sonine polynomial expansions

D
(j)
i =

mi

2kBT

∞∑
p=0

d
(p)
i,j S

(p)
3/2(U

2) (2.2)

At constant temperature, the integral of Equation (2.1) may be evaluated in terms of the d
(r)
i,j expansion

coefficients as
J
(n,m)
i = −xi

2

∑
j

d
(0)
i,j dj (2.3)

where dj may be appropriately simplified in the absence of a temperature gradient.

This section will first describe the equations that must be solved to determine the expansion coefficients
of the diffusive response function, then the relationship between the diffusive fluxes and driving forces
is discussed. Finally, several ways of defining the diffusion coefficient in a mixture are introduced, and
explicit expressions relating the diffusion coefficients to the expansion coefficients are given.
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2.1 Determining the expansion coefficients

Using the orthogonality properties of the Sonine polynomials and inserting this expansion into the con-
strains posed by the summational invariants, one finds that the expansion coefficients must satisfy

s∑
j=1

N∑
q=0

Λpq
ij d

(q)
j,k =

8

25kB

(
δi,k − ρi

ρ

)
δp,0,


i = {2, 3, ..., s}
p = {0, 1, ..., N}
k = {1, 2, ..., s}

s∑
j=1

N∑
q=0

Λ
(pq)
1j d

(q)
j,k = 0,

{
k = {1, 2, ..., s}
p = {1, 2, ..., s}

s∑
j=1

ρj
ρ
d
(0)
j,k = 0, k = {1, 2, ..., s}

(2.4)

where Λpq
ij are given by

Λpq
ij = xixjχij

[
S
(p)
3/2(U

2
i )UUU

2
i , S

(p)
3/2(U

2
j )UUU

2
j

]
ij
+ δi,jxi

∑
k

xkχik

[
S
(p)
3/2(U

2
i )UUU

2
i , S

(p)
3/2(U

2
i )UUU

2
i

]
ik
. (2.5)

The square bracket integrals may be written as linear combinations of the collision integrals. [2] Thompson
et al. identify these integrals as

[
S
(p)
3/2(U

2
i )UUU

2
i , S

(p)
3/2(U

2
j )UUU

2
j

]
ij
= 8M

q+ 1
2

ij M
p+ 1

2
ji

min[p,q]+1∑
ℓ=1

p+q+2−ℓ∑
r=ℓ

ApqrℓΩ
(ℓ)
ij (r)

[
S
(p)
3/2(U

2
i )UUU

2
i , S

(p)
3/2(U

2
i )UUU

2
i

]
ik

= 8

min[p,q]+1∑
ℓ=1

p+q+2−ℓ∑
r=ℓ

A′
pqrℓΩ

(ℓ)
ik (r).

(2.6)

The set of equations (2.4) may be written as

DDDd = δ (2.7)

where DDD is a (Ns2 ×Ns2) matrix consisting of the blocks

DDD =

 ωωω

ΛΛΛ
(p>0)
1

ΛΛΛi>1

 (2.8)

with

ωωω =


ω(1)

ω(2)

...
ω(s)


ω(k) =

(
0 . . . ×Ns(k − 1) . . . 0 ω1 ω2 . . . ωs 0 . . . ×s(Ns−N(k − 1)− 1) . . . 0

)
(2.9)
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ΛΛΛ
(p>0)
1 =



Λ(1, 1)
Λ(1, 2)

...
Λ(1, N)
Λ(2, 1)

...
Λ(s,N)


,

Λ(k, p) =
(
0 . . . ×Ns(k − 1) . . . 0 Λp0

11 Λp0
12 . . . Λp0

1s Λp1
11 . . . ΛpN

1s 0 . . . ×Ns(s− k) . . . 0
)

(2.10)

ΛΛΛi>1 =


ΛΛΛk=1

ΛΛΛk=2

. . .

ΛΛΛk=s



ΛΛΛk =


ΛΛΛ

(00)
i>1 ΛΛΛ

(01)
i>1 . . . ΛΛΛ

(0N)
i>1

ΛΛΛ
(10)
i>1

. . .
...

...
. . .

...

ΛΛΛ
(N0)
i>1 . . . . . . ΛΛΛ

(NN)
i>1

, ΛΛΛ
(pq)
i>0 =


Λpq
21 Λpq

22 . . . . . . Λpq
2s

Λpq
31

. . .
...

...
. . .

...
Λpq
s1 . . . . . . Λpq

s,(s−1) Λpq
ss


(2.11)

d and δ are given as

d =



d
(0)
1,1

d
(0)
2,1
...

d
(0)
s,1

d
(1)
1,1
...

d
(1)
s,1
...

d
(N)
s,1

d
(0)
1,2
...

d
(N)
s,2
...

d
(N)
s,s



, δ = − 8

25kB



0
...

×Ns
...
0

δ(1)

δ(2)

...

δ(s)


, δ(k) =



ω2

...
ωk−1

ωk − 1
ωk+1

...
ωs

0
...

×(N − 1)(s− 1)
...
0



(2.12)
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2.2 Flux-Force relations

Inserting the polynomial expansion of D
(j)
i into Equation (2.1) one finds that at uniform temperature

and pressure, and in the absence of external forces

J
(n,m)
i = −xi

2

∑
j

d
(0)
i,j dj

= − xi
2n

∑
j

d
(0)
i,j

∑
k

Ejk∇nk

≡ − xi
2n

∑
k

∇nk
∑
j

Ejkd
(0)
i,j

(2.13)

where Eij ≡ ni

kBT

(
∂µi

∂nj

)
T,nk ̸=j

.

At this point it should be noted that the driving forces dj are not independent, but satisfy the relation∑
j dj = 0, following from the Gibbs-Duhem equation. Due to this dependency there are several manners

in which one may identify the diffusion coefficient of a multicomponent mixture. Equation (2.13) will be
the starting point from which the diffusion coefficient is related to the polynomial expansion coefficients.
It is therefore convenient to denote

J
(n,m)
i = −

∑
j

D
(E,m)
ij ∇nj (2.14)

where
D

(E,m)
ij ≡ xi

2n

∑
k

Ekjd
(0)
i,k (2.15)

In order to identify the diffusion coefficient related to different driving forces, it may be useful to express

J
(n,m)
i in terms of the mole fraction gradients ∇xi, as these conveniently sum to zero. Taking

∇nk = n∇xk + xk∇n

= n∇xk + xk
∑
ℓ

(
∂n

∂xℓ

)
T,p

∇xℓ

= n∇xk + xk
∑
ℓ

−

(
∂p
∂xℓ

)
T,n(

∂p
∂n

)
T,x

∇xℓ

= n∇xk + xk
∑
ℓ

−

(
∂T
∂xℓ

)
p,n(

∂T
∂n

)
p,x

∇xℓ

=
∑
ℓ

nδk,ℓ − xk

(
∂p
∂xℓ

)
T,n(

∂p
∂n

)
T,x

∇xℓ

≡
∑
ℓ

ϑkℓ∇xℓ

(2.16)

where the final equality defines ϑkℓ and the equality on the fourth line can be derived by differentiating
the total differential of density

dn =

(
∂n

∂T

)
p,x

dT +

(
∂n

∂p

)
T,x

dT +
∑
i

(
∂n

∂x

)
T,p

dxi (2.17)
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with respect to xi and n, and using the fact that
(

∂n
∂xi

)
p,n

=
(

∂n
∂xi

)
T,n

= 0 and
(
∂n
∂n

)
p,x

=
(
∂n
∂n

)
T,x

= 1.

Inserting Equation (2.16) into Equation (2.13) yields

J
(n,m)
i = − xi

2n

∑
k

∑
ℓ

ϑkℓ∇xℓ
∑
j

Ejkd
(0)
ij

= − xi
2n

∑
ℓ

∇xℓ
∑
k

ϑkℓ
∑
j

Ejkd
(0)
ij .

(2.18)

Alternatively, one may choose to express the flux using a set of independent gradients. Using the condition∑
j dj = 0 to express ∇ni as

∑
j

dj =
∑
j

∑
k

Ejk∇nk = 0

∇ni
∑
j

Eji +
∑
k ̸=i

∇nk
∑
j

Ejk = 0

∇ni = −
∑
k ̸=i

∇nk

∑
j Ejk∑
j Eji

≡ −
∑
k ̸=i

∇nk
E′

k

E′
i

,

(2.19)

where the final equality defines E′
i =

∑
j Eji, and inserting into Equation (2.13) one arrives at

J
(n,m)
i = − xi

2n

∑
k

∇nk
∑
j

Ejkd
(0)
ij

= − xi
2n

∇ni
∑
j

Ejid
(0)
ij +

∑
k ̸=i

∇nk
∑
j

Ejkd
(0)
ij


= − xi

2n

∑
k ̸=i

∇nk
∑
j

(Ejk − Eji
E′

k

E′
i

)d
(0)
ij .

(2.20)

As shown elsewhere, [3] the molar fluxes in the centre of mass FoR can be translated to another frame of
reference B via the matrix transformation

J(B) =ΨΨΨB,mJ(m) (2.21)

where

ψBm
ij = δi,j − xi

(
bj
b
− Mjbℓ

bMℓ

)
(2.22)

where δi,j is the Kronecker delta, xi denotes the mole fraction of species i,Mj is the molar mass of species

j, b =
(
∂B
∂n

)
T,p,x

is the molar value of the extensive property B, bj ≡
(

∂B
∂nj

)
T,p,nk ̸=j

is the partial molar

value of B with respect to species j and ℓ denotes an arbitrary component.

Note that because ℓ denotes an arbitrary component

The vector J(B) is

J (B) =


JB
1

JB
2
...
JB
s

 (2.23)

and equivalent for J(m).

This transformation can also be used to translate the ”apparent” diffusion coefficients between different
frames of reference, as is discussed in the following section.
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2.3 Defining the diffusion coefficients

The diffusion coefficients of a mixture may be defined through the relationship between the fluxes and
driving forces in a mixture. In this section Equation (2.14), describing the relationship between the
molar flux in the centre of mass FoR and the molar density gradients, will be related to other flux-force
relationships through which the diffusion coefficients are commonly defined.

2.3.1 Binary mixtures

The molar flux in a binary mixture is often described by Ficks law in the centre-of-moles frame of
reference. This is convenient in the case of fairly dilute mixtures in which equimolar counter diffusion
applies. Ficks law for a binary mixture reads

J
(n,n)
1 = −DFick

12 ∇n1 (2.24)

where the superscript (n, n) indicates that the flux is in the molar basis, in the centre-of-moles FoR.
Translating the fluxes of Equation (2.14) to the centre of moles frame of reference yields(

J
(n,n)
1

J
(n,n)
1

)
= −ΨΨΨ(n,m)DDD(E,m)

(
∇n1
∇n2

)
≡ −DDD(E,n)

(
∇n1
∇n2

)
. (2.25)

where the final equality defines DDD(E,n) ≡ ΨΨΨ(n,m)DDD(E,m). By Equation (2.19)

∇n2 = −E
′
1

E′
2

∇n1 (2.26)

such that

J
(n,n)
1 = −D(E,n)

11 ∇n1 −D
(E,n)
12 ∇n2 =

(
D

(E,n)
12

E′
1

E′
2

−D
(E,n)
11

)
∇n1. (2.27)

Thereby, the Fickean diffusion coefficient in the molar basis is identified as

DFick
12 = D

(E,n)
12

E′
1

E′
2

−D
(E,n)
11 . (2.28)

2.3.2 Multicomponent mixtures

de Haro et al. define the diffusion coefficient through a multicomponent generalization of Ficks law in
the centre of mass FoR

J
(n,m)
i =

1

mi

∑
j ̸=i

Dfick
ij mj∇nj . (2.29)

This expression has the advantage of reducing to the commonly used expression

J
(n,m)
i = −D12∇n1 (2.30)

in the case of a binary mixture. Comparing Equation (2.29) to (2.20) one finds that

Dfick
ij = − ximi

2nmj

∑
j

(Ejk − Eji
E′

k

E′
i

)d
(0)
ij . (2.31)

An alternative to the generalized Fickean diffusion coefficient is the Maxwell-Stefan diffusion coefficient
for multicomponent mixtures. It is defined by

∇xi = −
∑
j ̸=i

xixj
DM.S.

ij

(ūi − ūj) (2.32)

As shown by
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For a realistic mixture, it is of interest to separate the factors Eij , which may be computed from an

equation of state (EoS) from the polynomial expansion coefficients d
(0)
i,j which can be computed from

kinetic theory without requiring an accurate equation of state. Writing the fluxes as

J(n,m) =DDDkinΓΓΓ∇n (2.33)

and comparing to Equation (2.13), one finds that this separation can be achieved by using

DDDkin = − 1

2n


x1d

(0)
1,1 x2d

(0)
1,2 . . . x1d

(0)
1,s

x1d
(0)
2,1 x2d

(0)
2,2

...
...

...
. . .

...

x1d
(0)
s,1 x2d

(0)
s,2 . . . xsd

(0)
s,s

 , ΓΓΓ =


E11 E12 . . . E1s

E21 E22

...
...

...
. . .

...
Es1 Es2 . . . Ess

 (2.34)

One should note that these matrices are not invertible and that the coefficients do not reduce to the Fick-
ean diffusion coefficients in the case of a binary mixture. This formulation is still convenient, as it allows
one to transform the coefficients directly to another frame of reference B by the transformation

J((B)) =ΨΨΨB,mJ(n,m)

=ΨΨΨB,mDDDkinΓΓΓ∇n

=DDDkin,BΓΓΓ∇n

DDDkin,B ≡ ΨΨΨB,mDDDkin

(2.35)

where DDDkin,B is the apparent kinetic diffusion coefficient matrix in the B FoR. This may then be trans-
formed as desired by the same procedure as that used to arrive at Equation (2.31) of one wishes to express
the fluxes as a function of only independent gradients.

3 Thermal diffusion

Reiterating that the flux of species i in the centre of mass frame of reference is given as

J
(n,m)
i = ni(ūi − um) =

∫
fiUidui. (3.1)

Investigate now the thermal response functions Λi, which are expanded in the Sonine polynomials
as

Λi = − mi

2kBT

∞∑
p=0

a
(p)
i S

(p)
3/2(U

2) (3.2)

This section will first describe how the expansion coefficients a
(p)
i are determined, before relating the

coefficients of Equation (3.11) to the thermal diffusion coefficient (DT ). The relationship to the thermal
diffusion ratio (kT ), thermal diffusion factor (αT ) and Soret coefficient (ST ) are covered at the end of the
section.
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3.1 Determining the expansion coefficients

In order to satisfy the constraints posed by the summational invariants, the expansion coefficients a
(p)
i

must satisfy ∑
i

ωia
(0)
i = 0

∑
j

∑
q

Λ
(pq)
1j a

(q)
j =

4

5kB
x1K1δp1, p = {1, 2, ..., N}

∑
j

∑
q

Λ
(pq)
ij a

(q)
j =

4

5kB
xiKiδp1,

{
i = {2, 3, ..., s}
p = {0, 1, ..., N}

(3.3)

where ωi denotes the weight fraction of species i, and Λ
(pq)
ij are given by Equation (2.5). This set of

Equations may be written in matrix form in a manner analogous to that in Section 2.1,

ΛΛΛa = λ (3.4)

where ΛΛΛ is a Ns×Ns matrix consisting of the blocks

ΛΛΛ =

 ω

ΛΛΛ
(p>0)
1

ΛΛΛi>1

 (3.5)

where
ω =

(
ω1 ω2 . . . ωs 0 . . . ×s(N − 1) . . . 0

)
(3.6)

ΛΛΛ
(p>0)
1 =

[
Λ
(0)
1 Λ

(1)
1 . . . Λ

(N)
1

]
, Λ

(q)
1 =


Λ
(1q)
11 Λ

(1q)
12 . . . Λ

(1q)
1s

Λ
(2q)
11 Λ

(2q)
12 . . . Λ

(2q)
1s

...
...

. . .
...

Λ
(Nq)
11 Λ

(Nq)
12 . . . Λ

(Nq)
1s

 (3.7)

ΛΛΛi>1 =


ΛΛΛ

(00)
i>1 ΛΛΛ

(01)
i>1 . . . ΛΛΛ

(0N)
i>1

ΛΛΛ
(10)
i>1

. . .
...

...
. . .

...

ΛΛΛ
(N0)
i>1 . . . . . . ΛΛΛ

(NN)
i>1

 , ΛΛΛ
(pq)
i>0 =


Λpq
21 Λpq

22 . . . . . . Λpq
2s

Λpq
31

. . .
...

...
. . .

...
Λpq
s1 . . . . . . Λpq

s,(s−1) Λpq
ss

 (3.8)

a and λ are given as

a =



a
(0)
1

a
(0)
2
...

a
(0)
s

a
(1)
1
...

a
(N)
s


, λ =

4

5kB



0
x1K1

0
...

×(N − 2)
...
0
K2

...
Ks



, Ki =



0
...

×(i− 1)
...
0

xiKi

0
...

×(N − i)
...
0



(3.9)
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3.2 Force-Flux relations

In the absence of a pressure gradient and external forces, the flux of species i in the center of mass frame
of reference may be expressed as

J
(n,m)
i = −

∑
j ̸=i

DFick
ij

mj

mi
∇nj −

ρDT
i

mi
∇ lnT. (3.10)

Where DT
i are the thermal diffusion coefficients. Evaluating the integral of Equation (3.1) to acquire an

expression for the flux in terms of the expansion coefficients yields

J
(n,m)
i =

xi
2

a(0)i ∇ lnT −
∑
j

d
(0)
i,j dj

 (3.11)

Inserting the definition of dj from Equation (1.10) with ∇p = Fi = 0 ∀ i, Equation (3.11) becomes

J
(n,m)
i =

xi
2

a(0)i ∇ lnT −
∑
j

d
(0)
i,j

∑
k

xj

(
δj,k +

4π

3
nkMjkσ

3
jkχjk

)
∇ lnT − 1

n
Ejk∇nk


=
xi
2

a(0)i −
∑
j

d
(0)
i,j

∑
k

xj

(
δj,k +

4π

3
nkMjkσ

3
jkχjk

)∇ lnT − xi
2n

∑
j

d
(0)
i,j

∑
k

Ejk∇nk

(3.12)

In order to compare Equations (3.10) and (3.12) the gradient ∇ni must be eliminated from the rightmost
summation in Equation (3.12). Using the condition

∑
k dk = 0, and denoting bij ≡ 4π

3 njMijσ
3
ijχij

di = −
∑
k ̸=i

dk

∑
j

xi (δi,j + bij)∇ lnT +
1

n
Eij∇nj = −

∑
k ̸=i

∑
j

xk (δk,j + bij)∇ lnT +
1

n
Ekj∇nj

Eii

n
∇ni +

1

n

∑
j ̸=i

Eij∇nj

+
∑
j

xi(δi,j + bij)∇ lnT = −
∑
k ̸=i

Eki

n
∇ lnni +

1

n

∑
j ̸=i

Ekj∇nj

+
∑
j

xk(δk,j + bkj)∇ lnT


1

n

∑
k

Eki∇ni = −
∑
k

 1

n

∑
j ̸=i

Ekj∇nj + xk
∑
j

(δk,j + bkj)∇ lnT


∇ni = −

∑
j ̸=i

E′
j

E′
i

∇nj −
∑
k

nk
E′

i

∑
j

(δk,j + bkj)∇ lnT

(3.13)

where the final equality is acquired by inverting the summation over k and j, and using E′
i ≡

∑
j Eji.

Inserting this expression back into Equation (3.12) and collecting the terms related to each of the gradients
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yields

J
(n,m)
i =

xi
2

a(0)i −
∑
j

d
(0)
i,j

∑
k

xj (δj,k + bjk)

∇ lnT

− xi
2n

∑
j

d
(0)
i,j

−Eji

∑
k ̸=i

E′
k

E′
i

∇nk +
∑
k

nk
E′

i

∑
ℓ

(δk,ℓ + bkℓ)∇ lnT

+
∑
k ̸=i

Ejk∇nk


=
xi
2

a(0)i +
∑
j

d
(0)
i,j

∑
k

xk

(
Eji

E′
i

− δk,j

)∑
ℓ

(δk,ℓ + bkℓ)

∇ lnT

− xi
2n

∑
k ̸=i

∇nk
∑
j

d
(0)
i,j

(
Ejk − Eji

E′
k

E′
i

)
(3.14)

Comparing Equation (3.11) and (3.14) we can identify

DT
i = −mixi

2ρ

a(0)i +
∑
j

d
(0)
i,j

∑
k

xk

(
Eji

E′
i

− δk,j

)∑
ℓ

(δk,ℓ + bkℓ)


=
mixi
2ρ

−a(0)i +
∑
j

d
(0)
i,j

∑
k

xk

(
δk,j −

Eji

E′
i

)∑
ℓ

(δk,ℓ + bkℓ)

 (3.15)

3.3 Various measures of thermal diffusion

Measuring the thermal diffusion coefficient DT
i is not necessarily trivial. Therefore, other measures of

thermal diffusion and the relationship between them are presented here. We define the Soret coefficients
(ST,i) and thermal diffusion factors (αT,i) as

ST,i ≡
∇xi

xi(1− xi)∇T
, Jj = 0 ∀ j, αT,i ≡ TST,i, (3.16)

Where the lacking superscript on J is intentional, as if all fluxes vanish in one frame of reference the same
is true in all other frames of reference, by the transformation in Equation (2.21).

The thermal diffusion ratio, we define by the condition

J
(n,m)
i = 0 ∀ i =⇒ ∇ni = −nikT,i∇ lnT, ∀ i (3.17)

Inserting this definition into Equation (3.10) yields a set of equations defining kT,i∑
j ̸=i

DijkT,j ≡ ρDT
i , ∀ i. (3.18)

Rewriting the definition of kT,i in terms of the mole fraction gradients, one can relate kT,i to ST,i through
the set of equations

∇ni = −nikT,i∇ lnT

xi∇n+ n∇xi = −nikT,i

T
∇T

xi

( ∂n
∂T

)
p,x

∇T +
∑
j

(
∂n

∂xj

)
T,p

∇xj

+ n∇xi = −nikT,i

T
∇T

−xiT
ni

(
∂n

∂T

)
p,x

+
∑
j

[
nδi,j +

(
∂n

∂xj

)
T,p

]
xj(1− xj)ST,j = kT,i.

(3.19)
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Alternatively, starting from Equation (3.12) and setting Ji = 0, the Soret coefficients may be related
directly to the Sonine polynomial expansion coefficients through the set of equations

∑
ℓ

ST,ℓ

∑
j

∑
k

d
(0)
i,j Ejk

[
nδℓ,k + xk

(
∂n

∂xℓ

)
T,p

]
xℓ(1− xℓ)

=
∑
j

∑
k

d
(0)
i,j Ejkxk

(
∂n

∂T

)
p,x

− n

T

a(0)i −
∑
j

d
(0)
i,j

∑
k

xj

(
δj,k +

4π

3
nkMjkσ

3
jkχjk

)
(3.20)

4 Thermal Conductivity

The heat flux in the centre of mass frame of reference is related to the vdf. as

Jq =
∑
i

∫
fi
mi

2
U2

i dui (4.1)

Having obtained expressions for the thermal- and diffusive response functions, Λi andD
(j)
i in the previous

sections this integral may be evaluated to yield

Jq = −5kBT

4n

∑
i

Kixi

a(1)i ∇ lnT −
∑
j

d
(1)
i,j dj


− 4kBT

3

∑
i

∑
j

(
2πmimjkBT

mi +mj

) 1
2 ninjσ

4
ijχij

mi +mj
∇ lnT

+ kBT
∑
i

∑
j

2π

3
njσ

3
ij(Mij −Mji)χijJ

(n,m)
i

+
5kBT

2

∑
i

1 +
∑
j

2π

3
niσ

3
ijχij

 mi

mj
J
(n,m)
i .

(4.2)

In the absence of a mass flux, Fouriers law applies and we have

Jq = −λ∇T (4.3)

where λ is the conductivity. When all mass fluxes vanish in the presence of a temperature gradient, the
molar density gradients in di may be replaced by the thermal diffusion ratios, such that

di =
∑
j

xi (δi,j + bij − kT,iEji)∇ lnT, J
(n,m)
k = 0 ∀ k

≡
∑
j

dthj ∇ lnT,
(4.4)

where the second equality defines dthj . Furthermore, because all mass fluxes have vanished, these dthj
must satisfy ∑

j

d
(0)
i,j d

th
j = a

(0)
i (4.5)

as is seen by setting the left hand side of Equation (3.11) to zero. Comparing Equations (4.2) and (4.3)
we identify the thermal conductivity as
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λ = −5kBT

4n

∑
i

Kixi

a(1)i −
∑
j

d
(1)
i,j d

th
j


− 4kBT

3

∑
i

∑
j

(
2πmimjkBT

mi +mj

) 1
2 ninjσ

4
ijχij

mi +mj

(4.6)

5 Viscosity

The flux of momentum PPP is related to the velocity distribution function as

PPP =
∑
i

∫
fimiUidui. (5.1)

The hydrodynamic response functions BBBi and Hi may be written as the polynomial expansions

Bi =
mi

2kBT

∞∑
r=0

b
(r)
i S

(r)
5/2(UUU

2), Hi =

∞∑
r=0

h(0)r S
(r)
1/2(UUU

2) (5.2)

where Bi is defined by BBBi ≡ Bi

(
UiUi − 1

3U
2
i III
)
. Inserting these expansions into Equation (5.1), and

applying the conservation law for momentum yields a set of equations for the expansion coefficients
as

s∑
j=1

N∑
q=0

B
(pq)
ij b

(q)
j =

2

kBT
xiK

′
iδp,0,

{
i = {1, 2, ..., s}
p = {0, 1, ..., N}

(5.3)

where

K ′
i = 1 +

8πn

15

∑
j

xjMjiσ
3
ijχij

B
(pq)
ij =

2

5kBT

{
xixj

[
S
(p)
5/2(UUU

2
i )

◦
UUU iUUU i, S

(q)
5/2(UUU

2
j )

◦
UUU jUUU j

]
ij

+δi,j
∑
k

xixk

[
S
(p)
5/2(UUU

2
i )

◦
UUU iUUU i, S

(q)
5/2(UUU

2
i )

◦
UUU iUUU i

]
ik

} (5.4)

with
◦

UUU iUUU i ≡ UUU UUU − 1

3
U 2III. (5.5)

These bracket integrals are exactly the ones identified by Thompson et al. as linear combinations of the
collision integrals. [4]

5.1 Determining the expansion coefficients

5.2 Flux force relations

5.3 Viscosity in terms of the expansion coefficients

Comparing Equations ... and ... one can identify the shear viscosity as

η =
kBT

2

∑
i

K ′
ixib

(0)
i +

4

15

√
2πkBT

∑
i

∑
j

√
mimj

mi +mj
ninjσ

4
ijχij (5.6)
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6 Contact diameters

The ”contact diameter”, σij has been mentioned several times thus far, and has been taken to be some
distance in the range of the particle sizes. In the case of additive hard spheres, the contact diameter
can unambiguously be defined as the distance between the centre of mass of the two particles at contact.
However, for Mie particles this definition is not equally straight forward. In this section, various ways of
defining the contact diameter, and the inherent underlying assumptions behind the different definitions
will be discussed.

Firstly, it is worth mentioning that applying the multicomponent, density corrected solutions proposed by
de Haro et al. to Mie fluids implies the assumption that the contact diameters are independent of particle
velocities at collision. This assumption is necessary due to the fact that the integral of Equation (1.2) is
one over the velocity space. The contact diameters are permitted to be functions of the temperature, and
thereby the mean velocities, as well as density and composition but must be constant for all particles in
a given state.

One could, in principle, define the contact diameters as some function of the velocities, but this would
severely limit the possibility of utilising previously obtained results from the literature. Therefore, such
an approach has not been attempted here.

When defining the contact diameters of Mie particles, we note the two roles this distance plays. The
first is describing the covolume of the mixture, and the modified probability of finding two particles at
contact through the radial distribution function ”at contact”. The second is describing the instantaneous
transfer of energy and momentum from one particle to the other when particles collide. This effect
manifests itself as the second terms in the expressions for the conductivity and viscosity, which depends
on the density, contact diameters and rdf. but not on the polynomial expansion coefficients. Because the
contact diameter plays two distinctly different roles, it is not necessarily so that the length one should
use in these two roles must be the same.

To evaluate the radial distribution function ”at contact” a highly convenient choice of the contact diameter
is the Mie parameter σij . This allows one to directly apply the expressions proposed by Lafitte et al. for
the rdf. at contact. [5] This formulation of the rdf. at contact has been shown to give accurate predictions
of thermodynamic properties of fluids, and the associated distance is therefore likely to give a good
representation of the covolume of the mixture. Therefore, it is believed that using σij as the contact
diameter when computing the rdf. at contact is not only a convenient choice, but also a choice that
allows accurate representation of the modified probability of contact between particles due to volume
exclusion.

Regarding the second property described by the contact diameter, the instantaneous transfer of energy
and momentum at the moment of collision, a distance more directly related to the collision dynamics was
chosen. Firstly, note that the equilibrium vdf. given in Equation (1.4) does not depend on the contact
diameters. We regard a colliding pair of particles, and define the contact diameter as the average distance
of closest approach (R) during collision where the particles repel each other (e.g. collisions where θ < π

2 ).

Further, we compute this average for a mixture at equilibrium, when fi = f
(0)
i . The contact diameter is

then given by

R̄ij =

∫ ∞

0

∫ b′

0

Rij(gij , b)dbdgij (6.1)

where gij is the relative speed of the colliding pair and b′ is the solution to the equation

θij(b
′; gij) = 0. (6.2)

This integral is somewhat computationally expensive to evaluate, but may be simplified by noting that
R(gij ; b) is reasonably symmetric about g = ḡ, the average relative speed, as shown in Figure 6.1. Due
to this symmetry, a good approximation to the integral of Equation (6.1) is given by
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R̄ij =

∫ b̄′

0

Rij(b; ḡij)db (6.3)

with b̄′ given by
θij(b̄

′; ḡij) = 0. (6.4)

Figure 6.1: The distance of closest approach as a function of dimensionless relative velocity g and impact
parameter b at T = 500K

This integral was evaluated using a six-point Gauss-Legendre quadrature, after investigating the conver-
gence behaviour of the quadrature and finding that this was sufficient to achieve a relative precision of
≈ 10−8.

References
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