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1 Introduction
This memo discusses the binary limit of diffusion- and thermal diffusion coefficients in ternary systems,
i.e. the behaviour of the coefficients when the mole fraction of one species in the system approaches zero.
As an initial remark, please note that if one of the mole fractions is exactly zero, the solutions to Eq. (6),
(8) and (10) in [1] are ill-defined, such that we cannot model a binary system as a ternary system where
one mole fraction is exactly zero. We can, however, investigate the behaviour when one mole fraction
approaches zero.

The purpose of this memo is to give some insight into which ternary coefficients approach various binary
coefficients in the binary limit, as well as showing how the formulation of the force-flux relations in the
respective binary and ternary systems effects these relations.

Finally, the current memo serves as a consistency check for the ternary coefficients computed using the
KineticGas package.

2 Diffusion
This section discusses the binary limit of the diffusion coefficients in a ternary system. The purpose of
the section is to give insight into how the force-flux in a binary system relate to those in a ternary, how
to interpret the diffusion coefficients in a ternary system, and raise awareness regarding potential pitfalls
when attempting to model a ternary system as a pseudo-binary system.

2.1 Notation
In the following text, D(b)ii is used to denote the diffusion coefficient of a binary system, where compo-
nent i is the independent component. D

(k)
ii denotes the diagonal elements of the Fick diffusion matrix

in a ternary system, where component k is the dependent component. Dij denotes the non-diagonal
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elements of the Fick diffusion matrix in a ternary system, where components i and j are the independent
components.

In section 2.3, D̃(t)ij and D̃
(b)
ij are used to denote the diffusion coefficients corresponding to the linearly

dependent formulations of Fick’s law.

2.2 Independent Fluxes
For a ternary system (1, 2, 3), we can formulate Fick’s law for a set of independent fluxes as either

(J1
J2
) = [D

(3)
11 D12

D21 D
(3)
22

](∇c1∇c2
) , (1)

(J1
J3
) = [D

(2)
11 D13

D31 D
(2)
33

](∇c1∇c3
) , (2)

or

(J2
J3
) = [D

(1)
22 D23

D32 D
(1)
33

](∇c2∇c3
) . (3)

Where the superscript on the diffusion coefficients indicates which component is the dependent compo-
nent.

For a binary system (1, 2), we can choose between

J
(b)
1 =D(b)11 ∇c1 (4)

and
J
(b)
2 =D(b)22 ∇c2. (5)

Now we can examine the question: "When x3 → 0, and (necessarily) ∇c3 → 0 and J3 → 0, do the ternary
coefficients reduce to the corresponding binary coefficients?"

To answer that question, we must be clear about which ternary formulation reduces to which binary
formulation.

In the ternary formulation (2), J2 is the dependent flux, so if x3 = ∇c3 = 0 (something we are free to
demand, as ∇c1 and ∇c3 are independent), J1 = D(2)11 ∇c1. Thus, we expect that formulation (2) should
reduce to formulation (4) when x3 = ∇c3 = 0. Therefore, we expect

D
(2)
11 (x3 = 0) =D(b)11 . (6)

By similar argument, it’s formulation (3) that reduces to formulation (5), so

D
(1)
22 (x3 = 0) =D(b)22 . (7)

Note that formulation (1) does not immediately reduce to one of the binary formulations when x3 → 0;
this is because in this formulation, we cannot demand ∇c3 = 0 because component 3 is the dependent
component in this formulation. Therefore, the coefficients in formulation (1) cannot be expected to reduce
to the binary coefficients when x3 → 0.

Figure 1 shows how the ternary coefficients expected to reduce to the corresponding binary coefficients
behave as a function of x3.
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Figure 1: The ternary diffusion coefficients reduce to the corresponding binary coefficients when x3 → 0.

2.3 Dependent Fluxes
An alternative flux-force formulation for the ternary system is through a set of dependent fluxes and
forces; thus, we can formulate Fick’s law as

⎛
⎜
⎝

J1
J2
J3

⎞
⎟
⎠
=

⎡⎢⎢⎢⎢⎢⎢⎣

D̃
(t)
11 D̃

(t)
12 D̃

(t)
13

D̃
(t)
21 D̃

(t)
22 D̃

(t)
23

D̃
(t)
31 D̃

(t)
32 D̃

(t)
33

⎤⎥⎥⎥⎥⎥⎥⎦

⎛
⎜
⎝

∇c1
∇c2
∇c3

⎞
⎟
⎠
, (8)

and correspondingly for the binary system:

(J1
J2
) = [D̃

(b)
11 D̃

(b)
12

D̃
(b)
21 D̃

(b)
22

](∇c1∇c2
) . (9)

Note that these two matrices are not invertible because they implicitly contain the dependency J1+J2+J3 =
0. However, this formulation can be useful for consistency checking because when x3 → 0, Equation (10)
should hold:

[D̃
(t)
11 D̃

(t)
12

D̃
(t)
21 D̃

(t)
22

] = [D̃
(b)
11 D̃

(b)
12

D̃
(b)
21 D̃

(b)
22

] . (10)

This equality should hold precisely because the matrices contain the dependence between the fluxes and
forces, and when x3 = ∇c3 = 0, J1 + J2 = 0, and we should obtain the same fluxes as from the binary
matrix.

Figure 2 demonstrates that Equation (10) is satisfied when x3 → 0.

Finally, for the ternary matrix, we can observe that

D̃13 − D̃23 = 0 (11)

when x3 = 0 because when x3 = ∇c3 = 0, ∇c2 = −∇c1, and J3 should vanish. Figure 3 demonstrates that
this condition is met.
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Figure 2: The coefficients in the singular, ternary Fick matrix reduce to the corresponding coefficients in
the singular, binary Fick matrix when x3 → 0.
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Figure 3: The flux J3 vanishes when x3 → 0 and ∇c3 = 0.
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3 Thermal diffusion
This section shows how the thermal diffusion coefficients relate to those in a binary system in the binary
limit. The section also gives some insight into different definitions of the thermal diffusion coefficient,
with the aim of showing that the definition is not arbitrary if one wishes to relate the ternary coefficients
to the respective binary coefficients.

3.1 Notation
For fluxes the superscript (i, j) is used, where i is the basis (m for mass-based, n for mole based) and
j is the frame of reference. Thermal diffusion coefficients are denoted DT,i, the superscript (z) denotes
thermal diffusion coefficients as defined by Ortiz de Zárate [2], while superscripts (m) and (n) denote
the independent thermal diffusion coefficients in the centre of mass, and centre of moles FoR, as defined
in ref. [1].

Similarly, diffusion matrices are superscripted with (x) and (w) to denote those defined by Ortiz de
Zárate using the same notation, while superscripts (m) and (n) are used for the independent diffusion
matrices in the CoM and CoN FoR as defined in ref. [1].

The notation D
(z,tj)
T,i denotes the thermal diffusion coefficient of species i in a ternary mixture with species

j taken to be the dependent species, as defined in ref. [2] while D
(z,bj)
T,i denotes the thermal diffusion

coefficient of species i in a binary mixture, with species j taken to be the dependent species.

3.2 Definitions of the thermal diffusion coefficient
The default definition of the thermal diffusion coefficient in a multicomponent mixture in the KineticGas
package is

J
(n,m)
i =D(m)T,i ∇ lnT −∑

j≠ℓ

D
(m)
ij ∇cj (12)

where the superscript (n,m) indicates that the flux is on a molar basis in the centre of mass (CoM)
frame of reference (FoR), and the superscripts (m) indicate that the coefficients apply to the CoM FoR.
Component ℓ is the dependent component, which defaults to the last component in the mixture. For
later convenience, we rewrite this for a ternary system as

(J
(n,m)
1

J
(n,m)
1

) = −DDD(m) (∇c1∇c1
) +
⎛
⎝
D
(m)
T,1

D
(m)
T,2

⎞
⎠
∇ lnT

J(n,m) = −DDD(m)∇c +D(m)T ∇ lnT

(13)

In the centre of moles frame of reference, the diffusion- and thermal diffusion coefficients are defined
by

J(n,n) = −DDD(n)∇c +D(n)T ∇ lnT. (14)

and they are related by
DDD(n) =ΨΨΨn↤mDDD(m), D

(n)
T =ΨΨΨn↤mD

(m)
T , (15)

with ΨΨΨn↤m being the transformation matrix given in the supporting information of [1], adapted to a
(Nc −1)×(Nc −1) matrix, rather than the original Nc ×Nc matrix, by using the linear dependence of the
fluxes.

In 2019 Ortiz de Zárate [2] showed that one can define thermal diffusion coefficients that are equivalent
in the centre of mass and centre of moles frames of reference, if one defines them through either
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J(n,n) = −c (DDD(x)∇x +XXXD
(z)
T ∇T) , or

J(m,m) = −ρ (DDD(w)∇w +WWWD
(z)
T ∇T)

(16)

where the matrices XXX and WWW are given by

Xij = δijxi − xixj , Wij = δijwi −wiwj . (17)

The superscripts (x) and (w) indicate diffusion matrices that apply in the centre of moles and centre
of mass FoR respectively, when using these definitions. The superscript (z) marks the thermal diffusion
coefficients as defined by Eq. (16). When using this definition of the thermal diffusion coefficient, Ortiz
de Zárate shows that

lim
x2→0

D
(z,t3)
T,1 =D(z,b3)T,1 , (18)

where D
(z,t)
T,1 is the thermal diffusion coefficient of species 1 in a ternary mixture, and D

(z,b3)
T,1 is the

thermal diffusion coefficient of species 1 in a binary mixture with species 3, both as defined by Eq. (16).
that is: For a ternary system (1, 2, 3), when the mole fraction of species 2 tends to zero, the thermal
diffusion coefficient of species 1 approaches the thermal diffusion coefficient of species 1 in the binary
mixture (1, 3). This relation follows from an argument analogous to that in section 2.2.

We can relate the thermal diffusion coefficients D
(n)
T to the D

(z)
T , by rewriting Eq. (14) as

J(n,n) = −DDD(n)(c∇x + x∇c) +D(n)T ∇ lnT

= −DDD(n)(c∇x − xc∇ lnT ) +D(n)T ∇ lnT

= −cDDD(n)∇x + 1

T
(D(n)T + cDDD(n)x)∇T

(19)

such that D
(z)
T is given by the solution to

−cXXXD
(z)
T = 1

T
(D(n)T + cDDD(n)x) . (20)

By the same manipulation, and noting that we can write ∇x = TTT x↤w∇w, we can rewrite equation (13)
as

J(n,m) = −DDD(m)∇c +D(m)T ∇ lnT

= −cDDD(m)∇x + 1

T
(D(m)T + cDDD(m)x)∇T

= −cDDD(m)TTT x↤w∇w + 1

T
(D(m)T + cDDD(m)x)∇T

J(m,m) = −diag(M)cDDD(m)TTT x↤w∇w + 1

T
diag(M) (D(m)T + cDDD(m)x)∇T

(21)

where M = (M1,M2, ...)⊺ is the vector of molar masses, such that D
(z)
T is given by the solution to

−ρWWWD
(z)
T = 1

T
diag(M) (D(m)T + cDDD(m)x) . (22)

Together, Eqs. (20) and (22) allow for a consistency check on the transformation matrices ΨΨΨm↤n and
ΨΨΨn↤m, as we should have

1

c
XXX−1 (D(n)T + cDDD(n)x) = 1

ρ
WWW −1diag(M) (D(m)T + cDDD(m)x)

= 1

ρ
WWW −1diag(M)ΨΨΨm↤n (D(n)T + cDDD(n)x)

1

c
XXX−1ΨΨΨn↤m (D(m)T + cDDD(m)x) = 1

ρ
WWW −1diag(M) (D(m)T + cDDD(m)x)

(23)
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As a second side-effect of this procedure, we can relate the diffusion matrices, as defined by Eqs. (16) to
DDD(m) and DDD(n) as

DDD(x) =DDD(n)

DDD(w) = c

ρ
diag(M)DDD(m)TTT x↤w (24)

and remark that Ortiz de Zárate gives the relation

WWW −1DDD(w)WWW =XXX−1DDD(x)XXX, (25)

which can serve as a second consistency check.

All the consistency checks mentioned above have been carried out numerically and been found to pass.

3.2.1 The binary case

For convenience, the binary transformations are given explicitly as

D
(z,b3)
T,1 = −

D
(n,b3)
T,1 + c1D(n,b3)11

c1(1 − x1)T

= −
D
(m,b3)
T,1 + c1D(m,b3)

11

c1(1 −w1)T

(26)

3.3 The binary limit

With the path to obtaining D
(z)
T established, we can now investigate the binary limit of a ternary

system. The ternary system investigated consists of species (1, 2, 3) and has the molar composition
xt = (x1(1 − x2), x2, (1 − x1)(1 − x2)). We are comparing it to a binary system of species (1, 3) with
composition xb = (x1,1− x1), such that the systems are exactly equivalent when x2 = 0. In both systems
we take species 3 to be the dependent species.

The results are shown in Figs. 4 and 5.
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Figure 4: The thermal diffusion coefficient D
(z,t)
T,1 in the ternary mixture (1, 2, 3) (solid lines), and the

thermal diffusion coefficient Dz,b3
T,1 in the binary mixture (1, 3) (dashed lines), at different mole fractions

of species 1 (colors). x1 indicates the mole fraction of species 1 in the binary, i.e. x1 = n1/(n1 +n3), such
that the composition of the ternary is xt = (x1(1 − x2), x2, (1 − x1)(1 − x2)).
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As seen immediately from Fig. 4, the ternary coefficient (solid lines) approaches the expected binary
coefficient as x2 → 0. Note also the logarithmic scale, and that even at mole fractions of species 2 as small
as x2 = 10−2, there is an appreciable difference in DT,1 in the ternary compared to the corresponding
binary. As seen more clearly in Fig. 5, the effect of increasing x2 on DT,1 is largest when x1 is large. This
could indicate that, contrary to intuition, if one wishes to model a ternary system with x1 > x2 ≫ x3 as a
binary, neglecting the presence of species 3, a better estimate for thermal diffusion is obtained by taking
species 2 as the independent species.

Explicitly: For a ternary system consisting of a trace component in air, the best estimate for thermal
diffusion appears to be obtained if one models this as a binary mixture of nitrogen with the tracer taking
the tracer to be the independent species.
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Figure 5: The same thermal diffusion coefficients as in Fig. 4, with deviations and for a larger composition
span.
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