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1 Introduction
Diffusion- and thermal diffusion coefficients can be defined in a plethora of ways, which can quickly lead to
confusion. This memo aims to clearly state how diffusion coefficients computed using the KineticGas package
with various options are defined, and serve as a starting point for users that wish to use the KineticGas
package together with other definitions of diffusion and thermal diffusion coefficients.

2 Diffusion Coefficients
When defining the diffusion coefficients we must make a set of choices:

• What frame of reference do the coefficients apply to?

• What basis are the fluxes measured in?

• What forces are our driving forces?

• Are we using an independent or dependent set of driving forces?

• If we are using an independent set: What is the dependent driving force?

In this memo, the notation J
(x,f)
i is used to denote a flux on the x basis, in the f frame of reference, such

that a molar flux in the mole-centre frame of reference is denoted J
(n,n)
i , and the corresponding mass flux is

J
(m,n)
i = miJ

(n,n)
i , where mi is the molar mass of species i. Diffusion coefficients are denoted D

(f,l)
ij , where

the indices indicate

• i : The flux the diffusion coefficient applies to.

• j : The force the diffusion coefficient applies to.
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• f : The frame of reference the diffusion coefficient applies to.

• l : The index of the dependent force. The index l is omitted for diffusion coefficients defined using a
dependent set of forces.

This indexing may at first seem excessive, but it is required in order to accurately differentiate between the
different definitions discussed here. Using this notation, we can write Ficks’ law on a molar basis in the
centre of moles (CoN) frame of reference (FoR) for an arbitrary multicomponent mixture as

J
(n,n)
i = −

∑
j ̸=l

D
(n,l)
ij ∇cj (1)

where we have used the molar concentrations as driving forces, and chosen to use an independent set of
driving forces, as the dependent gradient ∇cl is constrained by the Gibbs-Duhem equation∑

j

xj∇µj = 0. (2)

For a binary ideal gas mixture, taking l = 2, this reduces to

J
(n,n)
1 = −D

(n,2)
11 ∇c1, J

(n,n)
2 = −D

(n,2)
21 ∇c1,

J
(n,n)
1 = −J

(n,n)
2 ⇐⇒ D

(n,2)
11 = −D

(n,2)
21 ,

(3)

a commonly known formulation of Ficks’ law in binary mixtures.
To most easily expand our formulation of Ficks’ law from binary to multicomponent mixtures, and to facilitate
keeping track of indices, the KineticGas package always1 returns an N ×N diffusion matrix, defined through

J1
J2
...

JN


(n,f)

= −


D11 D12 . . . D1N

D21 D22 . . . D2N

...
...

. . .
...

DN1 DN2 . . . DNN


(f,l) 

∇c1
∇c2

...
∇cN

 (4)

where the dependent species, l, is selected with the dependent_idx option (default is last component,
l = N). For the described binary case mentioned above (CoN FoR, species 2 as the dependent species), this
reduces to (

J1
J2

)(n,n)

= −
[
D11 0
D21 0

](n,2) (∇c1
∇c2

)
(5)

where, as described above, the coefficients fulfil D(n,2)
11 = −D

(n,2)
21 . If we select species 1 as the dependent

component, the resulting matrix is (
J1
J2

)(n,n)

= −
[
0 D12

0 D22

](n,1) (∇c1
∇c2

)
(6)

where, because for an ideal binary mixture at isothermal, isobaric conditions, ∇c1 = −∇c2, and in the CoN
FoR, J (n,n)

1 = −J
(n,n)
2 , we have D

(n,1)
12 = −D

(n,2)
11 and D

(n,1)
22 = −D

(n,1)
12 = D

(n,2)
11 . A similar, but slightly

more intricate relation, holds also for non-ideal mixtures.[1] Because the binary system is often of interest,
and we only need one diffusion coefficient to describe the system, using the option use_binary=True2

with the interdiffusion method, will return the diffusion coefficient

D(f) =

{
D

(f,2)
11 (= −D

(f,2)
21 ), if dependent_idx = 2 (default)

D
(f,1)
22 (= −D

(f,1)
12 ), if dependent_idx = 1

(7)

1See note on the option use_binary=True.
2The default for binary systems is use_binary=True.
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where f indicates the frame of reference, such that the diffusion coefficient returned by default for a binary
system is the one fulfilling

J
(n,n)
1 = −D(n)∇c1, (8)

the common formulation of Ficks’ law in the CoN FoR.

2.1 Dependent driving forces
When translating between definitions of the diffusion coefficient it may be convenient to have access to
diffusion coefficients defined using a dependent set of driving forces. These are then computed by selecting
the option use_independent=False, and are defined through

J1
J2
...

JN


(n,f)

= −


D11 D12 . . . D1N

D21 D22 . . . D2N

...
...

. . .
...

DN1 DN2 . . . DNN


(f) 

∇c1
∇c2

...
∇cN

 (9)

and in the binary case reduce to

J
(n,f)
1 = −D

(f)
11 ∇c1 −D

(f)
12 ∇c2

J
(n,f)
2 = −D

(f)
21 ∇c1 −D

(f)
22 ∇c2.

(10)

Note that this diffusion matrix is not unique, and not invertible. It is primarily of interest because it gives
easy access to the coefficients given in Eq. (19) of Ref. [1]. For practical calculations it is recommended to
always use an independent set of driving forces.

2.2 Frames of Reference
In the centre of moles (CoN, default) frame of reference (FoR), the molar fluxes are subject to the constraint∑

i

J
(n,n)
i = 0. (11)

in e.g. CFD calculations, we are typically more interested in fluxes in the centre of mass (CoM, barycentric)
FoR. These are subject to the constraint∑

i

J
(m,m)
i =

∑
i

miJ
(n,m)
i = 0. (12)

We compute diffusion coefficients that apply in the CoM FoR by using the option frame_of_reference=’CoM’
with the interdiffusion method, which returns the matrix of diffusion coefficients corresponding to the
equation 

J1
J2
...

JN


(n,m)

= −


D11 D12 . . . D1N

D21 D22 . . . D2N

...
...

. . .
...

DN1 DN2 . . . DNN


(m,l) 

∇c1
∇c2

...
∇cN

 (13)

where, again, l indicates the dependent component (default is last component), and Dil = 0 for all i. This
matrix is related to the diffusion matrix in the CoN FoR by the transformation matrix given in the supporting
material to Ref. [1].
For all frames of reference (Exception: See section on Ortiz de Zárate.) the definition used for the diffusion
coefficients returned by the KineticGas package is that in Eq. (4), that is:

• The fluxes are on a molar basis.

• The driving forces are the molar concentration gradients.

3



3 Thermal Diffusion
Thermal diffusion coefficients are defined through an extension of the equations in Sec. 2, using the same
notation as is present there, thermal diffusion coefficients computed using the KineticGas package are defined
through 

J1
J2
...

JN


(n,f)

=


DT,1

DT,2

...
DT,N


(f,l)

∇ lnT −


D11 D12 . . . D1N

D21 D22 . . . D2N

...
...

. . .
...

DN1 DN2 . . . DNN


(f,l) 

∇c1
∇c2

...
∇cN

 (14)

or, more compactly
J(n,f) = D

(f,l)
T ∇ lnT −DDD(f,l)∇c. (15)

Note that because in the presence of a temperature gradient, the Gibbs-Duhem equation no longer reduces
to ∑

i

xi∇µi = 0 (16)

the choice of dependent component (l) will not only effect the diffusion matrix DDD(f,l), but also the thermal
diffusion vector D

(f,l)
T . Just as for the diffusion matrix, the frame of reference and choice of dependent

component for thermal diffusion coefficients is selected with the options frame_of_reference and dependent_idx,
with the thermal_diffusion_coeff method.
Also, just as for the diffusion matrix, thermal diffusion coefficients computed using the KineticGas package
are defined through Eq. (14), i.e. with ∇ lnT and the molar concentration gradients as the driving forces,
and with the fluxes on a molar basis.

4 Ortiz de Zárate
Ortiz de Zárate showed that one may define the diffusion- and thermal diffusion coefficients such that they
are equivalent in the centre of mass (CoM) and centre of moles (CoN) frame of reference (FoR).[2] We denote
these frame-independent coefficients as D

(z)
T and DDD(z), and they are defined through

J1
J2
...

JN−1


(n,n)

= −c

XXX


DT,1

DT,2

...
DT,N−1


(z)

∇T +XXX


D11 D12 . . . D1,N−1

D21 D22 . . . D2,N−1

...
...

. . .
...

DN−1,1 DN−1,2 . . . DN−1,N−1


(z)

XXX−1


∇x1

∇x2

...
∇xN−1




(17)
or, more compactly

J(n,n) = c
{
XXXD

(z)
T ∇T +XXXDDD(z)XXX−1∇x

}
, (18)

where we have arbitrarily chosen the last component as the dependent component for ease of notation, and
XXX is the matrix

Xij = δijxi − xixj . (19)

Ortiz de Zárate shows that these coefficients simultaneously fulfill

J(m,m) = ρ
{
WWWD

(z)
T ∇T +WWWDDD(z)WWW−1∇w

}
, (20)

where w denote the mass fractions, ρ denotes the mass density, and WWW is the matrix

Wij = δijwi − wiwj . (21)
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for details on how these are related to other diffusion coefficients, see the memo on binary limits.
To compute the coefficients D

(z)
T and DDD(z), use the option frame_of_reference=’zarate’. For direct

access to the coefficients

DDD(x) =XXXDDD(z)XXX−1, and

DDD(w) =WWWDDD(z)WWW−1,
(22)

as defined by Ortiz de Zárate,[2] use the options frame_of_reference=’zarate_x’ and frame_of_reference=’zarate_w’
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